List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3534391/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                | IF        | CITATIONS           |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|
| 1  | Oriented attachment of particles: 100 years of investigations of non-classical crystal growth. Russian<br>Chemical Reviews, 2014, 83, 1204-1222.                                                       | 6.5       | 170                 |
| 2  | UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions.<br>Journal of Photochemistry and Photobiology B: Biology, 2011, 102, 32-38.                           | 3.8       | 143                 |
| 3  | Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5Zn0.5Fe2O4 powders. Ultrasonics Sonochemistry, 2006, 13, 47-53.                                         | 8.2       | 123                 |
| 4  | Rationalizing the Influence of the Mn(IV)/Mn(III) Red-Ox Transition on the Electrocatalytic Activity of<br>Manganese Oxides in the Oxygen Reduction Reaction. Electrochimica Acta, 2016, 187, 161-172. | 5.2       | 97                  |
| 5  | Specifics of pyrohydrolytic and solid-phase syntheses of solid solutions in the (MgGa2O4) x<br>(MgFe2O4)1 â^' x system. Russian Journal of Inorganic Chemistry, 2010, 55, 427-429.                     | 1.3       | 91                  |
| 6  | Lattice expansion and oxygen non-stoichiometry of nanocrystalline ceria. CrystEngComm, 2010, 12,<br>3531.                                                                                              | 2.6       | 78                  |
| 7  | Sonochemical synthesis of inorganic materials. Russian Chemical Reviews, 2007, 76, 133-151.                                                                                                            | 6.5       | 75                  |
| 8  | Planar SERS nanostructures with stochastic silver ring morphology for biosensor chips. Journal of<br>Materials Chemistry, 2012, 22, 24530.                                                             | 6.7       | 65                  |
| 9  | Nanocrystalline BaSnO3 as an Alternative Gas Sensor Material: Surface Reactivity and High Sensitivity to SO2. Materials, 2015, 8, 6437-6454.                                                           | 2.9       | 63                  |
| 10 | Cerium fluoride nanoparticles protect cells against oxidative stress. Materials Science and Engineering C, 2015, 50, 151-159.                                                                          | 7.3       | 50                  |
| 11 | ZnO formation under hydrothermal conditions from zinc hydroxide compounds with various chemical histories. Russian Journal of Inorganic Chemistry, 2007, 52, 1811-1816.                                | 1.3       | 48                  |
| 12 | Bulk and Surface Low Temperature Phase Transitions in the Mg-Alloy EZ33A. Metals, 2020, 10, 1127.                                                                                                      | 2.3       | 44                  |
| 13 | Coprecipitation from aqueous solutions to prepare binary fluorides. Russian Journal of Inorganic Chemistry, 2011, 56, 1525-1531.                                                                       | 1.3       | 43                  |
| 14 | Nanocrystalline ceria based materials—Perspectives for biomedical application. Biophysics (Russian) Tj ETQqO 0                                                                                         | 0 rgBT /O | verlock 10 Tf<br>41 |
| 15 | Towards the surface hydroxyl species in CeO <sub>2</sub> nanoparticles. Nanoscale, 2019, 11, 18142-18149.                                                                                              | 5.6       | 41                  |
| 16 | IR radiation assisted preparation of KOH-activated polymer-derived carbon for methylene blue adsorption. Journal of Environmental Chemical Engineering, 2019, 7, 103514.                               | 6.7       | 39                  |

| 17 | Microwave-assisted hydrothermal synthesis and photocatalytic activity of ZnO. Inorganic Materials, 2007, 43, 35-39. | 0.8 | 38 |
|----|---------------------------------------------------------------------------------------------------------------------|-----|----|
|    |                                                                                                                     |     |    |

18Panthenol-stabilized cerium dioxide nanoparticles for cosmeceutic formulations against ROS-induced<br/>and UV-induced damage. Journal of Photochemistry and Photobiology B: Biology, 2014, 130, 102-108.3.837

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Selenic acid anodizing of aluminium for preparation of 1D photonic crystals. Electrochemistry Communications, 2019, 100, 104-107.                                                                                                     | 4.7 | 37        |
| 20 | Silver-Doped Calcium Phosphate Bone Cements with Antibacterial Properties. Journal of Functional<br>Biomaterials, 2016, 7, 10.                                                                                                        | 4.4 | 36        |
| 21 | Synthesis of SrF2–YF3 nanopowders by co-precipitation from aqueous solutions. Mendeleev<br>Communications, 2014, 24, 360-362.                                                                                                         | 1.6 | 35        |
| 22 | Diethyl and methyl-tert-buthyl ethers as new solvents for aerogels preparation. Materials Letters, 2014, 116, 116-119.                                                                                                                | 2.6 | 35        |
| 23 | Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use<br>for cell staining and polyelectrolyte microcapsule labelling. Beilstein Journal of Nanotechnology,<br>2016, 7, 1905-1917. | 2.8 | 35        |
| 24 | Photo-induced toxicity of tungsten oxide photochromic nanoparticles. Journal of Photochemistry and Photobiology B: Biology, 2018, 178, 395-403.                                                                                       | 3.8 | 35        |
| 25 | Synthesis and thermal stability of nanocrystalline ceria sols stabilized by citric and polyacrylic acids.<br>Russian Journal of Inorganic Chemistry, 2010, 55, 328-332.                                                               | 1.3 | 33        |
| 26 | Hydrothermal and microwave-assisted synthesis of nanocrystalline ZnO photocatalysts.<br>Superlattices and Microstructures, 2007, 42, 421-424.                                                                                         | 3.1 | 32        |
| 27 | High-yield microwave synthesis of layered<br>Y <sub>2</sub> (OH) <sub>5</sub> NO <sub>3</sub> ·xH <sub>2</sub> O materials. CrystEngComm, 2015, 17,<br>2667-2674.                                                                     | 2.6 | 32        |
| 28 | Hexafluoroisopropyl alcohol as a new solvent for aerogels preparation. Journal of Supercritical<br>Fluids, 2014, 89, 28-32.                                                                                                           | 3.2 | 31        |
| 29 | Layer-by-layer assembly of porphyrin-based metal–organic frameworks on solids decorated with graphene oxide. New Journal of Chemistry, 2017, 41, 948-957.                                                                             | 2.8 | 31        |
| 30 | New nanocomposites for SERS studies of living cells and mitochondria. Journal of Materials<br>Chemistry B, 2016, 4, 539-546.                                                                                                          | 5.8 | 30        |
| 31 | Highly reversible photochromism in composite WO3/nanocellulose films. Cellulose, 2019, 26,<br>9095-9105.                                                                                                                              | 4.9 | 29        |
| 32 | Zinc-releasing calcium phosphate cements for bone substitute materials. Ceramics International, 2016, 42, 17310-17316.                                                                                                                | 4.8 | 28        |
| 33 | Oxygen nonstoichiometry of nanocrystalline ceria. Russian Journal of Inorganic Chemistry, 2010, 55, 325-327.                                                                                                                          | 1.3 | 27        |
| 34 | Synthesis of micro-mesoporous aluminosilicates on the basis of ZSM-5 zeolite using dual-functional templates at presence of micellar and molecular templates. Microporous and Mesoporous Materials, 2017, 237, 90-107.                | 4.4 | 27        |
| 35 | Highly Crystalline WO <sub>3</sub> Nanoparticles Are Nontoxic to Stem Cells and Cancer Cells.<br>Journal of Nanomaterials, 2019, 2019, 1-13.                                                                                          | 2.7 | 27        |
| 36 | Bis(4-cyano-1-pyridino)pentane halobismuthates. Light-harvesting material with an optical band gap of 1.59 eV. Mendeleev Communications, 2017, 27, 271-273.                                                                           | 1.6 | 27        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Hydrothermal synthesis of efficient TiO2-based photocatalysts. Russian Journal of Inorganic<br>Chemistry, 2010, 55, 150-154.                                                                                                                       | 1.3 | 26        |
| 38 | New Sr1â^'xâ^'zRx(NH4)zF2+xâ^'z (RÂ=ÂYb, Er) solid solution as precursor for high efficiency up-conversion<br>luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry and Physics,<br>2016, 172, 150-157.           | 4.0 | 26        |
| 39 | The Melt of Sodium Nitrate as a Medium for the Synthesis of Fluorides. Inorganics, 2018, 6, 38.                                                                                                                                                    | 2.7 | 25        |
| 40 | Layered rare-earth hydroxides: a new family of anion-exchangeable layered inorganic materials.<br>Russian Chemical Reviews, 2020, 89, 629-666.                                                                                                     | 6.5 | 25        |
