Martin Nikl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3534137/publications.pdf

Version: 2024-02-01

987 papers 24,834 citations

65 h-index 23533 111 g-index

1005 all docs

1005 docs citations

1005 times ranked 8225 citing authors

#	Article	IF	CITATIONS
1	Effect of Li+ co-doping on the luminescence and defects creation processes in Gd3(Ga,Al)5O12:Ce scintillation crystals. Journal of Luminescence, 2022, 242, 118548.	3.1	8
2	Advanced photochemical processes for the manufacture of nanopowders: an evaluation of long-term pilot plant operation. Reaction Chemistry and Engineering, 2022, 7, 968-977.	3.7	3
3	Composite Detectors Based on Single-Crystalline Films and Single Crystals of Garnet Compounds. Materials, 2022, 15, 1249.	2.9	12
4	Translucent LiSr4(BO3)3 ceramics prepared by spark plasma sintering. Ceramics International, 2022, 48, 15785-15790.	4.8	2
5	Lead-Free Zero-Dimensional Organic-Copper(I) Halides as Stable and Sensitive X-ray Scintillators. ACS Applied Materials & Stable and Sensitive X-ray Scintillators. ACS	8.0	45
6	Effect of dopant concentration on the optical characteristics of Cr3+:ZnGa2O4 transparent ceramics exhibiting persistent luminescence. Optical Materials, 2022, 125, 112127.	3.6	6
7	Advanced Halide Scintillators: From the Bulk to Nano. Advanced Photonics Research, 2022, 3, . Characterization of mixed Bi4(Ge <mml:math)="" 0<="" etqq0="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>3.6 O røBT /Ov</td><td>10 verlock 10 Tf 5</td></mml:math>	3.6 O røBT /Ov	10 verlock 10 Tf 5
8		1.6	4
9	Tunable resonantly pumped Er:GGAG laser. Laser Physics, 2022, 32, 015802.	1.2	5
10	Scintillation Response Enhancement in Nanocrystalline Lead Halide Perovskite Thin Films on Scintillating Wafers. Nanomaterials, 2022, 12, 14.	4.1	19
11	Highly Resolved Xâ€Ray Imaging Enabled by In(I) Doped Perovskite‣ike Cs ₃ Cu ₂ I ₅ Single Crystal Scintillator. Advanced Optical Materials, 2022, 10, .	7.3	54
12	Preparation and performance of plastic scintillators with copper iodide complex-loaded for radiation detection. Polymer, 2022, 249, 124832.	3.8	7
13	Morphology of Meteorite Surfaces Ablated by High-Power Lasers: Review and Applications. Applied Sciences (Switzerland), 2022, 12, 4869.	2.5	2
14	Incorporation of the Ce3+ activator ions in LaAlO3 crystals: EPR and NMR study. Journal of Solid State Chemistry, 2022, 313, 123295.	2.9	4
15	Influence of calcium doping concentration on the performance of Ce,Ca:LuAG scintillation ceramics. Journal of the European Ceramic Society, 2022, 42, 6075-6084.	5.7	7
16	Engineering of YAG:Ce to improve its scintillation properties. Optical Materials: X, 2022, 15, 100165.	0.8	0
17	Optical, luminescence and scintillation properties of Mg2+-codoped (Lu,Y)3Al2Ga3O12:Pr garnet crystals: The effect of Y admixture. Radiation Physics and Chemistry, 2022, 201, 110400.	2.8	5
18	Temperature dependence of radio- and photoluminescence and scintillation properties of Y0.6Gd2.4Al2Ga3O12:Ce,Mg single crystal. Optical Materials, 2022, 131, 112662.	3.6	1

#	Article	IF	CITATIONS
19	New types of composite scintillators based on the single crystalline films and crystals of Gd3(Al,Ga)5O12:Ce mixed garnets. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 264, 114909.	3.5	5
20	Dense ceramics of lanthanide-doped Lu2O3 prepared by spark plasma sintering. Journal of the European Ceramic Society, 2021, 41, 741-751.	5.7	11
21	Undoped and Eu, Na co-doped LiCaAlF6 scintillation crystals: Paramagnetic centers, charge trapping and energy transfer properties. Journal of Alloys and Compounds, 2021, 858, 158297.	5. 5	1
22	Fine-grained Ce,Y:SrHfO ₃ Scintillation Ceramics Fabricated by Hot Isostatic Pressing. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2021, 36, 1118.	1.3	4
23	Non-Hygroscopic, Self-Absorption Free, and Efficient 1D CsCu ₂ 1 ₃ Perovskite Single Crystal for Radiation Detection. ACS Applied Materials & Single Crystal for Radiation Detection. ACS Applied Materials & Single Crystal for Radiation Detection. ACS Applied Materials & Single Crystal for Radiation Detection. ACS Applied Materials & Single Crystal for Radiation Detection.	8.0	52
24	Effect of W and Mo co-doping on the photo- and thermally stimulated luminescence and defects creation processes in Gd3(Ga,Al)5O12:Ce crystals. Optical Materials, 2021, 114, 110923.	3.6	4
25	Ultrabright and Highly Efficient Allâ€Inorganic Zeroâ€Dimensional Perovskite Scintillators. Advanced Optical Materials, 2021, 9, 2100460.	7.3	79
26	Development of Composite Scintillators Based on the LuAG: Pr Single Crystalline Films and LuAG:Sc Single Crystals. Crystals, 2021, 11, 846.	2.2	4
27	Optical and scintillation properties of LuGd2Al2Ga3O12:Ce, Lu2GdAl2Ga3O12:Ce, and Lu2YAl2Ga3O12:Ce single crystals: A comparative study. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1004, 165381.	1.6	6
28	On the Role of Cs4PbBr6 Phase in the Luminescence Performance of Bright CsPbBr3 Nanocrystals. Nanomaterials, 2021, 11, 1935.	4.1	7
29	Ternary sulfides ALnS2:Eu2+ (AÂ=ÂAlkaline Metal, LnÂ=Ârare-earth element) for lighting: Correlation between the host structure and Eu2+ emission maxima. Chemical Engineering Journal, 2021, 418, 129380.	12.7	9
30	Tm:GGAG disordered garnet crystal for 2 Âμm diode-pumped solid-state laser. Laser Physics Letters, 2021, 18, 115802.	1.4	0
31	Undoped and Tlâ€Doped Cs ₃ Cu ₂ I ₅ Thin Films as Potential Xâ€ray Scintillators. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100422.	2.4	9
32	Luminescence and scintillation properties of Gd3Sc2(Al3-xGax)O12:Ce (x = 1, 2, 3) garnet crystals. Radiation Physics and Chemistry, 2021, 187, 109559.	2.8	10
33	Crystal growth and optical properties of Ce-doped (La,Y)2Si2O7 single crystal. Journal of Crystal Growth, 2021, 572, 126252.	1.5	1
34	Substantial reduction of trapping by Mg co-doping in LuAG:Ce, Mg epitaxial garnet films. Journal of Luminescence, 2021, 238, 118230.	3.1	4
35	Scintillation yield and temperature dependence of radioluminescence of (Lu,Gd)3Al5O12:Ce garnet crystals. Optical Materials, 2021, 120, 111471.	3.6	3
36	Peculiarities and the red shift of Eu2+ luminescence in Gd3+-admixed YAG phosphors. Optical Materials, 2021, 120, 111464.	3.6	2

#	Article	IF	CITATIONS
37	Scintillation characteristics and temperature quenching of radio- and photoluminescence of Mg2+-codoped (Lu,Gd)3Al2.4Ga2.6O12:Ce garnet crystals. Optical Materials, 2021, 121, 111595.	3.6	4
38	Cs2HfCl6 doped with Zr: Influence of tetravalent substitution on scintillation properties. Journal of Crystal Growth, 2021, 573, 126307.	1.5	4
39	Gd-admixed (Lu,Gd)AlO3 single crystals: breakthrough in heavy perovskite scintillators. NPG Asia Materials, 2021, 13, .	7.9	10
40	(INVITED) Ultraviolet cross-luminescence in ternary chlorides of alkali and alkaline-earth metals. Optical Materials: X, 2021, 12, 100103.	0.8	3
41	Composition-Engineered GSAG Garnet: Single-Crystal Host for Fast Scintillators. Crystal Growth and Design, 2021, 21, 7139-7149.	3.0	8
42	Luminescence and scintillation properties of Mo co-doped Y0.8Gd2.2(Al5-xGax)O12: Ce multicomponent garnet crystals. Optical Materials, 2021, 122, 111783.	3.6	2
43	The Sensitization of Scintillation in Polymeric Composites Based on Fluorescent Nanocomplexes. Nanomaterials, 2021, 11, 3387.	4.1	4
44	Influence of co-doped alumina on the microstructure and radioluminescence of SrHfO3:Ce ceramics. Journal of the European Ceramic Society, 2020, 40, 449-455.	5.7	7
45	Variability of Eu ²⁺ Emission Features in Multicomponent Alkali-Metal-Rare-Earth Sulfides. ECS Journal of Solid State Science and Technology, 2020, 9, 016007.	1.8	9
46	Fabrication and scintillation properties of Pr:Lu3Al5O12 transparent ceramics from co-precipitated nanopowders. Journal of Alloys and Compounds, 2020, 818, 152885.	5.5	6
47	Modified vertical Bridgman method: Time and cost effective tool for preparation of Cs2HfCl6 single crystals. Journal of Crystal Growth, 2020, 533, 125479.	1.5	12
48	Relationship Between Li/Ce Concentration and the Luminescence Properties of Codoped Gd 3 (Ga, Al) 5 O 12:Ce. Physica Status Solidi (B): Basic Research, 2020, 257, 1900504.	1.5	4
49	Calculations of Avrami exponent and applicability of Johnson–Mehl–Avrami model on crystallization in Er:LiY(PO3)4 phosphate glass. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1091-1099.	3.6	11
50	Thermal analysis of cesium hafnium chloride using DSC–TG under vacuum, nitrogen atmosphere, and in enclosed system. Journal of Thermal Analysis and Calorimetry, 2020, 141, 1101-1107.	3.6	13
51	Microstructure evolution in two-step-sintering process toward transparent Ce:(Y,Gd)3(Ga,Al)5O12 scintillation ceramics. Journal of Alloys and Compounds, 2020, 846, 156377.	5.5	10
52	Primordial Radioactivity and Prebiotic Chemical Evolution: Effect of \hat{I}^3 Radiation on Formamide-Based Synthesis. Journal of Physical Chemistry B, 2020, 124, 8951-8959.	2.6	5
53	Ariel â ϵ " a window to the origin of life on early earth?. Experimental Astronomy, 2020, , 1.	3.7	1
54	Scintillation characteristics of YAlO3:Pr perovskite single crystals. Optical Materials, 2020, 108, 110161.	3.6	5

#	Article	IF	CITATIONS
55	Comparative study of structural, optical and magnetic properties of Er3+ doped yttrium gallium borates. Results in Physics, 2020, 19, 103247.	4.1	3
56	Conference Comments by the Editors. IEEE Transactions on Nuclear Science, 2020, 67, 875-875.	2.0	0
57	Zeroâ€Dimensional Cs ₃ Cu ₂ I ₅ Perovskite Single Crystal as Sensitive Xâ€Ray and γâ€Ray Scintillator. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000374.	2.4	87
58	Diode-pumped laser and spectroscopic properties of Yb,Ho:GGAG at 2 $\hat{A}\mu m$ and 3 $\hat{A}\mu m$. Laser Physics Letters, 2020, 17, 035801.	1.4	0
59	Specific absorption in Y3Al5O12:Eu ceramics and the role of stable Eu2+ in energy transfer processes. Journal of Materials Chemistry C, 2020, 8, 8823-8839.	5.5	13
60	Optical Properties of InGaN/GaN Multiple Quantum Well Structures Grown on GaN and Sapphire Substrates. IEEE Transactions on Nuclear Science, 2020, 67, 974-977.	2.0	5
61	Single-crystal growth, structure and luminescence properties of Cs2HfCl3Br3. Optical Materials, 2020, 106, 109942.	3.6	5
62	Optical and magnetic properties of nanostructured cerium-doped LaMgAl11O19. Journal of Materials Research, 2020, 35, 1672-1679.	2.6	2
63	Luminescence Spectroscopy and Origin of Luminescence Centers in Bi-Doped Materials. Crystals, 2020, 10, 208.	2.2	48
64	CsPbBr ₃ Thin Films on LYSO:Ce Substrates. IEEE Transactions on Nuclear Science, 2020, 67, 933-938.	2.0	8
65	Scintillation Properties and Energy Transfer in (GdY)AlOâ,f:Ce³â& Perovskites With High Gd Content. IEEE Transactions on Nuclear Science, 2020, 67, 1049-1054.	2.0	5
66	Luminescence and Scintillation Properties of Mg ²⁺ -Codoped Lu _{0.6} Gd _{2.4} Al ₂ Ga ₃ O ₁₂ :Ce Single Crystal. IEEE Transactions on Nuclear Science, 2020, 67, 904-909.	2.0	9
67	Growth and Scintillation Properties of a New Red-Emitting Scintillator Rbâ,,Hflâ,† for the Fiber-Reading Radiation Monitor. IEEE Transactions on Nuclear Science, 2020, 67, 1055-1062.	2.0	7
68	Rare-earth ions incorporation into Lu2Si2O7 scintillator crystals: Electron paramagnetic resonance and luminescence study. Optical Materials, 2020, 106, 109930.	3.6	6
69	Light Yield and Timing Characteristics of Luâ,€.â,^Gdâ,,.â,,(Al _{5–<i>x</i>} Gax)Oâ,â,,:Ce,Mg Single Cr IEEE Transactions on Nuclear Science, 2020, 67, 2295-2299.	ystals. 2.0	4
70	Multiple shaped-crystal growth of oxide scintillators using Mo crucible and die by the edge defined film fed growth method. Journal of Crystal Growth, 2020, 535, 125510.	1.5	11
71	Tungsten co-doping effects on Ce:Gd3Ga3Al2O12 scintillator grown by the micro-pulling down method. Journal of Crystal Growth, 2020, 539, 125513.	1.5	7
72	Synthesis of inorganic nanoparticles by ionizing radiation – a review. Radiation Physics and Chemistry, 2020, 169, 108774.	2.8	44