| 41 | pH control of the structure, composition, and catalytic activity of sulfated zirconia. Journal of Solid<br>State Chemistry, 2013, 198, 496-505.                                                                                                    | 2.9 | 24        |
| 42 | Synthesis of high-purity nanocrystalline BiFeO3. Inorganic Materials, 2013, 49, 310-314.                                                                                                                                                           | 0.8 | 24        |
| 43 | Nanocrystalline ceria: a novel material for electrorheological fluids. RSC Advances, 2016, 6,<br>88851-88858.                                                                                                                                      | 3.6 | 24        |
| 44 | Biocompatible dextran-coated gadolinium-doped cerium oxide nanoparticles as MRI contrast agents<br>with high <i>T</i> <sub>1</sub> relaxivity and selective cytotoxicity to cancer cells. Journal of<br>Materials Chemistry B, 2021, 9, 6586-6599. | 5.8 | 24        |
| 45 | Mesostructure, fractal properties and thermal decomposition of hydrous zirconia and hafnia.<br>Russian Journal of Inorganic Chemistry, 2009, 54, 2091-2106.                                                                                        | 1.3 | 22        |
| 46 | Synthesis and antioxidant activity of biocompatible maltodextrin-stabilized aqueous sols of nanocrystalline ceria. Russian Journal of Inorganic Chemistry, 2012, 57, 1411-1418.                                                                    | 1.3 | 22        |
| 47 | How to Tune the Alumina Aerogels Structure by the Variation of a Supercritical Solvent. Evolution of the Structure During Heat Treatment. Journal of Physical Chemistry C, 2016, 120, 3319-3325.                                                   | 3.1 | 22        |
| 48 | <i>closo</i> -Dodecaborate Intercalated Yttrium Hydroxide as a First Example of Boron Cluster<br>Anion-Containing Layered Inorganic Substances. Inorganic Chemistry, 2017, 56, 3421-3428.                                                          | 4.0 | 22        |
| 49 | The first inorganic mitogens: Cerium oxide and cerium fluoride nanoparticles stimulate planarian regeneration via neoblastic activation. Materials Science and Engineering C, 2019, 104, 109924.                                                   | 7.3 | 22        |
| 50 | PVP-stabilized tungsten oxide nanoparticles: pH sensitive anti-cancer platform with high cytotoxicity.<br>Materials Science and Engineering C, 2020, 108, 110494.                                                                                  | 7.3 | 22        |
| 51 | Wetting of grain boundary triple junctions by intermetallic delta-phase in the Cu–In alloys. Journal of<br>Materials Science, 2021, 56, 7840-7848.                                                                                                 | 3.7 | 22        |
| 52 | Proton conductivity of M x H3–x PX12O40 and M x H4–x SiX12O40 (M = Rb, Cs; X = W, Mo) acid salts of heteropolyacids. Inorganic Materials, 2015, 51, 1157-1162.                                                                                     | 0.8 | 21        |
| 53 | Understanding Self-Assembly of Porphyrin-Based SURMOFs: How Layered Minerals Can Be Useful.<br>Langmuir, 2018, 34, 5184-5192.                                                                                                                      | 3.5 | 21        |
| 54 | 1D-Bromobismuthates of Dipyridinoalkane Derivatives. Russian Journal of Coordination<br>Chemistry/Koordinatsionnaya Khimiya, 2018, 44, 373-379.                                                                                                    | 1.0 | 21        |

| #  | Article                                                                                                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Cerium dioxide nanoparticles as third-generation enzymes (nanozymes). Nanosystems: Physics,<br>Chemistry, Mathematics, 2017, , 760-781.                                                                                                                                                                                  | 0.4  | 21        |
| 56 | Direct monitoring of the interaction between ROS and cerium dioxide nanoparticles in living cells.<br>RSC Advances, 2014, 4, 51703-51710.                                                                                                                                                                                | 3.6  | 20        |
| 57 | Cerium dioxide nanoparticles increase immunogenicity of the influenza vaccine. Antiviral Research, 2016, 127, 1-9.                                                                                                                                                                                                       | 4.1  | 20        |
| 58 | Comparison of concentration dependence of relative fluorescence quantum yield and brightness in first biological window of wavelengths for aqueous colloidal solutions of Nd3+: LaF3 and Nd3+: KY3F10 nanocrystals synthesized by microwave-hydrothermal treatment. Journal of Alloys and Compounds, 2018, 756, 182-192. | 5.5  | 20        |
| 59 | Ultrasonically Activated Hydrothermal Synthesis of Fine TiO <sub>2</sub> and<br>ZrO <sub>2</sub> Powders. Inorganic Materials, 2004, 40, 1058-1065.                                                                                                                                                                      | 0.8  | 19        |
| 60 | Relation of Crystallinity and Fluorescent Properties of LaF <sub>3</sub> :Nd <sup>3+</sup><br>Nanoparticles Synthesized with Different Water-Based Techniques. ChemistrySelect, 2017, 2, 4874-4881.                                                                                                                      | 1.5  | 19        |
| 61 | Size Effects in Nanocrystalline Thoria. Journal of Physical Chemistry C, 2019, 123, 23167-23176.                                                                                                                                                                                                                         | 3.1  | 19        |
| 62 | Kinetics and mechanism of nickel ferrite formation under high temperature ultrasonic treatment.<br>Ultrasonics Sonochemistry, 2007, 14, 131-134.                                                                                                                                                                         | 8.2  | 18        |
| 63 | Hydrothermal growth of ceria nanoparticles. Russian Journal of Inorganic Chemistry, 2009, 54, 1857-1861.                                                                                                                                                                                                                 | 1.3  | 18        |
| 64 | Mechanochemical activation of starting oxide mixtures for solid-state synthesis of BiFeO3. Inorganic Materials, 2013, 49, 303-309.                                                                                                                                                                                       | 0.8  | 18        |
| 65 | Photocatalytically active fluorinated nano-titania synthesized by microwave-assisted hydrothermal treatment. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 303-304, 36-43.                                                                                                                              | 3.9  | 18        |
| 66 | Nanocrystalline manganese dioxide synthesis by microwave-hydrothermal treatment. Russian Journal of Inorganic Chemistry, 2015, 60, 546-551.                                                                                                                                                                              | 1.3  | 18        |
| 67 | Combined SANS and SAXS study of the action of ultrasound on the structure of amorphous zirconia gels. Ultrasonics Sonochemistry, 2015, 24, 230-237.                                                                                                                                                                      | 8.2  | 18        |
| 68 | Unexpected Effects of Activator Molecules' Polarity on the Electroreological Activity of Titanium<br>Dioxide Nanopowders. Journal of Physical Chemistry B, 2017, 121, 6732-6738.                                                                                                                                         | 2.6  | 18        |
| 69 | A facile approach to fabricating ultrathin layers of reduced graphene oxide on planar solids. Carbon, 2018, 134, 62-70.                                                                                                                                                                                                  | 10.3 | 18        |
| 70 | Photosensitive Organic-Inorganic Hybrid Materials for Room Temperature Gas Sensor Applications.<br>Nanomaterials, 2018, 8, 671.                                                                                                                                                                                          | 4.1  | 18        |
| 71 | Interfacial self-assembly of functional bilayer templates comprising porphyrin arrays and graphene oxide. Journal of Colloid and Interface Science, 2018, 530, 521-531.                                                                                                                                                  | 9.4  | 18        |
| 72 | Laser-induced modification and formation of periodic surface structures (ripples) of amorphous GST225 phase change materials. Optics and Laser Technology, 2019, 113, 87-94.                                                                                                                                             | 4.6  | 18        |

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Microhotplate catalytic sensors based on porous anodic alumina: Operando study of methane response hysteresis. Sensors and Actuators B: Chemical, 2021, 330, 129307.                                 | 7.8  | 18        |