#	Article	IF	Citations
73	Bulk Single Crystal Growth of W Co-Doped Ce:Gdâ, fGaâ, fAlâ, Oâ, ê, by Czochralski Method. IEEE Transactions on Nuclear Science, 2020, 67, 1045-1048.	2.0	5
74	Electron and Hole Trapping in Ce3+ - and Pr3+ -Doped Lutetium Pyrosilicate Scintillator Crystals Studied by Electron Paramagnetic Resonance. Physical Review Applied, 2020, 13, .	3.8	4
75	Liquid phase epitaxy growth of high-performance composite scintillators based on single crystalline films and crystals of LuAG. CrystEngComm, 2020, 22, 3713-3724.	2.6	11
76	Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials, 2020, 105, 109909.	3.6	9
77	On the luminescence origin in Y2SiO5:Ce and Lu2SiO5:Ce single crystals. Optical Materials, 2020, 103, 109832.	3.6	11
78	Synthesis routes of CeO ₂ nanoparticles dedicated to organophosphorus degradation: a benchmark. CrystEngComm, 2020, 22, 1725-1737.	2.6	20
79	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Y</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi>Al</mml:mi><mm mathvariant="normal">O<mml:mn>12</mml:mn></mm></mml:msub></mml:mrow> garnet crystals: Electron paramagnetic resonance and dielectric spectroscopy study. Physical Review	l:mn>5 <th>nggl:mn></th>	nggl:mn>
80	B, 2020, 101, . 1.7 μm diode-pumped Tm:GGAG and Tm, Ho:GGAG 2.0-2.1 μm laser. , 2020, , .		1
81	Temperature influence on Er:GGAG crystal spectroscopic properties and lasing at 3 î¼m. , 2020, , .		O
82	Er:GGAG crystal temperature influence on spectroscopic and laser properties. Optical Materials Express, 2020, 10, 1249.	3.0	4
83	Al-doping effects on mechanical, optical and scintillation properties of Ce:(La,Gd)2Si2O7 single crystals. Optical Materials, 2019, 87, 11-15.	3.6	4
84	Electron and hole trapping in Eu- or Eu,Hf-doped LuPO ₄ and YPO ₄ tracked by EPR and TSL spectroscopy. Journal of Materials Chemistry C, 2019, 7, 11473-11482.	5.5	12
85	Heavily Ce ³⁺ -doped Y ₃ Al ₅ O ₁₂ thin films deposited by a polymer sol–gel method for fast scintillation detectors. CrystEngComm, 2019, 21, 5115-5123.	2.6	10
86	Effect of Mg2+ co-doping on the photo- and thermally stimulated luminescence of the (Lu,Gd)3(Ga,Al)5O12:Ce epitaxial films. Journal of Luminescence, 2019, 215, 116608.	3.1	28
87	Trapping and Recombination Centers in Cesium Hafnium Chloride Single Crystals: EPR and TSL Study. Journal of Physical Chemistry C, 2019, 123, 19402-19411.	3.1	19
88	Lanthanide-doped Lu2O3 phosphors and scintillators with green-to-red emission. Journal of Luminescence, 2019, 215, 116647.	3.1	16
89	Luminescence and scintillation properties of strontium hafnate and strontium zirconate single crystals. Optical Materials, 2019, 98, 109494.	3.6	6
90	Optical and magnetic properties of the ground state of Cr3+ doping ions in REM3(BO3)4 single crystals. Scientific Reports, 2019, 9, 12787.	3.3	8

#	Article	IF	Citations
91	Ga for Al substitution effects on the garnet phase stability and luminescence properties of Gd3GaxAl5-xO12:Ce single crystals. Journal of Luminescence, 2019, 216, 116724.	3.1	26
92	On low-temperature luminescence quenching in Gd3(Ga,Al)5O12:Ce crystals. Optical Materials, 2019, 95, 109252.	3.6	3
93	Doping nanoparticles using pulsed laser ablation in a liquid containing the doping agent. Nanoscale Advances, 2019, 1, 3963-3972.	4.6	22
94	Alpha and gamma spectroscopy of composite scintillators based on the LuAG:Pr crystals and single crystalline films of LuAG:Ce and (Lu,Gd,Tb)AG:Ce garnets. Optical Materials, 2019, 96, 109268.	3.6	13
95	Advancement toward ultra-thick and bright InGaN/GaN structures with a high number of QWs. CrystEngComm, 2019, 21, 356-362.	2.6	21
96	Suppression of the slow scintillation component of Pr:Lu3Al5O12 transparent ceramics by increasing Pr concentration. Journal of Luminescence, 2019, 210, 14-20.	3.1	16
97	On the structure, synthesis, and characterization of ultrafast blue-emitting CsPbBr3 nanoplatelets. APL Materials, 2019, 7, .	5.1	38
98	Highly luminescent cerium-doped YSO/LSO microcrystals prepared via room temperature sol-gel route. Radiation Measurements, 2019, 122, 84-90.	1.4	5
99	Defects creation in the undoped Gd3(Ga,Al)5O12 single crystals and Ce3+ - doped Gd3(Ga,Al)5O12 single crystals and epitaxial films under irradiation in the Gd3+ - related absorption bands. Optical Materials, 2019, 88, 601-605.	3.6	9
100	Progress in fabrication of long transparent YAC:Ce and YAC:Ce,Mg single crystalline fibers for HEP applications. CrystEngComm, 2019, 21, 1728-1733.	2.6	18
101	Scintillation properties of Y-Admixed Gd2Si2O7 scintillator. Radiation Measurements, 2019, 126, 106123.	1.4	1
102	Luminescence study of rare-earth (RE)-doped low-energy phonon RbPb ₂ Cl ₅ crystals for mid-infrared (IR) lasers emitting above 4.5 <i>μ</i> m wavelength. Laser Physics, 2019, 29, 075801.	1.2	3
103	Electronic band modification for faster and brighter Ce,Mg:Lu3-xYxAl5O12 ceramic scintillators. Journal of Luminescence, 2019, 214, 116545.	3.1	22
104	Ho3+ codoping of YAG:Ce: Acceleration of Ce3+ decay kinetics by energy transfer. Journal of Luminescence, 2019, 213, 469-473.	3.1	3
105	Effect of Si4+ co-doping on luminescence and scintillation properties of Lu3Al5O12:Ce,Ca epitaxial garnet films. Optical Materials, 2019, 91, 321-325.	3.6	12
106	Crystal structure and luminescence studies of microcrystalline GGG:Bi3+ and GGG:Bi3+,Eu3+ as a UV-to-VIS converting phosphor for white LEDs. Journal of Luminescence, 2019, 213, 278-289.	3.1	21
107	Scintillation properties of Gd3Al2Ga3O12:Ce, Li and Gd3Al2Ga3O12:Ce, Mg single crystal scintillators: A comparative study. Optical Materials, 2019, 92, 181-186.	3.6	20
108	Vanadium in yttrium aluminum garnet: Charge states and localization in the lattice. Optical Materials, 2019, 91, 228-234.	3.6	9

#	Article	IF	CITATIONS
109	LPE growth and study of the Ce ³⁺ incorporation in LuAlO ₃ :Ce single crystalline film scintillators. CrystEngComm, 2019, 21, 3313-3321.	2.6	13
110	Development of a novel red-emitting cesium hafnium iodide scintillator. Radiation Measurements, 2019, 124, 54-58.	1.4	17
111	Infrared spectroscopic properties of low-phonon lanthanide-doped KLuS2 crystals. Journal of Luminescence, 2019, 211, 100-107.	3.1	10
112	LuAG:Pr codoped with Ho3+: Acceleration of Pr3+ decay by energy transfer. Radiation Measurements, 2019, 124, 122-126.	1.4	5
113	Photochemical synthesis of nano- and micro-crystalline particles in aqueous solutions. Applied Surface Science, 2019, 479, 506-511.	6.1	14
114	Synthesis of inorganic nanoparticles by ionizing radiation – a review. Radiation Physics and Chemistry, 2019, 158, 153-164.	2.8	25
115	Luminescence and scintillation characteristics of cerium doped Gd2YGa3Al2O12 ceramics. Optical Materials, 2019, 90, 20-25.	3.6	6
116	Tm-Doping Concentration Influence on Tm:GGAG Lasing and Tenability at 2 Î $\frac{1}{4}$ m Spectral Region. , 2019, , .		0
117	ETHANOL AS A MODIFIER OF RADIATION SENSITIVITY OF LIVING CELLS AGAINST UV-C RADIATION. Radiation Protection Dosimetry, 2019, 186, 191-195.	0.8	1
118	Core–shell ZnO:Ga-SiO ₂ nanocrystals: limiting particle agglomeration and increasing luminescence <i>via</i> surface defect passivation. RSC Advances, 2019, 9, 28946-28952.	3.6	15
119	RADIOPROTECTIVE EFFECT OF HYDROXYL RADICAL SCAVENGERS ON PROKARYOTIC AND EUKARYOTIC CELLS UNDER VARIOUS GAMMA IRRADIATION CONDITIONS. Radiation Protection Dosimetry, 2019, 186, 186-190.	0.8	1
120	The influence of air annealing on the microstructure and scintillation properties of Ce,Mg:Lu <scp>AG</scp> ceramics. Journal of the American Ceramic Society, 2019, 102, 1805-1813.	3.8	18
121	Epitaxial growth, photoluminescence and scintillation properties of Gd3+ co-doped YAlO3:Ce3+ films. Radiation Measurements, 2019, 121, 86-90.	1.4	7
122	InGaN/GaN multiple quantum well for superfast scintillation application: Photoluminescence measurements of the picosecond rise time and excitation density effect. Journal of Luminescence, 2019, 208, 119-124.	3.1	7
123	Europium-doped Lu2O3 phosphors prepared by a sol-gel method. IOP Conference Series: Materials Science and Engineering, 2019, 465, 012009.	0.6	4
124	Novel scintillating nanocomposite for X-ray induced photodynamic therapy. Radiation Measurements, 2019, 121, 13-17.	1.4	9
125	Gallium preference for the occupation of tetrahedral sites in Lu3(Al5-xGax)O12 multicomponent garnet scintillators according to solid-state nuclear magnetic resonance and density functional theory calculations. Journal of Physics and Chemistry of Solids, 2019, 126, 93-104.	4.0	14
126	Luminescence and scintillation properties of rare-earth-doped LaAlO3 single crystals. Radiation Measurements, 2019, 121, 26-31.	1.4	20

#	Article	IF	Citations
127	Charge trapping processes and energy transfer studied in lead molybdate by EPR and TSL. Journal of Luminescence, 2019, 205, 457-466.	3.1	15
128	Garnet Crystal Growth in Non-precious Metal Crucibles. Springer Proceedings in Physics, 2019, , 83-95.	0.2	11
129	Spectroscopic and Lasing Properties of Er:GGAG Crystal in Temperature Range 80 to 340 K., 2019, , .		0
130	2.94 µm and 2.1 µm tunable laser based on Yb,Ho-doped GGAG crystal. , 2019, , .		0
131	Tm, Ho:GGAG crystal for 2.1 \hat{l} 4m tunable diode-pumped laser. , 2019, , .		2
132	Eu:Lu2O3 transparent ceramics prepared by spark-plasma-sintering. , 2019, , .		1
133	Photoinduced Preparation of Bandgap-Engineered Garnet Powders. IEEE Transactions on Nuclear Science, 2018, 65, 2184-2190.	2.0	5
134	Growth and luminescent properties of Ce and Eu doped Cesium Hafnium Iodide single crystalline scintillators. Journal of Crystal Growth, 2018, 492, 1-5.	1.5	16
135	LuAG:Pr3+-porphyrin based nanohybrid system for singlet oxygen production: Toward the next generation of PDTX drugs. Journal of Photochemistry and Photobiology B: Biology, 2018, 179, 149-155.	3.8	11
136	Scintillation Characteristics of GAGC:Ce Single-Crystalline Films Grown by Liquid Phase Epitaxy. IEEE Transactions on Nuclear Science, 2018, 65, 2132-2135.	2.0	4
137	Development of Composite Scintillators Based on Single Crystalline Films and Crystals of Ce ³⁺ -Doped (Lu,Gd) ₃ (Al,Ga) ₅ O ₁₂ Mixed Garnet Compounds. Crystal Growth and Design, 2018, 18, 1834-1842.	3.0	26
138	Circadian Light Source Based on KxNa1-xLuS2:Eu2+ Phosphor. ECS Journal of Solid State Science and Technology, 2018, 7, R3182-R3188.	1.8	6
139	Luminescence and scintillation characteristics of (GdxY3-x)Al2Ga3O12:Ce (xÂ=Â1,2,3) single crystals. Optical Materials, 2018, 76, 162-168.	3.6	21
140	Comparative Study of GdLu ₂ Al ₂ Ga ₃ O ₁₂ :Ce and GdY ₂ Al ₃ Ga ₃ O ₁₂ :Ce Scintillation Crystals for \$gamma\$-Ray Detection. IEEE Transactions on Nuclear Science, 2018, 65, 2081-2084.	2.0	1
141	Fabrication and properties of Eu:Lu2O3 transparent ceramics for X-ray radiation detectors. Optical Materials, 2018, 80, 22-29.	3.6	19
142	Afterglow and Quantum Tunneling in Ce-Doped Lutetium Aluminum Garnet. IEEE Transactions on Nuclear Science, 2018, 65, 2085-2089.	2.0	5
143	Effects of Gd/Lu ratio on the luminescence properties and garnet phase stability of Ce3+ activated GdxLu3-xAl5O12 single crystals. Optical Materials, 2018, 80, 98-105.	3.6	20
144	Demonstration of cellular imaging by using luminescent and anti-cytotoxic europium-doped hafnia nanocrystals. Nanoscale, 2018, 10, 7933-7940.	5.6	24