| 74 | Functionalization of aerogels by the use of pre-constructed monomers: the case of trifluoroacetylated (3-aminopropyl) triethoxysilane. RSC Advances, 2014, 4, 52423-52429.                           | 3.6  | 17        |
| 75 | Methyltrimethoxysilane-based elastic aerogels: Effects of the supercritical medium on structure-sensitive properties. Russian Journal of Inorganic Chemistry, 2015, 60, 488-492.                     | 1.3  | 17        |
| 76 | Fluorescence quenching mechanism for water-dispersible Nd3+:KYF4 nanoparticles synthesized by microwave-hydrothermal technique. Journal of Luminescence, 2016, 169, 722-727.                         | 3.1  | 17        |
| 77 | Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment. Bioactive Materials, 2017, 2, 101-107.                                      | 15.6 | 17        |
| 78 | Effects of Ag Additive in Low Temperature CO Detection with In2O3 Based Gas Sensors. Nanomaterials, 2018, 8, 801.                                                                                    | 4.1  | 17        |
| 79 | Cerous phosphate gels: Synthesis, thermal decomposition and hydrothermal crystallization paths.<br>Journal of Non-Crystalline Solids, 2016, 447, 183-189.                                            | 3.1  | 16        |
| 80 | Facile method for fabrication of surfactant-free concentrated CeO <sub>2</sub> sols. Materials<br>Research Express, 2017, 4, 055008.                                                                 | 1.6  | 16        |
| 81 | Preparation and properties of methylcellulose/nanocellulose/СаF 2 :Ðо polymer-inorganic composite films<br>for two-micron radiation visualizers. Journal of Fluorine Chemistry, 2017, 202, 9-18.     | 1.7  | 16        |
| 82 | Thermal stability of nanocrystalline CeO2 prepared through freeze drying. Inorganic Materials, 2010,<br>46, 43-46.                                                                                   | 0.8  | 15        |
| 83 | Microwave-hydrothermal synthesis of gadolinium-doped nanocrystalline ceria in the presence of hexamethylenetetramine. Russian Journal of Inorganic Chemistry, 2012, 57, 1303-1307.                   | 1.3  | 15        |
| 84 | Synthesis of gadolinium hydroxo nitrate under microwave-hydrothermal treatment conditions.<br>Russian Journal of Inorganic Chemistry, 2014, 59, 1383-1391.                                           | 1.3  | 15        |
| 85 | Facile synthesis of fluorinated resorcinol-formaldehyde aerogels. Journal of Fluorine Chemistry, 2017, 193, 1-7.                                                                                     | 1.7  | 15        |
| 86 | Concentration self-quenching of luminescence in crystal matrices activated by Nd3+ ions: Theory and experiment. Journal of Luminescence, 2018, 198, 138-145.                                         | 3.1  | 15        |
| 87 | Calcifying Bacteria Flexibility in Induction of CaCO3 Mineralization. Life, 2020, 10, 317.                                                                                                           | 2.4  | 15        |
| 88 | Nanoceria-curcumin conjugate: Synthesis and selective cytotoxicity against cancer cells under oxidative stress conditions. Journal of Photochemistry and Photobiology B: Biology, 2020, 209, 111921. | 3.8  | 15        |
| 89 | Fractal structure of ceria nanopowders. Inorganic Materials, 2008, 44, 272-277.                                                                                                                      | 0.8  | 14        |
| 90 | Synthesis and luminescence properties of Eu2+- and Ce3+-doped AlONs. Ceramics International, 2016, 42, 286-293.                                                                                      | 4.8  | 14        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Comparative study of the electrorheological effect in suspensions of needle-like and isotropic cerium dioxide nanoparticles. Rheologica Acta, 2018, 57, 307-315.                                                          | 2.4 | 14        |
| 92  | Eu-Doped layered yttrium hydroxides sensitized by a series of benzenedicarboxylate and sulphobenzoate anions. Dalton Transactions, 2019, 48, 6111-6122.                                                                   | 3.3 | 14        |
| 93  | Polyimide-Based Nanocomposites with Binary CeO2/Nanocarbon Fillers: Conjointly Enhanced Thermal and Mechanical Properties. Polymers, 2020, 12, 1952.                                                                      | 4.5 | 14        |
| 94  | Photonic crystal enhancement of Raman scattering. Physical Chemistry Chemical Physics, 2020, 22, 9630-9636.                                                                                                               | 2.8 | 14        |
| 95  | Title is missing!. Doklady Chemistry, 2003, 389, 62-64.                                                                                                                                                                   | 0.9 | 13        |
| 96  | Chemical transformations of basic yttrium nitrates during ultrasonic-hydrothermal treatment.<br>Russian Journal of Inorganic Chemistry, 2006, 51, 1689-1695.                                                              | 1.3 | 13        |
| 97  | Preparation of barium monohydrofluoride BaF2·HF from nitrate aqueous solutions. Materials<br>Research Bulletin, 2014, 49, 199-205.                                                                                        | 5.2 | 13        |
| 98  | Synthesis of cerium orthophosphates with monazite and rhabdophane structure from phosphoric<br>acid solutions in the presence of hydrogen peroxide. Russian Journal of Inorganic Chemistry, 2016, 61,<br>1219-1224.       | 1.3 | 13        |
| 99  | NIR fluorescence quenching by OH acceptors in the Nd 3+ doped KY 3 F 10 nanoparticles synthesized by microwave-hydrothermal treatment. Journal of Alloys and Compounds, 2016, 661, 312-321.                               | 5.5 | 13        |
| 100 | First rare-earth phosphate aerogel: sol–gel synthesis of monolithic ceric hydrogen phosphate<br>aerogel. Journal of Sol-Gel Science and Technology, 2018, 85, 574-584.                                                    | 2.4 | 13        |
| 101 | Luminescent alumina-based aerogels modified with tris(8-hydroxyquinolinato)aluminum. Journal of<br>Sol-Gel Science and Technology, 2018, 86, 400-409.                                                                     | 2.4 | 13        |
| 102 | The relationship between the crystal structure and optical properties for isomeric aminopyridinium iodobismuthates. Mendeleev Communications, 2018, 28, 490-492.                                                          | 1.6 | 13        |
| 103 | Exfoliation of layered yttrium hydroxide by rapid expansion of supercritical suspensions. Journal of<br>Supercritical Fluids, 2019, 150, 40-48.                                                                           | 3.2 | 13        |
| 104 | Photoluminescent porous aerogel monoliths containing ZnEu-complex: the first example of aerogel modified with a heteronuclear metal complex. Journal of Sol-Gel Science and Technology, 2019, 92, 304-318.                | 2.4 | 13        |
| 105 | Synthesis of Magnetic Nanopowders of Iron Oxide: Magnetite and Maghemite. Russian Journal of<br>Inorganic Chemistry, 2020, 65, 426-430.                                                                                   | 1.3 | 13        |
| 106 | WO3 thermodynamic properties at 80–1256ÂK revisited. Journal of Thermal Analysis and Calorimetry, 2020, 142, 1533-1543.                                                                                                   | 3.6 | 13        |
| 107 | Interfacial self-assembly of porphyrin-based SURMOF/graphene oxide hybrids with tunable pore size: An approach toward size-selective ambivalent heterogeneous photocatalysts. Applied Surface Science, 2022, 579, 152080. | 6.1 | 13        |
| 108 | Microstructural Evolution of Fe2O3and ZnFe2O4during Sonochemical Synthesis of Zinc Ferrite.<br>Inorganic Materials, 2004, 40, 1091-1094.                                                                                  | 0.8 | 12        |

| #   | Article                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Synthesis of ultrafine fluorite Sr1 â^' x Nd x F2 + x powders. Inorganic Materials, 2012, 48, 531-538.                                                                      | 0.8 | 12        |
| 110 | Cyclometalated ruthenium complex as a promising sensitizer in dye-sensitized solar cells. Russian<br>Journal of Electrochemistry, 2014, 50, 503-509.                        | 0.9 | 12        |
| 111 | Synthesis of a peroxo derivative of layered yttrium hydroxide. Russian Journal of Inorganic Chemistry, 2015, 60, 1027-1033.                                                 | 1.3 | 12        |
| 112 | Electrochemical Properties of Carbon Aerogel Electrodes: Dependence on Synthesis Temperature.<br>Molecules, 2019, 24, 3847.                                                 | 3.8 | 12        |
| 113 | Photochromic and Photocatalytic Properties of Ultra-Small PVP-Stabilized WO3 Nanoparticles.<br>Molecules, 2020, 25, 154.                                                    | 3.8 | 12        |
| 114 | Nanoceria: Metabolic interactions and delivery through PLGA-encapsulation. Materials Science and Engineering C, 2020, 114, 111003.                                          | 7.3 | 12        |
| 115 | Engineering SiO2–TiO2 binary aerogels for sun protection and cosmetic applications. Journal of Supercritical Fluids, 2021, 169, 105099.                                     | 3.2 | 12        |
| 116 | Kinetics and mechanism of the high-temperature sonochemical synthesis of spinel-type ferrites.<br>Mendeleev Communications, 2004, 14, 143-144.                              | 1.6 | 11        |
| 117 | Phase diagram of the NaF–CaF2 system and the electrical conductivity of a CaF2-based solid solution.<br>Russian Journal of Inorganic Chemistry, 2016, 61, 1472-1478.        | 1.3 | 11        |
| 118 | Methyl tert-butyl ether as a new solvent for the preparation of SiO2–TiO2 binary aerogels. Inorganic<br>Materials, 2016, 52, 163-169.                                       | 0.8 | 11        |
| 119 | First MnO2-based electrorheological fluids: high response at low filler concentration. Rheologica<br>Acta, 2019, 58, 719-728.                                               | 2.4 | 11        |