#	Article	IF	Citations
145	Li + , Na + and K + co-doping effects on scintillation properties of Ce:Gd 3 Ga 3 Al 2 O 12 single crystals. Journal of Crystal Growth, 2018, 491, 1-5.	1.5	12
146	Scintillating ceramics based on non-stoichiometric strontium hafnate. Optical Materials, 2018, 77, 246-252.	3.6	6
147	Influence of cerium doping concentration on the optical properties of Ce,Mg:LuAG scintillation ceramics. Journal of the European Ceramic Society, 2018, 38, 3246-3254.	5.7	23
148	Mg,Ce co-doped Lu ₂ Gd ₁ (Ga,Al) ₅ O ₁₂ by micro-pulling down method and their luminescence properties. Japanese Journal of Applied Physics, 2018, 57, 04FJ06.	1.5	2
149	Effects of Ca/Sr ratio control on optical and scintillation properties of Eu-doped Li(Ca,Sr)AlF 6 single crystals. Journal of Crystal Growth, 2018, 490, 71-76.	1.5	4
150	Radio- and photoluminescence properties of Ce/Tb co-doped glasses with huntite-like composition. Optical Materials, 2018, 78, 247-252.	3.6	7
151	Fabrication and laser oscillation of Yb:Sc2O3 transparent ceramics from co-precipitated nano-powders. Journal of the European Ceramic Society, 2018, 38, 1632-1638.	5.7	21
152	Measurement of non-equilibrium carriers dynamics in Ce-doped YAG, LuAG and GAGG crystals with and without Mg-codoping. Journal of Luminescence, 2018, 194, 1-7.	3.1	25
153	Effect of Ga content on luminescence and defects formation processes in Gd3(Ga,Al)5O12:Ce single crystals. Optical Materials, 2018, 75, 331-336.	3.6	16
154	Light yield and light loss coefficient of Pr 3+ doped Y 3 Al 5 O 12 crystals with different Pr 3+ concentration under excitation with \hat{l}_{\pm} - and \hat{l}_{3} -rays. Materials Today: Proceedings, 2018, 5, 15029-15033.	1.8	3
155	Effects of irradiation conditions on the radiation sensitivity of microorganisms in the presence of OH-radical scavengers. International Journal of Radiation Biology, 2018, 94, 1142-1150.	1.8	5
156	Sorption properties of selected oxidic nanoparticles for the treatment of spent decontamination solutions based on citric acid. Journal of Radioanalytical and Nuclear Chemistry, 2018, 318, 2443-2448.	1.5	1
157	overflow="scroll">< mml:msub>< mml:mrow>< mml:mrow>< mml:mi mathvariant="normal">Y< mml:mn>3< mathvariant="normal">O< mml:mn>12OOOOOOOOOO <td>دmml:mi> h></td> <td>Als/mml:m</td>	دmml:mi> h>	Als/mml:m
158	Review Applied. 2018. 10. Concentration dependence of energy transfer Ce3+â†'Er3+ in YAG host. Optical Materials, 2018, 86, 338-342.	3.6	4
159	Composite scintillators based on the crystals and single crystalline films of LuAG garnet doped with Ce3+, Pr3+ and Sc3+ ions. Optical Materials, 2018, 84, 593-599.	3.6	13
160	The influences of stoichiometry on the sintering behavior, optical and scintillation properties of Pr:LuAG ceramics. Journal of the European Ceramic Society, 2018, 38, 4252-4259.	5.7	12
161	Luminescence processes in Ti-doped LiAlO2 single crystals for neutron scintillators. Journal of Luminescence, 2018, 201, 231-244.	3.1	5
162	Epitaxial growth of composite scintillators based on Tb3Al5O12 : Ce single crystalline films and Gd3Al2.5Ga2.5O12 : Ce crystal substrates. CrystEngComm, 2018, 20, 3994-4002.	2.6	16

#	Article	IF	CITATIONS
163	Novel All-Solid-State Composite Scintillators Based on the Epitaxial Structures of LuAG Garnet Doped With Pr, Sc, and Ce Ions. IEEE Transactions on Nuclear Science, 2018, 65, 2114-2119.	2.0	10
164	Needs, Trends, and Advances in Inorganic Scintillators. IEEE Transactions on Nuclear Science, 2018, 65, 1977-1997.	2.0	305
165	Growth and Luminescent Properties of Cs ₂ HfCl ₆ Scintillators Doped With Alkaline Earth Metals. IEEE Transactions on Nuclear Science, 2018, 65, 2169-2173.	2.0	8
166	Dependence of Ce3+ - related photo- and thermally stimulated luminescence characteristics on Mg2+ content in single crystals and epitaxial films of Gd3(Ga,Al)5O12:Ce,Mg. Optical Materials, 2018, 83, 290-299.	3. 6	23
167	Line-tunable Er:GGAG laser. Optics Letters, 2018, 43, 3309.	3.3	15
168	YAG Ceramic Nanocrystals Implementation into MCVD Technology of Active Optical Fibers. Applied Sciences (Switzerland), 2018, 8, 833.	2.5	17
169	Tailoring and Optimization of LuAG:Ce Epitaxial Film Scintillation Properties by Mg Co-Doping. Crystal Growth and Design, 2018, 18, 4998-5007.	3.0	17
170	Influence of gallium content on Ga3+ position and photo- and thermally stimulated luminescence in Ce3+-doped multicomponent (Y,Lu)3GaxAl5-xO12 garnets. Journal of Luminescence, 2018, 200, 141-150.	3.1	14
171	Scintillation properties of Gd3(Al5-xGax)O12:Ce (x = 2.3, 2.6, 3.0) single crystals. Optical Materials, 2018, 81, 23-29.	3.6	17
172	Conference Comments by the Editors. IEEE Transactions on Nuclear Science, 2018, 65, 1976-1976.	2.0	0
173	Fabrication and optical properties of cerium doped Lu3Ga3Al2O12 scintillation ceramics. Optical Materials, 2018, 85, 121-126.	3.6	14
174	Wavelength tunability of laser based on Yb-doped GGAG crystal. Laser Physics, 2018, 28, 105802. Role of Multiple Charge States of smml:math smlns:mml="http://www.w3.org/1998/Math/Math/MI"	1.2	8
175	display="inline" overflow="scroll"> <mml:mi>Ce</mml:mi> in the Scintillation of <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi mathvariant="italic">AB<mml:msub><mml:mrow><mml:mrow><mml:mi< td=""><td>3.8</td><td>15</td></mml:mi<></mml:mrow></mml:mrow></mml:msub></mml:mi </mml:math>	3.8	15
176	mathvariant="normal">O <mml:mn>3</mml:mn> Octahedral molybdenum clusters as radiosensitizers for X-ray induced photodynamic therapy. Journal of Materials Chemistry B, 2018, 6, 4301-4307.	5.8	51
177	LANTHANIDE-DOPED Yâ,,Oâ, f - THE PHOTOLUMINESCENT AND RADIOLUMINESCENT PROPERTIES OF SOL-GEL PREPARED SAMPLES. Ceramics - Silikaty, 2018, , 411-417.	0.3	4
178	Ultrafast Zn(Cd,Mg)O:Ga nanoscintillators with luminescence tunable by band gap modulation. Optics Express, 2018, 26, 29482.	3.4	7
179	Improvement of the growth of Li4SiO4 single crystals for neutron detection and their scintillation and luminescence properties. Journal of Crystal Growth, 2017, 457, 143-150.	1.5	4

Luminescence quenching and scintillation response in the Ce 3+ doped Gd x Y $3\hat{a}^{-2}x$ Al 5 O 12 ($x\hat{A}=\hat{A}0.75, 1$,) Tj ETQqQ 0 O g_{24}^{BT} /Overlood 180

#	Article	IF	Citations
181	Luminescence and light yield of (Gd2Y)(Ga3Al2)O12:Pr3+ single crystal scintillators. Journal of Crystal Growth, 2017, 468, 369-372.	1.5	3
182	Effects of Na co-doping on optical and scintillation properties of Eu:LiCaAlF6 scintillator single crystals. Journal of Crystal Growth, 2017, 468, 399-402.	1.5	6
183	Luminescence and scintillation properties of liquid phase epitaxy grown Y 2 SiO 5 :Ce single crystalline films. Journal of Crystal Growth, 2017, 468, 275-277.	1.5	1
184	Effect of Li+ ions co-doping on luminescence, scintillation properties and defects characteristics of LuAG:Ce ceramics. Optical Materials, 2017, 64, 245-249.	3.6	22
185	Thermochromic Fluorescence from B ₁₈ H ₅) ₂ : An Inorganic–Organic Composite Luminescent Compound with an Unusual Molecular Geometry. Advanced Optical Materials, 2017. 5. 1600694.	7.3	45
186	Effect of Mg2+ ions co-doping on luminescence and defects formation processes in Gd3(Ga,Al)5O12:Ce single crystals. Optical Materials, 2017, 66, 48-58.	3.6	29
187	Design and characterization of Yb and Nd doped transparent ceramics for high power laser applications: recent advancements., 2017,,.		1
188	5d-4f Radioluminescence in Pr3+-doped K3YxLu1-x (PO4)2. NATO Science for Peace and Security Series B: Physics and Biophysics, 2017, , 489-490.	0.3	0
189	Garnet Scintillators of Superior Timing Characteristics: Material, Engineering by Liquid Phase Epitaxy. Advanced Optical Materials, 2017, 5, 1600875.	7.3	19
190	Temperature dependence of CIE-x,y color coordinates in YAG:Ce single crystal phosphor. Journal of Luminescence, 2017, 187, 20-25.	3.1	28
191	Timing capabilities of garnet crystals for detection of high energy charged particles. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 852, 1-9.	1.6	32
192	Luminescence and energy transfer processes in Ce 3+ activated (Gd,Tb) 3 Al 5 O 12 single crystalline films. Journal of Luminescence, 2017, 188, 60-66.	3.1	26
193	Temperature influence on diode pumped Yb:GGAG laser. Proceedings of SPIE, 2017, , .	0.8	0
194	On the origin of the ultraviolet photoluminescence in the Ce3+-doped epitaxial films of multicomponent (Lu,Gd)3(Ga,Al)5O12garnets. Physica Status Solidi (B): Basic Research, 2017, 254, 1600570.	1.5	2
195	Origin of Bi3+–related luminescence in Gd3Ga5O12:Bi epitaxial films. Journal of Luminescence, 2017, 190, 81-88.	3.1	22
196	Effect of cryogenic temperature on spectroscopic and laser properties of Er, Yb-doped potassium-lanthanum phosphate glass. , 2017, , .		0
197	Development and melt growth of novel scintillating halide crystals. Optical Materials, 2017, 74, 109-119.	3.6	4
198	Luminescence and Charge Trapping in Cs ₂ HfCl ₆ Single Crystals: Optical and Magnetic Resonance Spectroscopy Study. Journal of Physical Chemistry C, 2017, 121, 12375-12382.	3.1	33

#	Article	IF	Citations
199	Luminescence, scintillation, and energy transfer in SiO2 -Al2 O3 -B2 O3 -Gd2 O3 :Ce3+ ,Pr3+ glasses. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1700072.	1.8	3
200	Defect states and temperature stability of Eu2+ center in Eu-doped yttrium aluminum garnet. Journal of Luminescence, 2017, 190, 309-313.	3.1	8
201	Scintillator materials for x-ray detectors and beam monitors. MRS Bulletin, 2017, 42, 451-457.	3.5	38
202	The role of air annealing on the optical and scintillation properties of Mg co-doped Pr:LuAG transparent ceramics. Optical Materials, 2017, 72, 201-207.	3.6	16
203	Tetranuclear Copper(I) Iodide Complexes: A New Class of X-ray Phosphors. Inorganic Chemistry, 2017, 56, 4609-4614.	4.0	56
204	Alpha spectroscopy by the $\hat{l}_1^{\dagger}25$ mm \hat{A} —0.1 mm YAlO3:Ce scintillation detector under atmospheric conditions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 856, 72-76.	1.6	1
205	Cesium hafnium chloride scintillator coupled with an avalanche photodiode photodetector. Journal of Instrumentation, 2017, 12, C02042-C02042.	1.2	13
206	EPR and luminescence studies of the radiation induced Eu 2+ centers in the EuAl 3 (BO 3) 4 single crystals. Optical Materials, 2017, 66, 428-433.	3.6	10
207	Light yield and light loss coefficient of LuAG:Ce and LuAG:Pr under excitation with \hat{l}_{\pm} - and \hat{l}_{\pm} -rays. Journal of Crystal Growth, 2017, 468, 373-375.	1.5	11
208	Mixed vanadates: Optimization of optical properties by varying chemical composition. Journal of Luminescence, 2017, 189, 140-147.	3.1	7
209	EPR study of Ce3+ luminescent centers in the Y2SiO5 single crystalline films. Optical Materials, 2017, 72, 833-837.	3.6	9
210	At the crossroad of photochemistry and radiation chemistry: formation of hydroxyl radicals in diluted aqueous solutions exposed to ultraviolet radiation. Physical Chemistry Chemical Physics, 2017, 19, 29402-29408.	2.8	15
211	High efficiency laser action in mildly doped Yb:LuYAG ceramics. Optical Materials, 2017, 73, 312-318.	3.6	20
212	Subpicosecond luminescence rise time in magnesium codoped GAGG:Ce scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 870, 25-29.	1.6	33
213	Electron self-trapped at molybdenum complex in lead molybdate: An EPR and TSL comparative study. Journal of Luminescence, 2017, 192, 767-774.	3.1	15
214	Composition and properties tailoring in Mg2+ codoped non-stoichiometric LuAG:Ce,Mg scintillation ceramics. Journal of the European Ceramic Society, 2017, 37, 1689-1694.	5.7	17
215	Single crystal growth of Ce:Gd3(Ga,Al)5O12 with various Mg concentration and their scintillation properties. Journal of Crystal Growth, 2017, 468, 407-410.	1.5	15
216	Structural effects and 5dâ†'4f emission transition shifts induced by Y co-doping in Pr-doped K3Lu1â^'Y (PO4)2. Journal of Luminescence, 2017, 189, 113-119.	3.1	16

#	Article	IF	Citations
217	Effect of reducing Lu3+ content on the fabrication and scintillation properties of non-stoichiometric Lu3â^'xAl5O12:Ce ceramics. Optical Materials, 2017, 63, 179-184.	3.6	6
218	Luminescence and scintillation properties of Mg-codoped LuAG:Pr single crystals annealed in air. Journal of Luminescence, 2017, 181, 277-285.	3.1	37
219	The temperature dependence studies of rare-earth (Dy3+, Sm3+, Eu3+ and Tb3+) activated Gd3Ga3Al2O12 garnet single crystals. Journal of Luminescence, 2017, 189, 126-139.	3.1	17
220	2 inch size Czochralski growth and scintillation properties of Li + co-doped Ce:Gd 3 Ga 3 Al 2 O 12. Optical Materials, 2017, 65, 52-55.	3.6	18
221	Optical and scintillation characteristics of Gd2YAl2Ga3O12:Ce and Lu2YAl2Ga3O12:Ce single crystals. Journal of Crystal Growth, 2017, 468, 395-398.	1.5	6
222	Comparison of luminescence, energy resolution and light loss coefficient of Gd 1.53 La 0.47 Si 2 O 7 :Ce and Lu 1.9 Y 0.1 SiO 5 :Ce scintillators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 844, 129-134.	1.6	5
223	Crystal growth and optical properties of indium doped LiCaAlF 6 scintillator single crystals. Optical Materials, 2017, 65, 69-72.	3.6	3
224	On the correlations between the excitonic luminescence efficiency and the QW numbers in multiple InGaN/GaN QW structure. Journal of Applied Physics, 2017, 121, 214505.	2.5	8
225	Chapter 6 Luminescence of Pb- and Bi-Related Centers in Aluminum Garnet, Perovskite, and Orthosilicate Single-Crystalline Films. , 2017, , 227-302.		4
226	Chapter 7 ZnO-Based Phosphors and Scintillators: Preparation, Characterization, and Performance. , 2017, , 303-332.		1
227	Chapter 1 Introduction to Scintillators. , 2017, , 1-24.		0
228	Temperature Dependence of Luminescence Properties for Zr Codoped Ce:(Gd,â€La)2Si2O7 Scintillator. , 2016, , .		1
229	Luminescence and photoâ€thermally stimulated defectâ€creation processes in Bi ³⁺ â€doped single crystals of lead tungstate. Physica Status Solidi (B): Basic Research, 2016, 253, 895-910.	1.5	24
230	Towards Bright and Fast Lu ₃ Al ₅ O ₁₂ :Ce,Mg Optical Ceramics Scintillators. Advanced Optical Materials, 2016, 4, 731-739.	7.3	87
231	Devices based on InGaN/GaN multiple quantum well for scintillator and detector applications. Proceedings of SPIE, 2016, , .	0.8	0
232	LiCaAlF6 scintillators in neutron and gamma radiation fields. International Journal of Modern Physics Conference Series, 2016, 44, 1660234.	0.7	2
233	First laser operation and spectroscopic characterization of mixed garnet Yb:LuYAG ceramics. , 2016, , .		1
234	Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. Journal of Crystal Growth, 2016, 452, 81-84.	1.5	37

#	Article	IF	Citations
235	Tm:GGAG crystal for 2μm tunable diode-pumped laser. , 2016, , .		2
236	Phosphate content influence on structural, spectroscopic, and lasing properties of Er,Yb-doped potassium-lanthanum phosphate glasses. Optical Engineering, 2016, 55, 047102.	1.0	4
237	Large Size Czochralski Growth and Scintillation Properties of. IEEE Transactions on Nuclear Science, 2016, 63, 443-447.	2.0	49
238	Growth and Luminescence Properties of Single Crystals Prepared by Modified Micro-Pulling-Down Method. IEEE Transactions on Nuclear Science, 2016, 63, 453-458.	2.0	10
239	Luminescence and excited state dynamics in Bi3+-doped LiLaP4O12 phosphates. Journal of Luminescence, 2016, 176, 324-330.	3.1	14
240	Effect of Mg 2+ ions co-doping on timing performance and radiation tolerance of Cerium doped Gd 3 Al 2 Ga 3 O 12 crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 816, 176-183.	1.6	90
241	Growth and scintillation properties of Li and Ce co-doped Lu3Al5O12 scintillator. Journal of Crystal Growth, 2016, 452, 85-88.	1.5	13
242	Luminescence and scintillation response of YGd2Al2Ga3O12:Ce and LuGd2Al2Ga3O12:Ce scintillators. Radiation Measurements, 2016, 90, 153-156.	1.4	7
243	First laser emission of Yb_015:(Lu_05Y_05)_3Al_5O_12 ceramics. Optics Express, 2016, 24, 9611.	3.4	22
244	Growth and radioluminescence of metal elements doped LiCaAlF6 single crystals for neutron scintillator. Radiation Measurements, 2016, 90, 170-173.	1.4	3
245	Eu ²⁺ Stabilization in YAG Structure: Optical and Electron Paramagnetic Resonance Study. Journal of Physical Chemistry C, 2016, 120, 21751-21761.	3.1	34
246	Tunable diode-pumped Er:GGAG laser. , 2016, , .		1
247	Aluminum and Gallium Substitution in Yttrium and Lutetium Aluminum–Gallium Garnets: Investigation by Single-Crystal NMR and TSL Methods. Journal of Physical Chemistry C, 2016, 120, 24400-24408.	3.1	51
248	Photostimulated luminescence and defects creation processes in Ce3+-doped epitaxial films of multicomponent Lu3â~Gd Ga Al5â~O12 garnets. Journal of Luminescence, 2016, 179, 487-495.	3.1	18
249	Luminescent and scintillation properties of Sc 3+ and La 3+ doped Y 2 SiO 5 powders and single crystalline films. Journal of Luminescence, 2016, 179, 445-450.	3.1	6
250	Spectroscopic and laser characterization of Yb_015:(Lu_xY_1-x)_3Al_5O_12 ceramics with different Lu/Y balance. Optics Express, 2016, 24, 17832.	3.4	18
251	Preparation and luminescence properties of ZnO:Ga – polystyrene composite scintillator. Optics Express, 2016, 24, 15289.	3.4	56
252	Scintillation timing characteristics of (La,Gd)2Si2O7:Ce and Gd2SiO5:Ce single crystal scintillators: A comparative study. Radiation Measurements, 2016, 92, 49-53.	1.4	3

#	Article	IF	CITATIONS
253	Luminescence and scintillation properties of Lu0.8Gd1.2SiO5:Ce and Lu1.8Gd0.2SiO5:Ce single crystals: A comparative study. Radiation Measurements, 2016, 93, 1-6.	1.4	2
254	Pr-doped Lu 3 Al 5 O 12 scintillation nanopowders prepared by radiation method. Journal of Luminescence, 2016, 179, 21-25.	3.1	4
255	Timing performance of ZnO:Ga nanopowder composite scintillators. Physica Status Solidi - Rapid Research Letters, 2016, 10, 843-847.	2.4	21
256	Determination of the position of the 5d excited levels of Ce3+ ions with respect to the conduction band in the epitaxial films of the multicomponent (Lu,Gd)3(Ga,Al)5O12:Ce garnets. Optical Materials, 2016, 62, 465-474.	3.6	11
257	Tunable Eu2+ emission in KxNa1â^xLuS2 phosphors for white LED application. Materials and Design, 2016, 106, 363-370.	7.0	22
258	Luminescence and scintillation properties of Lu3Al5O12 nanoceramics sintered by SPS method. Optical Materials, 2016, 53, 54-63.	3.6	14
259	Gamma-radiolytic preparation of multi-component oxides. Radiation Physics and Chemistry, 2016, 124, 68-74.	2.8	5
260	Scintillation response of Ce3+ doped GdGa-LuAG multicomponent garnet films under e-beam excitation. Journal of Luminescence, 2016, 169, 674-677.	3.1	18
261	The role of cerium variable charge state in the luminescence and scintillation mechanism in complex oxide scintillators: The effect of air annealing. Journal of Luminescence, 2016, 169, 539-543.	3.1	27
262	Growth and luminescent properties of scintillators based on the single crystalline films of (Lu,Gd)3(Al,Ga)5O12:Ce garnets. Journal of Luminescence, 2016, 169, 828-837.	3.1	25
263	Electron paramagnetic resonance study of exchange coupled Ce3+ ions in Lu2SiO5 single crystal scintillator. Radiation Measurements, 2016, 90, 23-26.	1.4	9
264	The Stable Center: A New Tool to Optimize Ce-Doped Oxide Scintillators. IEEE Transactions on Nuclear Science, 2016, 63, 433-438.	2.0	37
265	Scintillation properties of Zr co-doped Ce:(Gd, La)2Si2O7 grown by the Czochralski process. Radiation Measurements, 2016, 90, 162-165.	1.4	8
266	Photo―and radioluminescence of Dy ³⁺ â€doped oxide glass with highâ€Gd ₂ O ₃ content. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 133-138.	1.8	1
267	Luminescence and Scintillation Response of Ce ³⁺ -Doped Oxide Glasses with High Gd ₂ O ₃ Content. Key Engineering Materials, 2016, 675-676, 434-437.	0.4	1
268	Preparation of Zn(Cd)O:Ga–SiO2 composite scintillating materials. Radiation Measurements, 2016, 90, 59-63.	1.4	5
269	Luminescence and energy transfer processes in (Lu,Tb)3Al5O12 single crystalline films doped with Ce3+. Journal of Luminescence, 2016, 173, 141-148.	3.1	18
270	Effects of Na and K co-doping on growth and scintillation properties of Eu:SrI2 crystals. Radiation Measurements, 2016, 90, 157-161.	1.4	4

#	Article	IF	Citations
271	Luminescence and Scintillation Characteristics of Gd ₂ SiO ₅ : Ce Single Crystal Scintillator. Key Engineering Materials, 2016, 675-676, 772-775.	0.4	O
272	Preliminary study on singlet oxygen production using CeF3:Tb3+@SiO2-PpIX. Radiation Measurements, 2016, 90, 325-328.	1.4	14
273	Scintillating Screens Based on the Single Crystalline Films of Multicomponent Garnets: New Achievements and Possibilities. IEEE Transactions on Nuclear Science, 2016, 63, 497-502.	2.0	10
274	Intrinsic Light Yield and Light Loss Coefficient of LuAG: Pr under Excitation with \hat{l}_{\pm} - and \hat{l}^3 -Rays. Key Engineering Materials, 2016, 675-676, 768-771.	0.4	1
275	X-ray Inducible Luminescence and Singlet Oxygen Sensitization by an Octahedral Molybdenum Cluster Compound: A New Class of Nanoscintillators. Inorganic Chemistry, 2016, 55, 803-809.	4.0	105
276	Growth and scintillation properties of praseodymium doped (Lu,Gd)3(Ga,Al)5O12 single crystals. Journal of Luminescence, 2016, 169, 811-815.	3.1	3
277	Optical, luminescence and scintillation characteristics of non - stoichiometric LuAG:Ce ceramics. Journal of Luminescence, 2016, 169, 72-77.	3.1	24
278	Optical and scintillation properties of Ce $3+$ -doped YGd 2 Al $5\hat{a}^{-2}$ x Ga x O 12 ($x=2,3,4$) single crystal scintillators. Journal of Luminescence, 2016, 169, 43-50.	3.1	31
279	E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2. Radiation Physics and Chemistry, 2016, 124, 252-257.	2.8	4
280	ALnS 2 :RE (A=K, Rb; Ln=La, Gd, Lu, Y): New optical materials family. Journal of Luminescence, 2016, 170, 718-735.	3.1	30
281	Crystal growth and scintillation properties of multi-component oxide single crystals: Ce:GGAG and Ce:La-GPS. Journal of Luminescence, 2016, 169, 387-393.	3.1	33
282	Energy resolution studies of Ce- and Pr-doped aluminum and multicomponent garnets: The escape and photo-peaks. Journal of Luminescence, 2016, 169, 701-705.	3.1	4
283	Luminescence mechanism in doubly Gd, Nd-codoped fluoride crystals for VUV scintillators. Journal of Luminescence, 2016, 169, 682-689.	3.1	6
284	Electron paramagnetic resonance study of theCe3+pair centers inYAlO3:Ce scintillator crystals. Physical Review B, 2015, 92, .	3.2	9
285	Optical, Structural and Paramagnetic Properties of Eu-Doped Ternary Sulfides ALnS2 (A = Na, K, Rb; Ln =) Tj ETQq1	1.0.7843	1 ₃₈ rgBT /
286	Temperature dependent luminescence characteristics of KBe2BO3F2 and RbBe2BO3F2. IOP Conference Series: Materials Science and Engineering, 2015, 80, 012015.	0.6	1
287	Energy migration processes in undoped and Ce-doped multicomponent garnet single crystal scintillators. Journal of Luminescence, 2015, 166, 117-122.	3.1	43
288	Yb:Lu2SiO5crystal: characterization of the laser emission along the three dielectric axes., 2015,,.		0