| 120 | Supramolecular Organogels Based on N-Benzyl, N′-Acylbispidinols. Nanomaterials, 2019, 9, 89.                                                                                | 4.1 | 11        |
| 121 | High electrorheological effect in Bi1.8Fe1.2SbO7 suspensions. Powder Technology, 2020, 360, 96-103.                                                                         | 4.2 | 11        |
| 122 | Selective Synthesis of Manganese Dioxide Polymorphs by the Hydrothermal Treatment of Aqueous<br>KMnO4 Solutions. Russian Journal of Inorganic Chemistry, 2021, 66, 146-152. | 1.3 | 11        |
| 123 | Functionalization of Aerogels with Coordination Compounds. Russian Journal of Coordination<br>Chemistry/Koordinatsionnaya Khimiya, 2022, 48, 89-117.                        | 1.0 | 11        |
| 124 | Hydrophobicity/hydrophilicity control for SiO2-based aerogels: The role of a supercritical solvent.<br>Russian Journal of Inorganic Chemistry, 2015, 60, 1169-1172.         | 1.3 | 10        |
| 125 | Synthesis of nanocrystalline birnessite and cryptomelane by microwave hydrothermal treatment.<br>Russian Journal of Inorganic Chemistry, 2015, 60, 1299-1303.               | 1.3 | 10        |
| 126 | Synthesis of aluminum oxynitride (AlON) and study of the properties of ceramics based on it.<br>Inorganic Materials: Applied Research, 2016, 7, 517-519.                    | 0.5 | 10        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | New insights into polymer mediated formation of anatase mesocrystals. CrystEngComm, 2017, 19, 3281-3287.                                                                                               | 2.6 | 10        |
| 128 | Morphological structure of Gluconacetobacter xylinus cellulose and cellulose-based organic-inorganic composite materials. Journal of Physics: Conference Series, 2017, 848, 012017.                    | 0.4 | 10        |
| 129 | Effect of the Support Nature on Stability of Nickel and Nickel–Cobalt Catalysts for Partial Oxidation and Dry Reforming of Methane to Synthesis Gas. Petroleum Chemistry, 2019, 59, 385-393.           | 1.4 | 10        |
| 130 | Preparation of "NaREF4―phases from the sodium nitrate melt. Journal of Fluorine Chemistry, 2019, 218,<br>69-75.                                                                                        | 1.7 | 10        |
| 131 | Bacterial Cellulose-Based Nanocomposites Containing Ceria and Their Use in the Process of Stem Cell<br>Proliferation. Polymers, 2021, 13, 1999.                                                        | 4.5 | 10        |
| 132 | Crystalline WO3 nanoparticles for No2 sensing. Processing and Application of Ceramics, 2020, 14, 282-292.                                                                                              | 0.8 | 10        |
| 133 | Kinetics of the Formation of Zinc Ferrite in an Ultrasonic Field. Doklady Chemistry, 2004, 397, 146-148.                                                                                               | 0.9 | 9         |
| 134 | Evolution of composition and fractal structure of hydrous zirconia xerogels during thermal annealing. Russian Journal of Inorganic Chemistry, 2010, 55, 155-161.                                       | 1.3 | 9         |
| 135 | Ultrasound-induced changes in mesostructure of amorphous iron (III) hydroxide xerogels: A small-angle neutron scattering study. Physical Review B, 2010, 81, .                                         | 3.2 | 9         |
| 136 | Synthesis of Nanocrystalline Titania via Microwave-Assisted Homogeneous Hydrolysis Under<br>Hydrothermal Conditions. Current Microwave Chemistry, 2014, 1, 81-86.                                      | 0.8 | 9         |
| 137 | Microbead silica decorated with polyhedral silver nanoparticles as a versatile component of sacrificial gel films for SERS applications. RSC Advances, 2015, 5, 90335-90342.                           | 3.6 | 9         |
| 138 | Selective hydrothermal microwave synthesis of various manganese dioxide polymorphs. Russian<br>Journal of Inorganic Chemistry, 2016, 61, 129-134.                                                      | 1.3 | 9         |
| 139 | Experimental Study of the Effects of Nanodispersed Ceria on Wound Repair. Bulletin of Experimental<br>Biology and Medicine, 2017, 162, 395-399.                                                        | 0.8 | 9         |
| 140 | Comparative analysis of the physicochemical characteristics of SiO2 aerogels prepared by drying under subcritical and supercritical conditions. Inorganic Materials, 2017, 53, 1270-1278.              | 0.8 | 9         |
| 141 | Ultrasonic disintegration of tungsten trioxide pseudomorphs after ammonium paratungstate as a route for stable aqueous sols of nanocrystalline WO3. Journal of Materials Science, 2018, 53, 1758-1768. | 3.7 | 9         |
| 142 | An approach for highly transparent titania aerogels preparation. Materials Letters, 2018, 215, 19-22.                                                                                                  | 2.6 | 9         |
| 143 | Structural Analysis of Aluminum Oxyhydroxide Aerogel by Small Angle X-Ray Scattering. Journal of Surface Investigation, 2018, 12, 296-305.                                                             | 0.5 | 9         |
| 144 | Unexpected selective enhancement of the thermal stability of aromatic polyimide materials by cerium dioxide nanoparticles. Polymers for Advanced Technologies, 2019, 30, 1518-1524.                    | 3.2 | 9         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Crystallization Pathways of Cerium(IV) Phosphates Under Hydrothermal Conditions: A Search for New<br>Phases with a Tunnel Structure. European Journal of Inorganic Chemistry, 2019, 2019, 3242-3248.                 | 2.0 | 9         |
| 146 | Fast and simple approach for production of antibacterial nanocellulose/cuprous oxide hybrid films.<br>Cellulose, 2021, 28, 2931-2945.                                                                                | 4.9 | 9         |
| 147 | Effect of hydrothermal and ultrasonic/hydrothermal treatment on the phase composition and<br>micromorphology of yttrium hydroxocarbonate. Russian Journal of Inorganic Chemistry, 2007, 52,<br>1321-1327.            | 1.3 | 8         |
| 148 | Synthesis and luminescent characteristics of submicron powders on the basis of sodium and yttrium fluorides doped with rare earth elements. Nanotechnologies in Russia, 2012, 7, 615-628.                            | 0.7 | 8         |
| 149 | Synthesis and characterization of fluoride xerogels. Inorganic Materials, 2013, 49, 1152-1156.                                                                                                                       | 0.8 | 8         |
| 150 | Effect of synthetic conditions on the properties of methyltrimethoxysilane-based aerogels. Russian<br>Journal of Inorganic Chemistry, 2014, 59, 1392-1395.                                                           | 1.3 | 8         |
| 151 | Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. Journal of Fluorine Chemistry, 2014, 158, 60-64.                                                | 1.7 | 8         |
| 152 | SiO2–TiO2 binary aerogels: Synthesis in new supercritical fluids and study of thermal stability.<br>Russian Journal of Inorganic Chemistry, 2016, 61, 1339-1346.                                                     | 1.3 | 8         |
| 153 | Catalytic Properties of Hierarchical Zeolites ZrAl-BEA in the Synthesis of 4-Methoxybenzyl sec-Butyl Ether from Anisaldehyde. Theoretical and Experimental Chemistry, 2017, 53, 122-129.                             | 0.8 | 8         |
| 154 | Propylene oxide as a new reagent for mixed SiO 2 -based aerogels preparation. Journal of Sol-Gel<br>Science and Technology, 2017, 84, 377-381.                                                                       | 2.4 | 8         |
| 155 | Chiral lactate-modified silica aerogels. Microporous and Mesoporous Materials, 2017, 237, 127-131.                                                                                                                   | 4.4 | 8         |
| 156 | Synthesis Gas Production by Partial Oxidation of Methane and Dry Reforming of Methane in the<br>Presence of Novel Ni–Co/MFI Catalysts. Petroleum Chemistry, 2018, 58, 203-213.                                       | 1.4 | 8         |
| 157 | Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLu x F4 Single Crystals. Russian<br>Journal of Inorganic Chemistry, 2018, 63, 433-438.                                                        | 1.3 | 8         |
| 158 | 1D Ceric Hydrogen Phosphate Aerogels: Noncarbonaceous Ultraflyweight Monolithic Aerogels. ACS<br>Omega, 2020, 5, 17592-17600.                                                                                        | 3.5 | 8         |
| 159 | Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs. Russian Journal of<br>Inorganic Chemistry, 2021, 66, 193-201.                                                                           | 1.3 | 8         |
| 160 | Lowâ€ŧemperature phase formation in the SrF <sub>2</sub> –LaF <sub>3</sub> system. Journal of the<br>American Ceramic Society, 2021, 104, 2836-2848.                                                                 | 3.8 | 8         |
| 161 | Hydrophobization of organic resorcinol-formaldehyde aerogels by fluoroacylation. Journal of Fluorine Chemistry, 2021, 244, 109742.                                                                                   | 1.7 | 8         |
| 162 | Crystal and Supramolecular Structure of Bacterial Cellulose Hydrolyzed by Cellobiohydrolase from<br>Scytalidium Candidum 3C: A Basis for Development of Biodegradable Wound Dressings. Materials,<br>2020, 13, 2087. | 2.9 | 8         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Cerium(IV) Orthophosphates (Review). Russian Journal of Inorganic Chemistry, 2021, 66, 1761-1778.                                                                                                                    | 1.3 | 8         |
| 164 | Title is missing!. Inorganic Materials, 2002, 38, 714-717.                                                                                                                                                           | 0.8 | 7         |