#	Article	IF	Citations
289	Band-Gap and Band-Edge Engineering of Multicomponent Garnet Scintillators from First Principles. Physical Review Applied, 2015, 4, .	3.8	62
290	Nanocrystalline Eu-doped Lu3Al5O12 phosphor prepared by radiation method. Optical Materials, 2015, 40, 102-106.	3.6	3
291	Low temperature delayed recombination decay in scintillating garnets. Optical Materials, 2015, 40, 127-131.	3.6	19
292	Luminescence characteristics of doubly doped KLuS2:Eu, RE (RE = Pr, Sm, Ce). Optical Materials, 2015, 41, 94-97.	3.6	16
293	Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 782, 9-12.	1.6	21
294	Fabrication and Scintillation Performance of Nonstoichiometric LuAG:Ce Ceramics. Journal of the American Ceramic Society, 2015, 98, 510-514.	3.8	25
295	Photo and radiation induced synthesis of (Ni, Zn)O or mixed NiO–ZnO oxides. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 245-250.	1.5	5
296	Nonstochiometry of Lu ₃ Al ₅ O ₁₂ single crystal and its effects of on luminescence and scintillation properties. Journal of Physics: Conference Series, 2015, 619, 012035.	0.4	1
297	Growth and luminescent properties of scintillators based on the single crystalline films of Lu3â^3xGdxAl5O12:Ce garnet. Materials Research Bulletin, 2015, 64, 355-363.	5.2	30
298	Electron Spin Resonance study of charge trapping in \hat{l}_{\pm} -ZnMoO4 single crystal scintillator. Optical Materials, 2015, 47, 244-250.	3.6	24
299	Temperature-dependent nonradiative energy transfer from Gd3+ to Ce3+ ions in co-doped LuAG:Ce,Gd garnet scintillators. Journal of Luminescence, 2015, 167, 106-113.	3.1	42
300	Luminescence and excited state dynamics of Bi3+ centers in Y2O3. Journal of Luminescence, 2015, 167, 268-277.	3.1	22
301	Fabrication of highly efficient ZnO nanoscintillators. Optical Materials, 2015, 47, 67-71.	3.6	31
302	Improvement of scintillation properties on Ce doped Y ₃ Al ₅ O ₁₂ scintillator by divalent cations co-doping. Japanese Journal of Applied Physics, 2015, 54, 04DH17.	1.5	23
303	Breaking DNA strands by extreme-ultraviolet laser pulses in vacuum. Physical Review E, 2015, 91, 042718.	2.1	10
304	ESR and TSL study of hole and electron traps in LuAG:Ce,Mg ceramic scintillator. Optical Materials, 2015, 45, 252-257.	3.6	21
305	Time-resolved spectroscopy of Bi3+ centers in Y4Al2O9. Optical Materials, 2015, 46, 104-108.	3.6	11
306	Recent R&D Trends in Inorganic Singleâ€Crystal Scintillator Materials for Radiation Detection. Advanced Optical Materials, 2015, 3, 463-481.	7.3	567

#	Article	IF	CITATIONS
307	O [–] centers in LuAG:Ce,Mg ceramics. Physica Status Solidi - Rapid Research Letters, 2015, 9, 245-249.	2.4	35
308	Characterization of the lasing properties of a 5%Yb doped Lu_2SiO_5 crystal along its three principal dielectric axes. Optics Express, 2015, 23, 13210.	3.4	12
309	Energy transfer processes in Ca3Tb2â^'xEuxSi3O12 (x=0–2). Optical Materials, 2015, 48, 252-257.	3.6	9
310	Composition Tailoring in Ce-Doped Multicomponent Garnet Epitaxial Film Scintillators. Crystal Growth and Design, 2015, 15, 3715-3723.	3.0	41
311	Luminescent materials: probing the excited state of emission centers by spectroscopic methods. Measurement Science and Technology, 2015, 26, 012001.	2.6	9
312	Origin of slow low-temperature luminescence in undoped and Ce-doped Y ₅ 5iO <sub)5io<sub)5io<sub)5io<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)< td=""><td>1.5</td><td>9</td></sub)5io<sub)5io<sub)5io<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)6id<sub)<>	1.5	9
313	Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator. Optical Materials, 2015, 41, 63-66.	3.6	114
314	Growth of 2-inch size Ce:doped Lu2Gd1Al2Ga3O12 single crystal by the Czochralski method and their scintillation properties. Journal of Crystal Growth, 2015, 410, 14-17.	1.5	4
315	Electron Paramagnetic Resonance Investigation of Ce ³ ⁺ , Er ³ ⁺ , Nd ³ ⁺ Impurity Centers in Y _{0.} ₇ Lu _{0.} ₃ AlO ₃ Single Crystals. Advanced Science. Engineering and Medicine. 2015. 7. 258-264.	0.3	2
316	Active Optical Fibers Doped with Ceramic Nanocrystals. Advances in Electrical and Electronic Engineering, 2015, 12, .	0.3	3
317	Fundamental study of inorganic–organic hybrid scintillator using Pr:Lu ₃ Al ₅ O ₁₂ and plastic scintillator. Japanese Journal of Applied Physics, 2014, 53, 04EH10.	1.5	2
318	On the origin of cerium-related centres in lead-containing single crystalline films of Y ₂ SiO ₅ : Ce and Lu ₂ SiO ₅ : Ce. Journal Pł Physics, 2014, 47, 065303.	nysi zs 8D: A	pplitæd
319	Growth, luminescent properties and energy transfer processes in (Lu,Tb) <inf>3</inf> Al <inf>5</inf> O <inf>12</inf> :Ce single crystalline films., 2014,,.		0
320	Er-doped ortho- and metha-phosphate glassy mixtures for 1.54 \hat{l} /4m laser construction. , 2014, , .		1
321	Experimental evidence of a nonlinear loss mechanism in highly doped Yb:LuAG crystal. Optics Express, 2014, 22, 4038.	3.4	15
322	Growth and luminescent properties of (Tb,Gd) <inf>Al<linf>Al<inf>Al<inf>Al<inf>S<linf>O<inf>12<linf>Ce single crystalline films. , 2014, , .</linf></inf></linf></inf></inf></inf></linf></inf>		1
323	Ce ³⁺ multicenters in selected garnets, perovskites, and glasses. , 2014, , .		0
324	Luminescence properties and scintillation response in Ce3+-doped Y2Gd1Al5-xGaxO12 (x = 2, 3, 4) single crystals. Journal of Applied Physics, 2014, 116, .	2.5	25

#	Article	IF	CITATIONS
325	Effect of Mg ²⁺ coâ€doping on the scintillation performance of LuAG:Ce ceramics. Physica Status Solidi - Rapid Research Letters, 2014, 8, 105-109.	2.4	142
326	Origin of improved scintillation efficiency in (Lu,Gd)3(Ga,Al)5O12:Ce multicomponent garnets: An X-ray absorption near edge spectroscopy study. APL Materials, 2014, 2, .	5.1	36
327	Stabilization of Eu ²⁺ in KLuS ₂ crystalline host: an EPR and optical study. Physica Status Solidi - Rapid Research Letters, 2014, 08, 801-804.	2.4	15
328	Scintillating screens based on the single crystalline films of orthosilicates and multicomponent garnets. , 2014, , .		O
329	UV radiation: a promising tool in the synthesis of multicomponent nano-oxides. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	9
330	Luminescence and Light Yield in Ce ³⁺ -Doped Y ₁ Gd ₂ Al _{5-x} Ga _x O ₁₂ (x=2,3,4) Single Crystal Scintillators. Applied Mechanics and Materials, 2014, 709, 390-393.	0.2	1
331	Photo- and Radioluminescence of Ce ³⁺ -Doped Dense Oxide Glass. Applied Mechanics and Materials, 2014, 709, 350-353.	0.2	o
332	Nanoparticle-doped radioluminescent silica optical fibers. Proceedings of SPIE, 2014, , .	0.8	0
333	InGaN/GaN multiple quantum well for fast scintillation application: radioluminescence and photoluminescence study. Nanotechnology, 2014, 25, 455501.	2.6	33
334	Photothermally stimulated creation of electron and hole centers in Ce3+-doped Y2SiO5 single crystals. Optical Materials, 2014, 36, 1636-1641.	3.6	14
335	Investigation of the luminescence, crystallographic and spatial resolution properties of LSO:Tb scintillating layers used for X-ray imaging applications. Radiation Measurements, 2014, 62, 28-34.	1.4	13
336	Crystal growth and scintillation properties of selected fluoride crystals for VUV scintillators. Journal of Crystal Growth, 2014, 401, 833-838.	1.5	5
337	Scintillation properties of Gd3Al2Ga3O12:Ce3+ single crystal scintillators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 751, 1-5.	1.6	24
338	Csl:Tl ⁺ ,Yb ²⁺ : ultra-high light yield scintillator with reduced afterglow. CrystEngComm, 2014, 16, 3312-3317.	2.6	41
339	Low Temperature Delayed Recombination Decay in Complex Oxide Scintillating Crystals. IEEE Transactions on Nuclear Science, 2014, 61, 257-261.	2.0	9
340	Czochralski Growth and Scintillation Properties of \${m Ce}:({m Gd},{m Y},{m Lu})_3\$\$({m) Tj ETQq0 0 0 rgBT	Overlock	10 Tf 50 142 ⁻
341	Growth of Sc doped RE3Al5O12 (RE = Y, Lu) single crystals by micro-pulling-down method and their scintillation properties. Optical Materials, 2014, 36, 1934-1937. Energy Transfer and Scintillation Properties of &It formula formulatype="inline"> &It tex	3.6	3
342	Notation="TeX">\${hbox{Ce}}^{3+}\$ Doped <formula formulation="TeX"><tex></tex></formula> Doped <formula formulation="TeX"><tex></tex></formula> <formula formulatype="inline"><tex notation="TeX">\${hbox{(AlGa)}}_{5}{hbox{O}}_{12}\$</tex> </formula> Multicomponent Garnets. IEEE Transactions on Nuclear Science, 2014, 61, 282-289.	2.0	29

#	Article	IF	Citations
343	Effects of anisotropy on structural and optical characteristics of LYSO:Ce crystal. Physica Status Solidi (B): Basic Research, 2014, 251, 1202-1211.	1.5	14
344	Comparison of the scintillation and luminescence properties of the (Lu _{1â^'<i>x</i>} Gd _{<i>x</i>}) ₂ SiO ₅ :Ce single crystal scintillators. Journal Physics D: Applied Physics, 2014, 47, 365304.	2.8	16
345	Luminescence Characteristics of the Ce ³⁺ -Doped Pyrosilicates: The Case of La-Admixed Gd ₂ Si ₂ O ₇ Single Crystals. Journal of Physical Chemistry C, 2014, 118, 26521-26529.	3.1	33
346	Electron and hole traps in X-ray irradiated Y2 SiO5 and Lu2 SiO5 crystals. Physica Status Solidi (B): Basic Research, 2014, 251, 741-747.	1.5	6
347	Electron and hole traps in yttrium orthosilicate single crystals: The critical role of Si-unbound oxygen. Physical Review B, 2014, 90, .	3.2	32
348	Applications of a Table-Top Time-Resolved Luminescence Spectrometer With Nanosecond Soft X-ray Pulse Excitation. IEEE Transactions on Nuclear Science, 2014, 61, 448-451.	2.0	8
349	Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators. Crystal Growth and Design, 2014, 14, 4827-4833.	3.0	197
350	Rare-earth antisites in lutetium aluminum garnets: Influence on lattice parameter and Ce3+multicenter structure. Optical Materials, 2014, 36, 1515-1519.	3.6	27
351	Luminescence and Scintillation Properties of Scintillators Based on Orthorhombic and Monoclinic BaLu\$_{2}\$F\$_{8}\$ Single Crystals. IEEE Transactions on Nuclear Science, 2014, 61, 411-418.	2.0	1
352	Optical properties of Ce3+-doped KLuS2 phosphor. Journal of Luminescence, 2014, 147, 196-201.	3.1	26
353	Optical and Structural Properties of \${m RE}^{3+}\$-Doped \${m KLnS} _{2}\$ Compounds. IEEE Transactions on Nuclear Science, 2014, 61, 385-389.	2.0	17
354	Intrinsic light yield and light loss coefficient of Bi4Ge3O12 single crystals. Optical Materials, 2014, 36, 2030-2033.	3.6	8
355	Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Optical Materials, 2014, 36, 1942-1945.	3.6	151
356	Time-resolved photoluminescence and excited state structure of Bi3+ center in YAlO3. Optical Materials, 2014, 36, 1705-1708.	3.6	17
357	Indirect synthesis of Al2O3 via radiation- or photochemical formation of its hydrated precursors. Materials Research Bulletin, 2014, 49, 633-639.	5.2	9
358	Luminescent and scintillation properties of Bi3+ doped Y2SiO5 and Lu2SiO5 single crystalline films. Journal of Luminescence, 2014, 154, 525-530.	3.1	18
359	Luminescence and scintillation properties of advanced Lu3Al5O12:Pr3+ single crystal scintillators. Radiation Measurements, 2014, 60, 42-45.	1.4	17
360	The role played on the Yb:LuAG laser performance by high doping levels and high ion excitation density. , 2014, , .		0

#	Article	IF	CITATIONS
361	A comparison of the laser performance of Yb3+:LuAG crystals with different doping levels. Journal of Physics: Conference Series, 2014, 497, 012009.	0.4	1
362	Conference comments by the Editors. IEEE Transactions on Nuclear Science, 2014, 61, 228-228.	2.0	0
363	Intrinsic defects, nonstoichiometry, and aliovalent doping of ABO perovskite scintillators. Physica Status Solidi (B): Basic Research, 2014, 251, 2279-2286.	1.5	15
364	Luminescence of Tb3+-doped high silica glass under UV and X-ray excitation. Optical Materials, 2013, 35, 426-430.	3.6	33
365	Fabrication and scintillation properties of highly transparent Pr:LuAG ceramics using Sc,La-based isovalent sintering aids. Ceramics International, 2013, 39, 5985-5990.	4.8	18
366	Preparation and luminescent properties of ZnO:Ga(La)/polymer nanocomposite. Radiation Measurements, 2013, 56, 102-106.	1.4	7
367	Photosensitive bismuth ions in lead tungstate. Physics of the Solid State, 2013, 55, 803-806.	0.6	6
368	Scintillation characteristics of LiCaAlF6-based single crystals under X-ray excitation. Applied Physics Letters, 2013, 102, .	3.3	15
369	Evaluation of Nd:BaY2F8 for VUV scintillator. Radiation Measurements, 2013, 55, 108-111.	1.4	7
370	Crystal growth and characterization of calcium metaborate scintillators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 703, 7-10.	1.6	5
371	Luminescent properties and energy transfer processes in Ce–Tb doped single crystalline film screens of Lu-based silicate, perovskite and garnet compounds. Radiation Measurements, 2013, 56, 415-419.	1.4	9
372	Photoluminescence properties of non-stoichiometric strontium zirconate powder phosphor. Optical Materials, 2013, 35, 1019-1022.	3.6	12
373	Photo-induced low temperature synthesis of nanocrystalline UO2, ThO2 and mixed UO2–ThO2 oxides. Journal of Nuclear Materials, 2013, 442, 29-32.	2.7	21
374	Preparation and characterization of pure and Pr(III)-doped lead chloride single crystals grown by modified micro-pulling-down method. Journal of Crystal Growth, 2013, 375, 57-61.	1.5	5
375	Light yield of (Lu, Y, Gd)3Al2Ga3O12:Ce garnets. Radiation Measurements, 2013, 56, 62-65.	1.4	24
376	Deep trapping states in cerium doped (Lu,Y,Gd)3(Ga,Al)5O12 single crystal scintillators. Radiation Measurements, 2013, 56, 98-101.	1.4	38
377	Lu2SiO5:Ce and Y2SiO5:Ce single crystals and single crystalline film scintillators: Comparison of the luminescent and scintillation properties. Radiation Measurements, 2013, 56, 84-89.	1.4	18
378	Crystal growth and characterization of Ce:Gd3(Ga,Al)5O12 single crystal using floating zone method in different O2 partial pressure. Optical Materials, 2013, 35, 1882-1886.	3.6	29

#	Article	IF	CITATIONS
379	Luminescent properties of RE2O3 (RE = Lu, Sc, Y) single crystals and ceramics*. European Physic B, 2013, 86, 1.	cal Journal	6
380	Single crystal scintillator plates used for light weight material X-ray radiography. Journal of Physics: Conference Series, 2013, 425, 192017.	0.4	14
381	Photoluminescence and excited state structure in Bi3+-doped Y2SiO5 single crystalline films. Radiation Measurements, 2013, 56, 90-93.	1.4	13
382	Luminescence and scintillation mechanism in Ce3+and Pr3+doped (Lu,Y,Gd)3(Ga,Al)5O12single crystal scintillators. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 172-175.	0.8	37
383	Luminescence and structural properties of RbGdS2 compounds doped by rare earth elements. Optical Materials, 2013, 35, 1226-1229.	3.6	27
384	Comparison of absorption, luminescence and scintillation characteristics in Lu1.95Y0.05SiO5:Ce,Ca and Y2SiO5:Ce scintillators. Optical Materials, 2013, 35, 1679-1684.	3.6	48
385	Luminescence and scintillation characteristics of Gd3Al2Ga3O12:Ce3+ scintillators. Optical Materials, 2013, 36, 568-571.	3.6	24
386	Rare-earth-free luminescent non-stoichiometric phases formed in SrO–HfO2 ternary compositions. Journal of Alloys and Compounds, 2013, 580, 468-474.	5.5	7
387	Scintillation properties of transparent ceramics for Nd doped (YGd2)(Sc2Al2Ga)O12. Optical Materials, 2013, 35, 788-792.	3.6	16
388	Growth and luminescent properties of (Lu–Y)AlO3:Ce single crystalline films. Radiation Measurements, 2013, 56, 159-162.	1.4	3
389	Luminescence and photo-thermally stimulated defects creation processes in PbWO4 crystals doped with trivalent rare-earth ions. Journal of Luminescence, 2013, 136, 42-50.	3.1	10
390	Growth and optical properties of RE-doped ternary rubidium lead chloride single crystals. Optical Materials, 2013, 36, 214-220.	3.6	9
391	Luminescence and origin of lead-related centers in single crystalline films of Y2SiO5 and Lu2SiO5. Radiation Measurements, 2013, 56, 124-128.	1.4	5
392	Quantum tunneling and low temperature delayed recombination in scintillating materials. Chemical Physics Letters, 2013, 578, 66-69.	2.6	18
393	Paramagnetic defects in manganese-doped lead tungstate. Physics of the Solid State, 2013, 55, 116-122.	0.6	3
394	Photoluminescence and excited state structure of Bi3+-related centers in Lu2SiO5:Bi single crystalline films. Journal of Luminescence, 2013, 134, 469-476.	3.1	25
395	The effect of Gaâ€doping on the defect chemistry of RE ₃ Al ₅ O ₁₂ garnets. Physica Status Solidi (B): Basic Research, 2013, 250, 244-248.	1.5	29
396	Electron spin resonance of paramagnetic defects and related charge carrier traps in complex oxide scintillators. Physica Status Solidi (B): Basic Research, 2013, 250, 254-260.	1.5	19

#	Article	IF	CITATIONS
397	Trapping states and excited state ionization of the Ce3+ activator in the SrHfO3 host. Chemical Physics Letters, 2013, 556, 89-93.	2.6	7
398	Development of LuAG-based scintillator crystals – A review. Progress in Crystal Growth and Characterization of Materials, 2013, 59, 47-72.	4.0	249
399	Bi3+–Ce3+ energy transfer and luminescent properties of LuAG:Bi,Ce and YAG:Bi,Ce single crystalline films. Journal of Luminescence, 2013, 134, 539-543.	3.1	13
400	Bi3+–Pr3+ energy transfer processes and luminescent properties of LuAG:Bi,Pr and YAG:Bi,Pr single crystalline films. Journal of Luminescence, 2013, 141, 137-143.	3.1	14
401	Optical properties of Eu2+-doped KLuS2 phosphor. Chemical Physics Letters, 2013, 574, 61-65.	2.6	34
402	Thermally induced ionization of 5d1 state of Ce3+ ion in Gd3Ga3Al2O12 host. Chemical Physics Letters, 2013, 574, 56-60.	2.6	35
403	Effect of the Pr ³⁺ â†' Gd ³⁺ energy transfer in multicomponent garnet single crystal scintillators. Journal Physics D: Applied Physics, 2013, 46, 365303.	2.8	16
404	Complex oxide scintillators for extreme conditions. , 2013, , .		1
405	Scintillation properties of the Ce-doped multicomponent garnet epitaxial films. Optical Materials, 2013, 35, 2444-2448.	3.6	29
406	Scintillation response of Y3Al5O12:Pr3+ single crystal scintillators. Radiation Measurements, 2013, 56, 94-97.	1.4	15
407	Czochralski Growth and Properties of Scintillating Crystals. Acta Physica Polonica A, 2013, 124, 250-264.	0.5	35
408	ESR and TSL study of hole capture in PbWO ₄ : Mo,La and PbWO ₄ : N scintillator crystals. Journal Physics D: Applied Physics, 2013, 46, 075302.	Ло.Ү 2.8	7
409	Temperature Dependence of Scintillation Properties of Bright Oxide Scintillators for Well-Logging. Japanese Journal of Applied Physics, 2013, 52, 076401.	1.5	135
410	CW and quasi-CW laser performance of 10 at.% Yb3+:LuAG ceramic. Laser Physics, 2013, 23, 095002.	1.2	21
411	Gd ³⁺ to Ce ³⁺ energy transfer in multiâ€component GdLuAG and GdYAG garnet scintillators. Physica Status Solidi - Rapid Research Letters, 2013, 7, 571-574.	2.4	50
412	Defects in Insulating Materials. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 150-152.	0.8	0
413	Delayed recombination and excited state ionization of the Ce ³⁺ activator in the SrHfO ₃ host. Physica Status Solidi - Rapid Research Letters, 2013, 7, 228-231.	2.4	25
414	Influence of lutetium content on the scintillation properties in (Lu x Y1â^'x)AlO3 :Ce single crystals. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1903-1908.	1.8	10

#	Article	IF	CITATIONS
415	Electron Paramagnetic Resonance Study of Lu ₂ SiO ₅ and Y ₂ SiO ₅ Scintillators Doped by Cerium. Advanced Science, Engineering and Medicine, 2013, 5, 573-576.	0.3	5
416	Scintillating Properties of Rare Earth Aluminum Garnets. Advanced Science, Engineering and Medicine, 2013, 5, 611-613.	0.3	1
417	Conference Comments by the Editors. IEEE Transactions on Nuclear Science, 2012, 59, 2037-2037.	2.0	O
418	High efficiency laser action of 1% at Yb^3+:Sc_2O_3 ceramic. Optics Express, 2012, 20, 22134.	3.4	9
419	LPE growth and luminescent properties of Ce doped A $<$ inf $>$ 2S $<$ /inf $>$ iO $<$ inf $>$ 5 $<$ /inf $>$:Ce (A = Lu, Gd, Y) single crystalline films. , 2012, , .		O
420	Concentration Dependence of VUV-UV-Visible Luminescence of $\theta^{Nd}^{3+}\$ and $\theta^{Gd}^{3+}\$ in $\theta^{4}\$. IEEE Transactions on Nuclear Science, 2012, 59, 2188-2192.	2.0	0
421	LPE Growth and Scintillation Properties of (Zn,Mg)O Single Crystalline Film. IEEE Transactions on Nuclear Science, 2012, 59, 2286-2289.	2.0	2
422	Improvement of Scintillation Properties in Pr Doped $m Lu_{3}{hbox {Al}}_{5}{m O}_{12}$$ Scintillator by Ga and Y Substitutions. IEEE Transactions on Nuclear Science, 2012, 59, 2130-2134.	2.0	10
423	Influence of yttrium Content on the Ce1 and Ce2 Luminescence Characteristics in \$({m Lu}_{1-{m}} Tj ETQq1 1 0. 2012, 59, 2079-2084.	784314 rg 2.0	gBT /Overloc 22
424	Laser profiling of defects in BaWO4crystals. Measurement Science and Technology, 2012, 23, 087001.	2.6	2
425	Basic study of Eu2+-doped garnet ceramic scintillator produced by spark plasma sintering. Optical Materials, 2012, 35, 222-226.	3.6	14
426	Luminescence and scintillation properties of rareâ€earthâ€doped BaLu ₂ F ₈ single crystals grown by the microâ€pullingâ€down method. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2243-2246.	0.8	4
427	Luminescence of Tb ³⁺ â€doped oxide glasses with high Gd ₂ O ₃ concentration under UV and Xâ€ray excitation. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 2578-2582.	1.8	19
428	Growth of Ce doped (Gd,Y) ₃ Al ₅ O ₁₂ single crystals by microâ€pullingâ€down method and their scintillation properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2292-2295.	0.8	4
429	The effect of different oxidative growth conditions on the scintillation properties of Ce:Gd ₃ Al ₃ Ga ₂ O ₁₂ crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2251-2254.	0.8	10
430	Thermally Stimulated Luminescence in Ce-Doped Yttrium Oxyorthosilicate. IEEE Transactions on Nuclear Science, 2012, 59, 2085-2088.	2.0	16
431	Crystal Growth and Scintillation Properties of Ce Doped \${m Gd}_{3}({m Ga},{m Al})_{5}{m O}_{12}\$ Single Crystals. IEEE Transactions on Nuclear Science, 2012, 59, 2112-2115.	2.0	102

Growth and Scintillation Properties of Pr Doped $({hbox \{Gd\}},{hbox \{Y\}})_{3}({hbox \{Ga\}},{hbox})$ Tj ETQq0 0 0 0 rgBT /Overlock 10 Tf 2.00 from the contraction of the contraction of