| 165 | Synthesis of superfine titania via high-temperature hydrolysis of titanium(IV) bis(ammonium lactato)<br>dihydroxide. Doklady Chemistry, 2011, 441, 361-364.                                                          | 0.9 | 7         |
| 166 | Complete inheritance of fractal properties during first-order phase transition. Journal of Physics and Chemistry of Solids, 2014, 75, 296-299.                                                                       | 4.0 | 7         |
| 167 | Soft chemistry synthesis of powders in the BaF2-ScF3 system. Russian Journal of Inorganic Chemistry, 2014, 59, 773-777.                                                                                              | 1.3 | 7         |
| 168 | Microwave-Assisted Hydrothermal Synthesis of Layered Europium Hydroxynynitrate,<br>Eu2(OH)5NO3â^™xH2O. Current Microwave Chemistry, 2015, 3, 3-8.                                                                    | 0.8 | 7         |
| 169 | Effects caused by glutamic acid and hydrogen peroxide on the morphology of hydroxyapatite, calcium<br>hydrogen phosphate, and calcium pyrophosphate. Russian Journal of Inorganic Chemistry, 2015, 60, 1-8.          | 1.3 | 7         |
| 170 | Hexafluoroacetone: A new solvent for manufacturing SiO2-based aerogels. Russian Journal of<br>Inorganic Chemistry, 2015, 60, 541-545.                                                                                | 1.3 | 7         |
| 171 | SiO2 aerogels modified by perfluoro acid amides: a precisely controlled hydrophobicity. RSC Advances, 2016, 6, 80766-80772.                                                                                          | 3.6 | 7         |
| 172 | Properties of electrorheological fluids based on nanocrystalline cerium dioxide. Russian Journal of<br>Inorganic Chemistry, 2017, 62, 625-632.                                                                       | 1.3 | 7         |
| 173 | Catalytic Materials Based on Hydrotalcite-Like Aluminum, Magnesium, Nickel, and Cobalt Hydroxides<br>for Partial Oxidation and Dry Reforming of Methane to Synthesis Gas. Petroleum Chemistry, 2018, 58,<br>418-426. | 1.4 | 7         |
| 174 | Hydroxyapatite/Anatase Photocatalytic Core–Shell Composite Prepared by Sol‒Gel Processing.<br>Crystallography Reports, 2018, 63, 254-260.                                                                            | 0.6 | 7         |
| 175 | Selective hydrothermal synthesis of ammonium vanadates(V) and (IV,V). Transition Metal Chemistry, 2019, 44, 25-30.                                                                                                   | 1.4 | 7         |
| 176 | Superhydrophobic and luminescent highly porous nanostructured alumina monoliths modified with<br>tris(8-hydroxyquinolinato)aluminium. Microporous and Mesoporous Materials, 2020, 293, 109804.                       | 4.4 | 7         |
| 177 | UV-Induced Photocatalytic Reduction of Methylene Blue Dye in the Presence of Photochromic<br>Tungsten Oxide Sols. Russian Journal of Inorganic Chemistry, 2020, 65, 1088-1092.                                       | 1.3 | 7         |
| 178 | Meet the Cerium(IV) Phosphate Sisters: Ce IV (OH)PO 4 and Ce IV 2 O(PO 4 ) 2. Chemistry - A European<br>Journal, 2020, 26, 12188-12193.                                                                              | 3.3 | 7         |
| 179 | Extraction Reprocessing of Fe,Ni-Containing Parts of Ni–MH Batteries. Russian Journal of Inorganic Chemistry, 2021, 66, 266-272.                                                                                     | 1.3 | 7         |
| 180 | Structure, Properties, and Phytoprotective Functions of Titanium Dioxide Nanopowders and Their Aqueous Suspensions. Russian Journal of Inorganic Chemistry, 2021, 66, 765-772.                                       | 1.3 | 7         |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | SiO2–TiO2 Binary Aerogels: A Small-Angle Scattering Study. Russian Journal of Inorganic Chemistry, 2021, 66, 874-882.                                                                                                    | 1.3 | 7         |
| 182 | Strong Antibacterial Properties of Cotton Fabrics Coated with Ceria Nanoparticles under High-Power Ultrasound. Nanomaterials, 2021, 11, 2704.                                                                            | 4.1 | 7         |
| 183 | Crystallization of hydrous zirconia and hafnia during hydrothermal treatment. Russian Journal of<br>Inorganic Chemistry, 2010, 55, 665-669.                                                                              | 1.3 | 6         |
| 184 | Sulfated SnO2 As a high-performance catalyst for alkene oligomerization. Inorganic Materials, 2012, 48, 1012-1019.                                                                                                       | 0.8 | 6         |
| 185 | On the size effect in nanocrystalline cerium dioxide: Is the Tsunekawa model correct?. Journal of Surface Investigation, 2014, 8, 997-1001.                                                                              | 0.5 | 6         |
| 186 | Synthesis of nanocrystalline ternary bismuth iron antimony oxide with pyrochlore structure.<br>Russian Journal of Inorganic Chemistry, 2015, 60, 1179-1183.                                                              | 1.3 | 6         |
| 187 | Laser heating of the Y_1-xDy_xPO_4 nanocrystals. Optical Materials Express, 2015, 5, 1230.                                                                                                                               | 3.0 | 6         |
| 188 | Hierarchic nanostructuring by self–reduction of silver (I) oxide complexes. Functional Materials<br>Letters, 2016, 09, 1650014.                                                                                          | 1.2 | 6         |
| 189 | Synthesis of manganese dioxide by homogeneous hydrolysis in the presence of melamine. Russian<br>Journal of Inorganic Chemistry, 2017, 62, 139-149.                                                                      | 1.3 | 6         |
| 190 | Tin Dioxide-Based Superacid Aerogels Produced Using Propylene Oxide. Russian Journal of Inorganic<br>Chemistry, 2018, 63, 303-307.                                                                                       | 1.3 | 6         |
| 191 | Synthesis, crystal structure and optical properties of 1,1'-(1,n-alkanediyl)bis(3-methylimidazolium)<br>halobismuthates. Journal of Molecular Structure, 2018, 1151, 186-190.                                            | 3.6 | 6         |
| 192 | Formation of hierarchically-ordered nanoporous silver foam and its electrocatalytic properties in reductive dehalogenation of organic compounds. New Journal of Chemistry, 2018, 42, 17499-17512.                        | 2.8 | 6         |
| 193 | Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions. Russian Journal of Inorganic Chemistry, 2018, 63, 293-302.                                          | 1.3 | 6         |
| 194 | Surfactant-Switched Positive/Negative Electrorheological Effect in Tungsten Oxide Suspensions.<br>Molecules, 2019, 24, 3348.                                                                                             | 3.8 | 6         |
| 195 | Sorption of Radionuclides onto Cerium(IV) Hydrogen Phosphate Ce(PO4)(HPO4)0.5(H2O)0.5.<br>Radiochemistry, 2019, 61, 719-723.                                                                                             | 0.7 | 6         |
| 196 | Interplay of polymer matrix and nanosized redox dopant with regard to thermo-oxidative and pyrolytic stability: CeO2 nanoparticles in a milieu of aromatic polyimides. Materials Today Communications, 2020, 22, 100803. | 1.9 | 6         |
| 197 | Is Supercritical So Critical? The Choice of Temperature to Synthesize SiO2 Aerogels. Russian Journal of Inorganic Chemistry, 2020, 65, 255-262.                                                                          | 1.3 | 6         |
| 198 | Synthesis and Research of Functional Layers Based on Titanium Dioxide Nanoparticles and Silica Sols<br>Formed on the Surface of Seeds of Chinese Cabbage. Russian Journal of Applied Chemistry, 2020, 93,<br>25-34.      | 0.5 | 6         |

| #   | Article                                                                                                                                                                                                         | IF              | CITATIONS    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 199 | Surface-enhanced Raman scattering in ETPTA inverse photonic crystals with gold nanoparticles.<br>Physical Chemistry Chemical Physics, 2021, 23, 20275-20281.                                                    | 2.8             | 6            |
| 200 | Processes in oxide systems under ultrasonic treatment at high temperatures. Solid State Ionics, 2001, 141-142, 689-694.                                                                                         | 2.7             | 5            |
| 201 | Hydrothermal synthesis and photocatalytic activity of highly dispersed ZnO powders. Russian Journal of Inorganic Chemistry, 2006, 51, 1523-1527.                                                                | 1.3             | 5            |
| 202 | Effect of high intensity ultrasound on the mesostructure of hydrated zirconia. Journal of Physics:<br>Conference Series, 2012, 340, 012057.                                                                     | 0.4             | 5            |
| 203 | Hydrothermal microwave synthesis of nanocrystalline anatase. Doklady Chemistry, 2012, 447, 241-243.                                                                                                             | 0.9             | 5            |
| 204 | Synthesis of nanocrystalline ZrO2 with tailored phase composition and microstructure under high-power sonication. Inorganic Materials, 2012, 48, 494-499.                                                       | 0.8             | 5            |
| 205 | Effect of heterovalent substitution on the electrical and optical properties of ZnO(M) thin films (M =) Tj ETQq1 1                                                                                              | 0.78431         | 4 rgBT /Over |