#	Article	IF	CITATIONS
433	Crystal Growth of Ce Doped $(\{m Lu\},\{m Y\})_{3}(\{m Ga\},\{m Al\})_{5} \{m O\}_{12}$ Single Crystal by the Micro-Puling-Down Method and Their Scintillation Properties. IEEE Transactions on Nuclear Science, 2012, 59, 2116-2119.	2.0	О
434	Efficient X-Ray Phosphors Based on Non-Stoichiometric MeZrO $\{m\}_{3}$ (Me $\{m\}=\{m\}$ Ca, Sr,) Tj ETQqO O	0 rgBT /0	verlock 10 Tf !
435	Preparation of inorganic crystalline compounds induced by ionizing, UV and laser radiations. Radiation Physics and Chemistry, 2012, 81, 1411-1416.	2.8	10
436	Scintillation Properties of Transparent Ceramic Pr:LuAG for Different Pr Concentration. IEEE Transactions on Nuclear Science, 2012, 59, 2146-2151.	2.0	57
437	Luminescence and Scintillation Properties of VUV Scintillation Crystals Based on Lu-Admixed BaY\$_{2}\$ F\$_{8}\$. IEEE Transactions on Nuclear Science, 2012, 59, 2177-2182.	2.0	4
438	Optical methods for the evaluation of the thermal ionization barrier of lanthanide excited states in luminescent materials. Physical Review B, 2012, 85, .	3.2	36
439	Scintillation properties of Ce doped Gd2Lu1(Ga,Al)5O12 single crystal grown by the micro-pulling-down method. Journal of Crystal Growth, 2012, 352, 35-38.	1.5	13
440	Modifications of micro-pulling-down method for the growth of selected Li-containing crystals for neutron scintillator and VUV scintillation crystals. Journal of Crystal Growth, 2012, 360, 127-130.	1.5	20
441	2inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. Journal of Crystal Growth, 2012, 352, 88-90.	1.5	272
442	Growth and scintillation properties of Pr doped Gd3(Ga,Al)5O12 single crystals. Journal of Crystal Growth, 2012, 352, 84-87.	1.5	17
443	Luminescence and decay kinetic mechanism of Pr3+ center in Lu0.8Sc0.2BO3 host. Chemical Physics Letters, 2012, 539-540, 35-38.	2.6	6
444	Leadâ€vacancyâ€related hole centers in lead tungstate crystals. Physica Status Solidi (B): Basic Research, 2012, 249, 2161-2166.	1.5	9
445	Structural and optical properties of Vernier phase lutetium oxyfluorides doped with lanthanide ions: interesting candidates as scintillators and X-ray phosphors. Journal of Materials Chemistry, 2012, 22, 10639.	6.7	40
446	Radiation-induced preparation of pure and Ce-doped lutetium aluminium garnet and its luminescent properties. Journal of Materials Chemistry, 2012, 22, 16590.	6.7	34
447	Scintillation response of Lu3Al5O12:Pr3+ single crystal scintillators. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 85-88.	1.4	8
448	Scintillation and luminescent properties of undoped and Ce3+ doped Y2SiO5 and Lu2SiO5 single crystalline films grown by LPE method. Optical Materials, 2012, 34, 1969-1974.	3.6	41
449	Luminescence and scintillation of Ce3+-doped high silica glass. Optical Materials, 2012, 34, 1762-1766.	3.6	55
450	Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films. Optical Materials, 2012, 34, 2080-2085.	3.6	17

#	Article	IF	CITATIONS
451	Comparative study of Lu3Al5O12:Pr3+ and Bi4Ge3O12 crystals for gamma – ray detection. Procedia Engineering, 2012, 32, 577-583.	1.2	5
452	Growth, Emission and Scintillation Properties of Tb-Sc Doped LuAG Epitaxial Films. IEEE Transactions on Nuclear Science, 2012, 59, 2275-2280.	2.0	5
453	Scintillation Properties of $m Ce^{3+}$ - and $m Pr^{3+}$ -Doped LuAG, YAG and Mixed $m V_{m x}^{m Y}_{1-\{m x\}}^{m AG}$ Garnet Crystals. IEEE Transactions on Nuclear Science, 2012, 59, 2120-2125.	2.0	47
454	Single Crystalline Film Scintillators Based on the Orthosilicate, Perovskite and Garnet Compounds. IEEE Transactions on Nuclear Science, 2012, 59, 2260-2268.	2.0	20
455	2-inch size crystal growth of Ce:Gd <inf>3</inf> Ga <inf>3</inf> O <inf>12</inf> with various Ce concentration and their scintillation properties. , 2012, , .		5
456	Luminescence of lead-related centres in single crystalline films of Lu2SiO5. Journal Physics D: Applied Physics, 2012, 45, 355304.	2.8	8
457	Origin of Bi ³⁺ â+elated luminescence centres in Lu ₃ Al ₅ O ₁₂ :Bi and Y ₃ Al ₅ O ₁₂ :Bi single crystalline films and the structure of their relaxed excited states. Physica Status Solidi (B): Basic Research, 2012, 249, 1039-1045.	1.5	40
458	Preparation, luminescence and structural properties of rare-earth-doped RbLuS2 compounds. Physica Status Solidi - Rapid Research Letters, 2012, 6, 95-97.	2.4	25
459	Photo- and radiation-induced preparation of Y2O3 and Y2O3:Ce(Eu) nanocrystals. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	8
460	The Harmful Effects of Sintering Aids in <scp><scp>AG</scp></scp> Optical Ceramic Scintillator. Journal of the American Ceramic Society, 2012, 95, 2130-2132.	3.8	39
461	Comparison of Lu3Al5O12:Pr3+ and Bi4Ge3O12 scintillators for gamma-ray detection. Radiation Measurements, 2012, 47, 1-5.	1.4	22
462	Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy. Radiation Measurements, 2012, 47, 311-314.	1.4	13
463	Defect states in Pr3+ doped lutetium pyrosilicate. Optical Materials, 2012, 34, 872-877.	3.6	22
464	Concentration dependence study of VUV–UV–visible luminescence of Nd3+ and Gd3+ in LuLiF4. Optical Materials, 2012, 34, 1029-1033.	3.6	11
465	Photoluminescence and scintillation of LGS (La3Ga5SiO14), LNGA (La3Nb0.5Ga5.3Al0.2O14) and LTGA (La3Ta0.5Ga5.3Al0.2O14) single crystals. Optical Materials, 2012, 34, 1513-1516.	3.6	11
466	Functional one, two, and three-dimensional ZnO structures by solvothermal processing. Progress in Crystal Growth and Characterization of Materials, 2012, 58, 51-59.	4.0	3
467	Incorporation of Ce3+ in crystalline Gd-silicate nanoclusters formed in silica. Journal of Luminescence, 2012, 132, 461-466.	3.1	28
468	Growth and Scintillation Properties of Pr-Doped Gd <formula formulatype="inline"><tex notation="TeX">\$_{3}\$</tex></formula> (Ga,Al) <formula formulatype="inline"><tex notation="TeX">\$_{5}\$</tex></formula> O <formula formulatype="inline"><tex notation="TeX">\$_{12}\$</tex></formula> Single Crystals. IEEE Transactions on Nuclear Science, 2012, , 1-1.	2.0	0

#	Article	IF	Citations
469	Acetate–citrate gel combustion: a strategy for the synthesis of nanosized lutetium hafnate phosphor powders. Journal of Materials Chemistry, 2011, 21, 8975.	6.7	6
470	Europium and Sodium Codoped LiCaAlF\$_{6}\$ Scintillator for Neutron Detection. Applied Physics Express, 2011, 4, 106401.	2.4	50
471	Substitutional and surface Min <mml:math xmins:mml="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td"><td>ıa8h2 cent</td><td>ers4</td></mml:math>	ıa 8h2 cent	er s 4
472	Study on the Luminescence and Energy Level of Lanthanide Ions in Lu _{0.8} Sc _{0.2} BO ₃ Host. Journal of Physical Chemistry A, 2011, 115, 13821-13828.	2.5	18
473	Hole capture in PbWO <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math> :Mo,La(Y) scintillator crystals. Physical Review B. 2011. 83	3.2	21
474	Crystal Growth of Na-Co-Doped Ce:LiCaAlF ₆ Single Crystals and Their Optical, Scintillation, and Physical Properties. Crystal Growth and Design, 2011, 11, 4775-4779.	3.0	50
475	Ultrafast Transparent Ceramic Scintillators Using the Yb\$^{3+}\$ Charge Transfer Luminescence in RE\$_{2}\$O\$_{3}\$ Host. Applied Physics Express, 2011, 4, 126402.	2.4	26
476	Time-resolved spectroscopy of exciton states in single crystals and single crystalline films of YAIO ₃ and YAIO ₃ and YAIO ₃ : Ce. Journal Physics D: Applied Physics, 2011, 44, 315402.	2.8	25
477	Composition Engineering in Cerium-Doped (Lu,Gd) ₃ (Ga,Al) ₅ O ₁₂ Single-Crystal Scintillators. Crystal Growth and Design, 2011, 11, 4484-4490.	3.0	461
478	Scintillator-oriented combinatorial search in Ce-doped (Y,Gd) ₃ (Ga,Al) ₅ O ₁₂ multicomponent garnet compounds. Journal Physics D: Applied Physics, 2011, 44, 505104.	2.8	195
479	Doped Lutetium Silicates Scintillators Prepared by Sol-Gel Method. The Effect of Stoichiometry on Phase Relations and Luminescent Properties. IOP Conference Series: Materials Science and Engineering, Baid-gap, engineering for removing shallow traps in rare-earth Lu <mml:math< td=""><td>0.6</td><td>2</td></mml:math<>	0.6	2
480	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msub><mml:mrow /><mml:mn>3</mml:mn></mml:mrow </mml:msub> Al <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msub><mml:mrow /><mml:mn>5</mml:mn></mml:mrow </mml:msub>O<mml:math< td=""><td>3.2</td><td>288</td></mml:math<></mml:math 	3.2	288
481	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> < mml:msub> < mml:mrow / crowth and luminescent properties of Lu2SiO5:Ce and (Lu1â^'xGdx)2SiO5:Ce single crystalline films. Journal of Crystal Growth, 2011, 337, 72-80.	1.5	26
482	High resolution low energy X-ray microradiography using a CCD camera. Journal of Instrumentation, 2011, 6, C01048-C01048.	1.2	11
483	Development of novel UV emitting single crystalline film scintillators. Journal of Physics: Conference Series, 2011, 289, 012029.	0.4	1
484	Luminescence properties and gamma-ray response of the Ce and Ca co-doped (Gd,Y)F3 single crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 659, 355-360.	1.6	4
485	Influence of yttrium content on the CeLu1 and CeLu2 luminescence characteristics in (Lu1â°'xYx)2SiO5:Ce single crystals. Optical Materials, 2011, 34, 428-432.	3.6	27
486	SrHfO3-based phosphors and scintillators. Optical Materials, 2011, 34, 433-438.	3.6	28

#	Article	IF	Citations
487	Scintillation properties of Pr3+-doped lutetium and yttrium aluminum garnets: Comparison with Ce3+-doped ones. Optical Materials, 2011, 34, 424-427.	3.6	8
488	Prompt and delayed recombination mechanisms in Lu4Hf3O12 nanophosphors. Optical Materials, 2011, 34, 228-233.	3.6	9
489	Development of novel rare earth doped fluoride and oxide scintillators for two-dimensional imaging. Journal of Rare Earths, 2011, 29, 1178-1182.	4.8	5
490	Preparation, luminescence and structural properties of RE-doped RbLaS2 compounds. Acta Materialia, 2011, 59, 6219-6227.	7.9	40
491	Luminescence and scintillation of Eu ²⁺ â€doped high silica glass. Physica Status Solidi - Rapid Research Letters, 2011, 5, 40-42.	2.4	23
492	Photochemical preparation of ZnO nanoparticles. Journal of Nanoparticle Research, 2011, 13, 4529-4537.	1.9	22
493	Optical and scintillation properties of Sr7%:Ce15%:GdF3 single crystal. Journal of Crystal Growth, 2011, 318, 1175-1178.	1.5	1
494	Crystal growth and characterization of (NaxCa1â^2xLux)F2 single crystals. Journal of Crystal Growth, 2011, 320, 63-68.	1.5	3
495	Luminescence and scintillation of Ce ³⁺ â€doped oxide glass with high Gd ₂ O ₃ concentration. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2830-2832.	1.8	79
496	Electron spin resonance investigation of undoped and Li-doped CdWO4 scintillator crystals. Physica Status Solidi (B): Basic Research, 2011, 248, 993-996.	1.5	3
497	Luminescence of F ⁺ â€type centers in undoped Lu ₃ Al ₅ O ₁₂ single crystals. Physica Status Solidi (B): Basic Research, 2011, 248, 239-242.	1.5	37
498	Timeâ€resolved spectroscopy of excitonâ€related states in single crystals and single crystalline films of Lu ₃ Al ₅ O ₁₂ and Lu ₃ Al ₅ O ₁₂ :Ce. Physica Status Solidi (B): Basic Research, 2011, 248, 1505-1512.	1.5	11
499	Scintillation properties of (Na _{0.425} Lu _{0.575â€x} Nd _x)F _{2.15} and its comparison with (Ca _{1â€x} Nd _x)F _{2+x} and NdF ₃ . Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 136-139.	0.8	2
500	Time- and wavelength-resolved luminescence evaluation of several types of scintillators using streak camera system equipped with pulsed X-ray source. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 634, 59-63.	1.6	22
501	Crystal growth and scintillation characteristics of the Nd3+ doped LiLuF4 single crystals. Optical Materials, 2011, 33, 924-927.	3.6	11
502	Growth and luminescent properties of Lu2SiO5 and Lu2SiO5:Ce single crystalline films. Optical Materials, 2011, 33, 846-852.	3.6	37
503	Crystal growth and scintillation properties of Nd:CaF2. Optical Materials, 2011, 33, 284-287.	3.6	17
504	Crystal growth and optical properties of the Nd3+ doped LuF3 single crystals. Optical Materials, 2011, 33, 1143-1146.	3.6	19