| 206 | Influence of morphology and defects in crystals of porous coordination polymers on the sorption characteristics. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2015, 41, 353-361.        | 1.0             | 5            |
| 207 | Synthesis of basic yttrium nitrate. Russian Journal of Inorganic Chemistry, 2015, 60, 259-264.                                                                                                                  | 1.3             | 5            |
| 208 | Modifying magnetic properties and dispersity of few-layer MoS2 particles by 3d metal carboxylate complexes. Materials Chemistry and Physics, 2016, 183, 457-466.                                                | 4.0             | 5            |
| 209 | α-NaYF 4 :Yb:Er@AlPc(C 2 O 3 ) 4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation. Journal of Fluorine Chemistry, 2016, 182, 104-108.                         | 1.7             | 5            |
| 210 | New synthesis route for obtaining carbon-free hexagonal RE manganites via novel simple individual precursors. The interplay between magnetic and thermodynamic properties of hexagonal RMnO3 (R =) Tj ETQq0     | 0 <b>0.</b> æBT | /Oværlock 10 |
| 211 | A New Method for Removing and Binding Th(IV) and Other Radionuclides by In Situ Formation of a<br>Sorbent Based on Fibrous Cerium(IV) Hydrogen Phosphate in Liquid Media. Radiochemistry, 2018, 60,<br>613-617. | 0.7             | 5            |
| 212 | Selective Hydrothermal Synthesis of [(CH3)2NH2]V3O7, VO2(D), and V2O3 in the Presence of N,N-Dimethylformamide. Russian Journal of Inorganic Chemistry, 2020, 65, 488-494.                                      | 1.3             | 5            |
| 213 | Layered Rare Earth Hydroxides React with Formamide to Give [Ln(HCOO)3 · 2(HCONH2)]. Russian<br>Journal of Inorganic Chemistry, 2021, 66, 125-132.                                                               | 1.3             | 5            |
| 214 | Hierarchical highly porous composite ceramic material modified by hydrophobic<br>methyltrimetoxysilane-based aerogel. Journal of Porous Materials, 2021, 28, 1237-1244.                                         | 2.6             | 5            |
| 215 | Removal of Acidic-Sulfur-Containing Components from Gasoline Fractions and Their Simulated<br>Analogues Using Silica Gel Modified with Transition-Metal Carboxylates. ACS Omega, 2021, 6,<br>23181-23190.       | 3.5             | 5            |
| 216 | Ion-Driven Self-Assembly of Lanthanide Bis-phthalocyaninates into Conductive Quasi-MOF Nanowires:<br>an Approach toward Easily Recyclable Organic Electronics. Inorganic Chemistry, 2021, 60, 15509-15518.      | 4.0             | 5            |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Microwave-assisted synthesis of spherically shaped monodisperse Y2O3 and Y2O3:Eu powders. Doklady Chemistry, 2009, 424, 35-38.                                                                                        | 0.9 | 4         |
| 218 | Synthesis of nanocrystalline solid solutions Ce1 â^' x R x O2 â^' δ (R = Nd, Eu) by the homogeneous<br>hydrolysis method. Doklady Chemistry, 2010, 433, 183-185.                                                      | 0.9 | 4         |
| 219 | Polyol-mediated synthesis of nanocrystalline ceria doped with neodymium, europium, gadolinium, and<br>ytterbium. Doklady Chemistry, 2012, 443, 82-85.                                                                 | 0.9 | 4         |
| 220 | Structure of zirconium dioxide based porous glasses. Journal of Surface Investigation, 2014, 8, 967-975.                                                                                                              | 0.5 | 4         |
| 221 | New aerogels chemically modified with amino complexes of bivalent copper. Russian Journal of<br>Inorganic Chemistry, 2015, 60, 1459-1463.                                                                             | 1.3 | 4         |
| 222 | Sulfated alumina aerogel-based superacid catalysts for 1-hexene oligomerization. Russian Journal of<br>Inorganic Chemistry, 2016, 61, 7-10.                                                                           | 1.3 | 4         |
| 223 | Phase composition of metamorphosed basalt and its sintering products. Inorganic Materials, 2016, 52, 225-232.                                                                                                         | 0.8 | 4         |
| 224 | Selective precipitation of rare earth orthophosphates with hydrogen peroxide from phosphoric acid solutions. Russian Journal of Inorganic Chemistry, 2017, 62, 1141-1146.                                             | 1.3 | 4         |
| 225 | Local optical spectroscopy of opaline photonic crystal films. Crystallography Reports, 2017, 62, 783-786.                                                                                                             | 0.6 | 4         |
| 226 | New catalysts of dry reforming of methane into synthesis gas. Doklady Physical Chemistry, 2017, 477, 209-211.                                                                                                         | 0.9 | 4         |
| 227 | Application of magnetic separation for modifying the composition of basalt raw materials.<br>Theoretical Foundations of Chemical Engineering, 2017, 51, 775-780.                                                      | 0.7 | 4         |
| 228 | Aerogels with hybrid organo-inorganic 3D network structure based on polyfluorinated diacids.<br>Journal of Fluorine Chemistry, 2018, 207, 67-71.                                                                      | 1.7 | 4         |
| 229 | Methyl trifluoropyruvate – a new solvent for the production of fluorinated organic<br>resorcinol–formaldehyde aerogels. Mendeleev Communications, 2018, 28, 102-104.                                                  | 1.6 | 4         |
| 230 | Synthesis of Silver Nanoparticles with the use of Herbaceous Plant Extracts and Effect of Nanoparticles on Bacteria. Applied Biochemistry and Microbiology, 2018, 54, 816-823.                                        | 0.9 | 4         |
| 231 | Antimicrobial Activity of Silver Nanoparticles in a Carboxymethyl Chitin Matrix Obtained by the<br>Microwave Hydrothermal Method. Applied Biochemistry and Microbiology, 2018, 54, 496-500.                           | 0.9 | 4         |
| 232 | Nanofibers of Semiconductor Oxides as Sensitive Materials for Detection of Gaseous Products<br>Formed in Low-Temperature Pyrolysis of Polyvinyl Chloride. Russian Journal of Applied Chemistry,<br>2018, 91, 447-453. | 0.5 | 4         |
| 233 | Fabrication of uniform monolayers of graphene oxide on solid surfaces. Surface Innovations, 2019, 7, 210-218.                                                                                                         | 2.3 | 4         |
| 234 | Fabrication of composite electrodes based on cobalt (II) hydroxide for microbiological fuel cells.<br>Journal of Sol-Gel Science and Technology, 2019, 92, 506-514.                                                   | 2.4 | 4         |

| #   | Article                                                                                                                                                                                             | IF                | CITATIONS   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|
| 235 | Morphometry Results of Formed Osteodefects When Using Nanocrystalline CeO <sub>2</sub> in the<br>Early Stages of Regeneration. International Journal of Dentistry, 2019, 2019, 1-9.                 | 1.5               | 4           |
| 236 | The Structure and Properties of TiO2 Nanopowders for Use in Agricultural Technologies.<br>Biointerface Research in Applied Chemistry, 2021, 11, 12285-12300.                                        | 1.0               | 4           |
| 237 | Photonic and plasmonic effects in inverse opal films with Au nanoparticles. Photonics and Nanostructures - Fundamentals and Applications, 2021, 43, 100899.                                         | 2.0               | 4           |
| 238 | Selective Synthesis of γ-WO3 and β-WO3â‹H2O by the Hydrothermal Treatment of Peroxotungstic Acid.<br>Russian Journal of Inorganic Chemistry, 2021, 66, 496-501.                                     | 1.3               | 4           |
| 239 | СÐͺĐ¹⁄₂Ñ,ез ап-ÐºĐ¾Đ¹⁄2Đ²ĐµÑ€ÑÐͺĐ¾Đ¹⁄2Đ¹⁄2Ñ‹Ñ Ð»ÑŽÐ¹⁄4ÐͺĐ¹⁄2Đ¾Ñ"Đ¾Ñ€Đ¾Đ² Đ¹⁄2а Đ¾ÑĐ                                                                                                                 | ¹⁄₂ <b>Ð</b> ⅔AвÐ | υμ Ãi"Ñ,Đ¾Ñ |
| 240 | The solubility of sodium and potassium fluorides in strontium fluoride. Nanosystems: Physics,<br>Chemistry, Mathematics, 2017, , 830-834.                                                           | 0.4               | 4           |
| 241 | Influence of thermal treatment of nanometer-sized titanate and barium orthotitanate precursors on the electrorheological effect. Nanosystems: Physics, Chemistry, Mathematics, 2018, 9, 746-753.    | 0.4               | 4           |
| 242 | CeO2 nanoparticles as free radical regulators in biological systems. Nanosystems: Physics, Chemistry,<br>Mathematics, 2020, 11, 324-332.                                                            | 0.4               | 4           |
| 243 | Aqueous Chemical Co-Precipitation of Iron Oxide Magnetic Nanoparticles for Use in Agricultural Technologies. Letters in Applied NanoBioScience, 2020, 10, 2215-2239.                                | 0.4               | 4           |
| 244 | Bilayer Porphyrin-Graphene Templates for Self-Assembly of Metal-Organic Frameworks on the Surface.<br>Macroheterocycles, 2017, 10, 496-504.                                                         | 0.5               | 4           |
| 245 | Effect of ultrasonication on the formation and properties of zirconium hydrogen phosphate<br>HZr2(PO4)3 · nH2O with NASICON structure. Russian Journal of Inorganic Chemistry, 2008, 53, 1163-1166. | 1.3               | 3           |
| 246 | Mesostructure of hydrated hafnia xerogels. Doklady Chemistry, 2009, 427, 160-163.                                                                                                                   | 0.9               | 3           |
| 247 | Size effect in CO oxidation on CeO2 â^' x nanoparticles. Doklady Chemistry, 2010, 430, 4-7.                                                                                                         | 0.9               | 3           |
| 248 | Microwave synthesis of monodisperse luminescent Y2 â^' x Eu x O3 powders with spherical particles of predetermined size. Doklady Chemistry, 2010, 435, 289-293.                                     | 0.9               | 3           |
| 249 | Fluorinated Metal Oxide-assisted Oligomerization of Olefins. Mendeleev Communications, 2013, 23, 110-112.                                                                                           | 1.6               | 3           |
| 250 | Possibilities of surface-sensitive X-ray methods for studying the molecular mechanisms of interaction of nanoparticles with model membranes. Crystallography Reports, 2016, 61, 857-865.            | 0.6               | 3           |
| 251 | Topographic analysis of the surface of the GaSb〈Mn〉 magnetic semiconductor. Inorganic Materials,<br>2016, 52, 865-871.                                                                              | 0.8               | 3           |
| 252 | A new route to MFI/MCM-41 micro-mesoporous composite. Doklady Chemistry, 2016, 468, 179-182.                                                                                                        | 0.9               | 3           |

| #   | Article                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Using extraction and sorption processes to obtain nanosized powders of calcium silicates and functional materials on their basis. Theoretical Foundations of Chemical Engineering, 2016, 50, 490-497.                                                                 | 0.7 | 3         |
| 254 | Hydroconversion of rapeseed oil to hydrocarbons in the presence of MFI/MCM-41 micro–mesoporous materials synthesized by the hydrothermal microwave method. Petroleum Chemistry, 2017, 57, 678-685.                                                                    | 1.4 | 3         |
| 255 | Interfacial self-assembly of nanostructured silver octahedra for surface-enhanced Raman spectroscopy. Functional Materials Letters, 2018, 11, 1850028.                                                                                                                | 1.2 | 3         |
| 256 | Partial oxidation of methane to synthesis gas: Novel catalysts based on neodymium–calcium<br>cobaltate–nickelate complex oxides. Petroleum Chemistry, 2018, 58, 43-47.                                                                                                | 1.4 | 3         |
| 257 | Hydrothermal Microwave Synthesis of MnO2 in the Presence of Melamine: The Role of Temperature and pH. Russian Journal of Inorganic Chemistry, 2018, 63, 708-713.                                                                                                      | 1.3 | 3         |
| 258 | Synthesis of NH4TiOF3 Crystals in the Presence of Polyoxyethylene Ethers. Russian Journal of Inorganic Chemistry, 2018, 63, 567-573.                                                                                                                                  | 1.3 | 3         |
| 259 | Electrorheological Properties of Polydimethylsiloxane/TiO2-Based Composite Elastomers. Polymers, 2020, 12, 2137.                                                                                                                                                      | 4.5 | 3         |
| 260 | Catalytic Materials Based on Hydrotalcite-Like Aluminum, Magnesium, Nickel, and Cobalt Hydroxides:<br>Effect of the Nickel/Cobalt Ratio on the Results of Partial Oxidation and Dry Reforming of Methane to<br>Synthesis Gas. Petroleum Chemistry, 2020, 60, 194-203. | 1.4 | 3         |
| 261 | Development and Research of Electroactive Pseudocapacitor Electrode Pastes Based on MnO2. Glass<br>Physics and Chemistry, 2020, 46, 96-101.                                                                                                                           | 0.7 | 3         |
| 262 | The first amorphous and crystalline yttrium lactate: synthesis and structural features. RSC Advances, 2021, 11, 30195-30205.                                                                                                                                          | 3.6 | 3         |
| 263 | Synthesis of CaF2–YF3 nanopowders by coprecipitation from aqueos solutions. Nanosystems: Physics,<br>Chemistry, Mathematics, 2017, , 462-470.                                                                                                                         | 0.4 | 3         |
| 264 | NONINVASIVE ESTIMATION OF THE LOCAL TEMPERATURE OF BIOTISSUES HEATING UNDER THE ACTION OF LASER IRRADIATION FROM THE LUMINESCENCE SPECTRA OF Nd3+ IONS. Biomedical Photonics, 2018, 7, 25-36.                                                                         | 1.2 | 3         |
| 265 | On the Thermal Decomposition of Cerium(IV) Hydrogen Phosphate Ce(PO4)(HPO4)0.5(H2O)0.5. Russian<br>Journal of Inorganic Chemistry, 2021, 66, 1624-1632.                                                                                                               | 1.3 | 3         |
| 266 | Amorphous and crystalline cerium( <scp>iv</scp> ) phosphates: biocompatible ROS-scavenging sunscreens. Journal of Materials Chemistry B, 2022, 10, 1775-1785.                                                                                                         | 5.8 | 3         |
| 267 | Development of pseudocapacitive materials based on cobalt and iron oxide compounds for an asymmetric energy storage device. Electrochimica Acta, 2022, 410, 139999.                                                                                                   | 5.2 | 3         |
| 268 | Kinetics of microwave-enhanced solid-phase reaction of NiFe2O4 formation. Russian Journal of<br>Inorganic Chemistry, 2008, 53, 495-498.                                                                                                                               | 1.3 | 2         |
| 269 | Synthesis of nanostructured sodium calcium tripolyphosphate using organic templates. Inorganic Materials, 2013, 49, 813-820.                                                                                                                                          | 0.8 | 2         |
| 270 | Iron complex redox system as a mediator for a dye-sensitized solar cell. Russian Journal of Inorganic<br>Chemistry, 2013, 58, 62-66.                                                                                                                                  | 1.3 | 2         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Preparation of calcium silicates with long-fiber (needle) particles. Theoretical Foundations of Chemical Engineering, 2015, 49, 736-742.                                                                             | 0.7 | 2         |
| 272 | Mesostructure of yttrium and aluminum basic salts coprecipitated from aqueous solutions under ultrasonic treatment. Journal of Surface Investigation, 2016, 10, 177-186.                                             | 0.5 | 2         |
| 273 | Skeleton pseudomorphs of nanostructured silver for the surface-enhanced Raman spectroscopy.<br>Mendeleev Communications, 2019, 29, 395-397.                                                                          | 1.6 | 2         |
| 274 | Electrorheological Fluids Based on Bismuth Ferrites BiFeO3 and Bi2Fe4O9. Russian Journal of Inorganic Chemistry, 2020, 65, 1253-1263.                                                                                | 1.3 | 2         |
| 275 | Influence of Nanosized Cerium Oxide on the Thermal Characteristics of Aromatic Polyimide Films.<br>Polymer Science - Series C, 2020, 62, 196-204.                                                                    | 1.7 | 2         |
| 276 | Possibilities of using of nanocrystalline CeO2 for bone tissue defects. Medical News of North<br>Caucasus, 2018, 13, .                                                                                               | 0.1 | 2         |
| 277 | PVP-stabilized tungsten oxide nanoparticles inhibit proliferation of NCTC L929 mouse fibroblasts via<br>induction of intracellular oxidative stress. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 92-101. | 0.4 | 2         |
| 278 | The influence of nanocrystalline gadolinium-doped ceria (Cei_,Gd,O2_y) on the functional status and<br>viability of NCTC clone L929. Vestnik Đ¢omskogo Gosudarstvennogo Universiteta Khimiya, 2017, , 68-87.         | 0.1 | 2         |
| 279 | VISUALIZATION OF Nd3+-DOPED LaF3 NANOPARTICLES FOR NEAR INFRARED BIOIMAGING VIA UPCONVERSION LUMINESCENCE AT MULTIPHOTON EXCITATION MICROSCOPY. Biomedical Photonics, 2018, 7, 4-12.                                 | 1.2 | 2         |
| 280 | Influence of nanoparticles of various types as fillers on resistance to hydrolysis of films of<br>heat-resistant polyimide. Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 666-673.                         | 0.4 | 2         |
| 281 | A photonic crystal material for the online detection of nonpolar hydrocarbon vapors. Beilstein<br>Journal of Nanotechnology, 2022, 13, 127-136.                                                                      | 2.8 | 2         |
| 282 | Nanodiamond Batch Enriched with Boron: Properties and Prospects for Use in Agriculture.<br>Biointerface Research in Applied Chemistry, 2021, 12, 6134-6147.                                                          | 1.0 | 2         |
| 283 | Synthesis of Ultrafine Oxide Powders by Hydrothermal-Ultrasonic Method. Materials Research<br>Society Symposia Proceedings, 2003, 788, 8121.                                                                         | 0.1 | 1         |
| 284 | Kinetics of ZnFe2O4 formation in a microwave field. Doklady Chemistry, 2008, 418, 34-36.                                                                                                                             | 0.9 | 1         |
| 285 | Synthesis of ZrO2:Eu solid solutions using homogeneous precipitation methods. Doklady Chemistry, 2011, 436, 11-14.                                                                                                   | 0.9 | 1         |
| 286 | Nanocrystalline Ce0.8Eu y R0.2 â^' y O2 â^' δ (R = Yb, Er) solid solutions: Synthesis by homogeneous<br>hydrolysis method. Russian Journal of Inorganic Chemistry, 2011, 56, 1688-1692.                              | 1.3 | 1         |
| 287 | Preparation of aqueous sols of Ce1 â^' x Gd x O2-Î′, Y0.9Eu0.1VO4 and nanocomposites Ce1 â^' x Gd x O2-Î′,Y0.9Eu0.1VO4 stabilized by polyacrylic acid. Russian Journal of Inorganic Chemistry, 2013, 58, 1287-1293.  | 1.3 | 1         |
| 288 | Photoelectrochemical cells based on nanocrystalline TiO2 synthesized by high temperature<br>hydrolysis of ammonium dihydroxodilactatotitanate(IV). Russian Journal of Electrochemistry, 2013,<br>49, 423-427.        | 0.9 | 1         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Synthesis and photoelectrochemical properties of cyclometallated ruthenium(II) complex. Russian<br>Journal of Inorganic Chemistry, 2014, 59, 658-664.                                                                | 1.3 | 1         |
| 290 | 1-hexene oligomerization by fluorinated tin dioxide. Inorganic Materials, 2014, 50, 479-481.                                                                                                                         | 0.8 | 1         |
| 291 | Hydrothermal Synthesis of Nanocrystalline Titanium Dioxide for Use as a Photoanode of DSSCs. Key<br>Engineering Materials, 0, 670, 156-161.                                                                          | 0.4 | 1         |
| 292 | One Step Microwave-Assisted Synthesis of Fluorinated Titania Photocatalyst. Key Engineering<br>Materials, 2015, 670, 177-182.                                                                                        | 0.4 | 1         |
| 293 | Investigating the Relationship between the Conditions of Polythiophene Electrosynthesis and the<br>Pseudocapacitive Properties of Polythiophene-Based Electrodes. Glass Physics and Chemistry, 2019, 45,<br>281-290. | 0.7 | 1         |
| 294 | Hierarchical structure of SERS substrates possessing the silver ring morphology. Mendeleev Communications, 2019, 29, 269-272.                                                                                        | 1.6 | 1         |
| 295 | SAXS Study of the Structure of Fibrous Ceric Hydrogen Phosphate Gels. Journal of Surface<br>Investigation, 2020, 14, S201-S206.                                                                                      | 0.5 | 1         |
| 296 | Polydimethylsiloxane Elastomers Filled with Rod-Like α-MnO2 Nanoparticles: An Interplay of Structure<br>and Electrorheological Performance. Polymers, 2020, 12, 2810.                                                | 4.5 | 1         |
| 297 | Hydrothermal Synthesis of Aqueous Sols of Nanocrystalline HfO2. Russian Journal of Inorganic<br>Chemistry, 2020, 65, 800-804.                                                                                        | 1.3 | 1         |
| 298 | The Effect of Sulfating Agent Nature on the Catalytic Activity Tin Dioxide Aerogel. Russian Journal of Inorganic Chemistry, 2021, 66, 288-293.                                                                       | 1.3 | 1         |
| 299 | Development and Research on Ion-Conducting Membranes Based on Cross-Linked Polyvinyl Alcohol.<br>Glass Physics and Chemistry, 2021, 47, 173-180.                                                                     | 0.7 | 1         |
| 300 | Selective Radiosensitizing Effect of Amorphous Hafnia Modified with Organic Quantum Dots on Normal and Malignant Cells. Russian Journal of Inorganic Chemistry, 2021, 66, 931-937.                                   | 1.3 | 1         |
| 301 | THE STUDY OF CERIUM COMPOUNDS' EFFECT ON POST-BURN SCAR TISSUE MATURATION IN THE IN VIVO EXPERIMENT. Problems of Biological Medical and Pharmaceutical Chemistry, 2018, 21, .                                        | 0.2 | 1         |
| 302 | Сerium oxide nanoparticles increase the cytotoxicity of TNF-alpha in vitro. Nanosystems: Physics,<br>Chemistry, Mathematics, 2018, , 537-543.                                                                        | 0.4 | 1         |
| 303 | Photocatalytic Activity of Fluorinated Titanium Dioxide in Ozone Decomposition. Russian Journal of Applied Chemistry, 2022, 95, 118-125.                                                                             | 0.5 | 1         |
| 304 | Morphology and Structure of a Charge of Detonation Nanodiamond Doped with Boron. Glass Physics and Chemistry, 2022, 48, 43-49.                                                                                       | 0.7 | 1         |
| 305 | Behaviour of Y2BaCuO5 particles in YBaCuO peritectic melts obtained from different chemical precursors. Solid State Ionics, 1997, 101-103, 1157-1161.                                                                | 2.7 | 0         |
| 306 | Title is missing!. Inorganic Materials, 2003, 39, 424-425.                                                                                                                                                           | 0.8 | 0         |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Specific features of the mesostructure of amorphous iron(III) hydroxide xerogels synthesized in an ultrasonic field. Physics of the Solid State, 2010, 52, 979-984.                                                                      | 0.6 | 0         |
| 308 | MICROWAVE-HYDROTHERMAL SYNTHESIS AND PHOTOCATALYTIC ACTIVITY OF NANODISPERSED ZINC OXIDE. , 2011, , .                                                                                                                                    |     | 0         |
| 309 | Chromium(III) oxyhydroxide synthesis under intense sonication. Doklady Chemistry, 2012, 446, 180-182.                                                                                                                                    | 0.9 | 0         |
| 310 | Synthesis and study of barium fluoride powder doped with scandium as scintillation ceramics charge. , 2014, , .                                                                                                                          |     | 0         |
| 311 | Synthesis of inorganic dyes based on plasmonic silver nanoparticles for the visible and infrared regions of the spectrum. Nanotechnologies in Russia, 2015, 10, 25-33.                                                                   | 0.7 | 0         |
| 312 | Thermal decomposition of cerium(III) perchlorate. Russian Journal of Inorganic Chemistry, 2016, 61, 1019-1025.                                                                                                                           | 1.3 | 0         |
| 313 | Investigation of the Crystallization Kinetics in the Phase Change Memory Materials of Ge–Sb–Te<br>System. Springer Proceedings in Energy, 2017, , 259-265.                                                                               | 0.3 | 0         |
| 314 | Synthesis of ZnO Thin Films Doped with Ga and In: Determination of Their Composition through X-Ray<br>Spectroscopy and Inductively Coupled Plasma Mass Spectrometry. Inorganic Materials, 2017, 53,<br>1458-1462.                        | 0.8 | 0         |
| 315 | The Possibilities of Application of Porous Aerogels Based on Alginates in Wound Healing. Polymer<br>Science - Series D, 2020, 13, 206-208.                                                                                               | 0.6 | 0         |
| 316 | Electron microscopic investigation of yttrium aluminum garnet powders Y3Al5O12, synthesized by sol–gel method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, , 789-795.                      | 0.2 | 0         |
| 317 | Microstructure of Zirconia-Based Sol-Gel Glasses Studied by SANS. Acta Physica Polonica A, 2015, 128, 582-585.                                                                                                                           | 0.5 | 0         |
| 318 | SiOâ,,-Based Aerogels Modified by Covalently Bonded Aromatic Acids as Potential Drug Delivery Systems.<br>Biomedical Chemistry Research and Methods, 2018, 1, e00037.                                                                    | 0.4 | 0         |
| 319 | Synthesis of Silver Nanoparticles using Herbaceous Plants Extracts and Effect of Nanoparticles on<br>Bacteria. Biotekhnologiya, 2018, 34, 62-71.                                                                                         | 0.1 | 0         |
| 320 | Ultrasonic treatment as method of structure change of amorphous materials prepared by sol-gel method. Chemical Engineering, 2018, , .                                                                                                    | 0.2 | 0         |
| 321 | Scientific and applied problems of integrated processing of magmatic rocks. Chemical Engineering, 2018, , .                                                                                                                              | 0.2 | 0         |
| 322 | THE RESULTS OF SCANNING ELECTRONIC MICROSCOPY OF ULTRA-THIN ENDOKERATOTRANSPLANT FORMED<br>BY FEMTOSECOND LASER ON PART OF ENDOTHELIUM. Rossiiskii Meditsinskii Zhurnal: Organ Ministerstva<br>Zdravookhraneniia RSFSR, 2018, 24, 19-24. | 0.1 | 0         |
| 323 | MICROWAVE-HYDROTHERMAL HEXAMETHYLENETETRAMINE-MEDIATED SYNTHESIS OF NANOCRYSTALLINE MnO2. Fine Chemical Technologies, 2018, 13, 56-63.                                                                                                   | 0.8 | 0         |
| 324 | Impact of nano-sized ceria particles upon the cyclization kinetics of poly(amic acid) films.<br>Nanosystems: Physics, Chemistry, Mathematics, 2019, 10, 475-479.                                                                         | 0.4 | 0         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals.<br>Kondensirovannye Sredy Mezhfaznye Granitsy, 2021, 23, 607-613. | 0.3 | 0         |
| 326 | One-Step Synthesis and Electrical Conductivity of CdSe-Based Nanocomposites. Inorganic Materials, 2021, 57, 1221-1233.                                                    | 0.8 | 0         |
| 327 | A new epoxide-mediated route for binary Al2O3-TiO2 aerogels. Trudy Kolʹskogo NauÄnogo Centra RAN,<br>2021, 12, 205-206.                                                   | 0.1 | 0         |
| 328 | Study of the influence of various solvents on the properties of hydrophobic silica xerogels. Trudy<br>Kolʹskogo NauÄnogo Centra RAN, 2021, 12, 129-130.                   | 0.1 | 0         |