#	Article	IF	Citations
505	Scintillation properties of Sc-, Pr-, and Ce-doped LuAG epitaxial garnet films. Journal of Crystal Growth, 2011, 318, 545-548.	1.5	12
506	Development of modified micro-pulling-down method for bromide and chloride single crystals. Journal of Crystal Growth, 2011, 318, 908-911.	1.5	24
507	Crystal growth, Nd distribution and luminescence properties of (Na0.425+xLu0.575â^'xâ^'yNdy)F2.15â^'2x single crystals. Journal of Crystal Growth, 2011, 318, 791-795.	1.5	3
508	Crystal growth and luminescence properties of Ti-doped LiAlO2 for neutron scintillator. Journal of Crystal Growth, 2011, 318, 828-832.	1.5	34
509	Growth and emission properties of Sc, Pr, and Ce co-doped Lu3Al5O12 epitaxial layers for scintillators. Journal of Crystal Growth, 2011, 318, 813-819.	1.5	15
510	Radiation induced synthesis of powder yttrium aluminium garnet. Radiation Physics and Chemistry, 2011, 80, 957-962.	2.8	15
511	Microstructure, optical, and scintillation characteristics of Pr3+ doped Lu3Al5O12 optical ceramics. Journal of Applied Physics, 2011, 109, 013522.	2.5	41
512	Table-top instrumentation for time-resolved luminescence spectroscopy of solids excited by nanosecond pulse of soft X-ray source and/or UV laser. Journal of Instrumentation, 2011, 6, P09007-P09007.	1.2	17
513	2-inch size single crystal growth and scintillation properties of new scintillator; Ce:Gd <inf>3</inf> Al <inf>2</inf> Ga <inf>3</inf> O <inf>12</inf> ., 2011,,.		11
514	Scintillation properties of Ce doped (Lu,Gd) <inf>Ga,Al)<inf>S</inf>O<inf>12</inf> single crystal grown by the micro-puling-down method. , 2011, , .</inf>		1
515	Growth and scintillation properties of Pr doped (Lu,Y) <inf>3</inf> (Ga,Al) <inf>5</inf> 0 <inf>12</inf> single crystals., 2011,,.		0
516	Tunnelling processes-driven radiative recombination in complex oxide scintillators. Journal of Physics: Conference Series, 2010, 249, 012018.	0.4	11
517	Luminescence and scintillation kinetics of the Pr3+ doped Lu2Si2O7 single crystal. Chemical Physics Letters, 2010, 493, 72-75.	2.6	35
518	Temperature dependence of luminescence characteristics of Lu2(1â^'x)Y2xSiO5:Ce3+ scintillator grown by the Czochralski method. Journal of Applied Physics, 2010, 108, .	2.5	66
519	Air Atmosphere Annealing Effects on LSO:Ce Crystal. IEEE Transactions on Nuclear Science, 2010, 57, 1272-1277.	2.0	37
520	Novel UV-emitting single crystalline film phosphors grown by LPE method. Radiation Measurements, 2010, 45, 444-448.	1.4	11
521	Luminescence and ESR characteristics of \hat{I}^3 -irradiated Lu3Al5O12:Ce single crystalline film scintillators. Radiation Measurements, 2010, 45, 419-421.	1.4	12
522	Photoluminescence of Lu3Al5O12:Bi and Y3Al5O12:Bi single crystalline films. Radiation Measurements, 2010, 45, 331-335.	1.4	31

#	Article	IF	CITATIONS
523	Thin imaging screens based on Ce-doped lutetium–aluminum garnets. Radiation Measurements, 2010, 45, 628-630.	1.4	6
524	Ce3+-doped crystalline garnet films – scintillation characterization using α-particle excitation. Radiation Measurements, 2010, 45, 369-371.	1.4	6
525	Effect of Eu and Pb doping on the dosimetric properties of LiCAF. Radiation Measurements, 2010, 45, 556-558.	1.4	8
526	VUV-UV-visible luminescence of Nd3+, Er3+ and Tm3+ in LiLuF4 single crystal host. Radiation Measurements, 2010, 45, 403-405.	1.4	8
527	Properties of ZnO nanocrystals prepared by radiation method. Radiation Physics and Chemistry, 2010, 79, 27-32.	2.8	19
528	Photo- and radiation-induced preparation of nanocrystalline copper and cuprous oxide catalysts. Journal of Radioanalytical and Nuclear Chemistry, 2010, 286, 611-618.	1.5	36
529	Influence of lead-related centers on luminescence of Ce3+ and Pr3+ centers in single crystalline films of aluminium perovskites and garnets. Radiation Measurements, 2010, 45, 415-418.	1.4	19
530	Luminescence and scintillation characteristics of YAG:Ce single crystalline films and single crystals. Radiation Measurements, 2010, 45, 389-391.	1.4	29
531	Doubly doped BaY2F8:Er,Nd VUV scintillator. Radiation Measurements, 2010, 45, 265-267.	1.4	15
532	Growth and luminescent properties of the Ce, Pr doped NaCl single crystals grown by the modified micro-pulling-down method. Radiation Measurements, 2010, 45, 472-474.	1.4	23
533	Study of VUV emission and \hat{I}^3 -ray responses of Nd:BaF2 scintillaotor. Radiation Measurements, 2010, 45, 422-425.	1.4	20
534	Relaxation dynamics of electronic excitations in CaWO4 and CdWO4 crystals studied by femtosecond interferometry technique. Radiation Measurements, 2010, 45, 262-264.	1.4	8
535	Defects in Ce-doped LuAG and YAG scintillation layers grown by liquid phase epitaxy. Radiation Measurements, 2010, 45, 449-452.	1.4	15
536	Photoluminescence of Pb2+-doped SrHfO3. Radiation Measurements, 2010, 45, 406-408.	1.4	17
537	Growth and characterization of YAG and LuAG epitaxial films for scintillation applications. Journal of Crystal Growth, 2010, 312, 1538-1545.	1.5	46
538	Crystal growth and scintillation properties of Ce and Sr co-doped (Gd,Y)F3 single crystals. Journal of Crystal Growth, 2010, 313, 37-41.	1.5	4
539	Crystal growth and luminescent properties of Pr-doped K(Y,Lu)3F10 single crystal for scintillator application. Journal of Crystal Growth, 2010, 312, 2795-2798.	1.5	6
540	Luminescence spectroscopy of the Bi3+ single and dimer centers in Y3Al5O12:Bi single crystalline films. Journal of Luminescence, 2010, 130, 1963-1969.	3.1	31

#	Article	IF	CITATIONS
541	Study of the Kramers rare earth ions ground multiplet with a large orbital contribution by multifrequency EPR spectroscopy: in scintillator. Optical Materials, 2010, 32, 570-575.	3.6	11
542	Crystal growth and scintillation properties of NdF3 single crystal. Optical Materials, 2010, 32, 878-881.	3.6	10
543	Preparation and luminescence of Lu4Hf3O12 powder samples doped by trivalent Eu, Tb, Ce, Pr, Bi ions. Optical Materials, 2010, 32, 1372-1374.	3.6	11
544	Scintillation properties of LuAG:Ce single crystalline films grown by LPE method. Optical Materials, 2010, 32, 1360-1363.	3.6	7
545	Defect states in Lu3GaxAl5â°'xO12 crystals and powders. Optical Materials, 2010, 32, 1298-1301.	3.6	10
546	Optimization of crystals for applications in dual-readout calorimetry. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 621, 212-221.	1.6	16
547	Crystal growth and scintillation properties of Tm:K2NaLuF6. Optical Materials, 2010, 32, 589-594.	3.6	12
548	Crystal growth and scintillation characteristics of the Nd3+ doped LaF3 single crystal. Optical Materials, 2010, 32, 1142-1145.	3.6	22
549	Structure and morphology of scintillating Ce- and Pb-doped strontium hafnate powders. Optical Materials, 2010, 32, 1356-1359.	3.6	16
550	Nd concentration dependence on the optical and scintillation properties of Nd doped BaF2. Optical Materials, 2010, 32, 1325-1328.	3.6	5
551	Crystal growth and VUV luminescence properties of Er3+- and Tm3+-doped LiCaAlF6 for detectors. Optical Materials, 2010, 32, 845-849.	3.6	30
552	Positron emission mammography using Pr:LuAG scintillator â€" Fusion of optical material study and systems engineering. Optical Materials, 2010, 32, 1294-1297.	3.6	42
553	Thermally-induced ionization of the Ce3+ excited state in SrHfO3 microcrystalline phosphor. Optical Materials, 2010, 33, 149-152.	3.6	15
554	Radiation formation of colloidal silver particles in aqueous systems. Applied Radiation and Isotopes, 2010, 68, 676-678.	1.5	15
555	Photo- and thermally stimulated luminescence of non-stoichiometric undoped PbWO ₄ crystals. Physica Status Solidi (B): Basic Research, 2010, 247, 385-392.	1.5	7
556	Thermally-induced ionization of the Ce3+and Pb2+excited states in the SrHfO3microcrystalline phosphor. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012093.	0.6	1
557	VUV-UV-visible luminescence of Nd3+, Er3+and Tm3+and energy distribution in LiLuF4single crystal host. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012089.	0.6	0
558	Development and Performance Test of Picosecond Pulse X-ray Excited Streak Camera System for Scintillator Characterization. Applied Physics Express, 2010, 3, 056202.	2.4	67

#	Article	IF	CITATIONS
559	Luminescence and creation of electron centers in UV-irradiated YAlO3 single crystals. Journal of Applied Physics, 2010, 108, .	2.5	12
560	Crystal Growth and Characterization of Sr 3 Y(BO 3), IEEE Transactions on Nuclear Science, 2010, 57, 1264-1267.	2.0	10
561	Effects of charge compensation by Na ⁺ co-doping for Ce ³⁺ doped LiCaAlF <inf>6</inf> single crystals. , 2010, , .		0
562	Sol-gel synthesis of cerium-doped yttrium silicates and their luminescent properties. Journal of Materials Research, 2010, 25, 229-234.	2.6	6
563	EditorialConference Comments by the Editors. IEEE Transactions on Nuclear Science, 2010, 57, 1161-1161.	2.0	0
564	Scintillation properties of $Pr\langle sup \rangle 3+\langle sup \rangle -doped$ optical ceramic and single crystals of $Lu\langle sub \rangle 3\langle sub \rangle Al\langle sub \rangle 5\langle sub \rangle 0\langle sub \rangle 12\langle sub \rangle .$ IOP Conference Series: Materials Science and Engineering, 2010, 15, 012020.	0.6	6
565	Ultraviolet luminescence and creation of (WO ₄) ^{3â^'} -type centers under UV irradiation of PbWO ₄ crystals doped with trivalent rare-earth ions. Journal of Physics: Conference Series, 2010, 249, 012001.	0.4	2
566	Growth and luminescent properties of Lu2SiO5and Lu2SiO5:Ce single crystalline films. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012010.	0.6	4
567	Growth and properties of epitaxial Ce-doped YAG and LuAG films for scintillators. Journal of Physics: Conference Series, 2010, 249, 012020.	0.4	2
568	Development of Novel UV Emitting Single Crystalline Film Scintillators. IEEE Transactions on Nuclear Science, 2010, 57, 1335-1342.	2.0	25
569	Crystal Growth and Luminescence Properties of Tm:BaF ₂ Single Crystals. Japanese Journal of Applied Physics, 2010, 49, 022601.	1.5	25
570	Intrinsic and impurity-induced emission bands in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>SrHfO</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mtext>SrHfO</mml:mtext></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:m< td=""><td>n>32/mm</td><td>l:mn></td></mml:m<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	n>32/mm	l:mn>
571	Crystal Growth and Scintillation Properties of Tm, Nd Codoped LaF\$_{3}\$ Single Crystals. IEEE Transactions on Nuclear Science, 2010, 57, 1278-1281.	2.0	7
572	Luminescence mechanism and energy transfer in doubly-doped BaY2F8:Tm,Nd VUV scintillator. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012018.	0.6	6
573	Crystal Growth and Characterization of Rare Earth Doped $\{hbox\{K\}\}_{3}\{hbox\{LuF\}\}_{6}$. IEEE Transactions on Nuclear Science, 2010, 57, 1320-1324.	2.0	6
574	Growth and scintillation properties of Sc, Pr, Ce co-doped LuAG epitaxial garnet layers. IOP Conference Series: Materials Science and Engineering, 2010, 15, 012012.	0.6	2
575	Single-Crystal Scintillation Materials. , 2010, , 1663-1700.		18
576	Optical and Structural Properties of Pb and Ce Doped \${hbox {SrHfO}}_{3}\$ Powders. IEEE Transactions on Nuclear Science, 2010, 57, 1245-1250.	2.0	19

#	Article	IF	CITATIONS
		Ш	
577	Diode-Pumped Yb[sup 3+]:YLF and Yb[sup 3+]:CaF[sub 2] Laser Performance., 2010,,.		0
578	Crystal growth and scintillation properties of lithium potassium yttrium complex fluoride. , 2010, , .		0
579	Ce Concentration Dependence of Optical and Scintillation Properties for Ce Doped \${m LiYF}_{4}\$ Single Crystals. IEEE Transactions on Nuclear Science, 2010, 57, 1241-1244.	2.0	24
580	Development of pulsed X-ray tube equipped streak camera system to study scintillation phenomenon. , 2010, , .		0
581	Luminescence Properties and Their Temperature Dependence of ${m Lu}_{2}{m Si}_{2}{m O}_{7}:{m Ce}$ Scintillation Crystals. IEEE Transactions on Nuclear Science, 2010, 57, 1291-1294.	2.0	5
582	Can Pr-Doped YAP Scintillator Perform Better?. IEEE Transactions on Nuclear Science, 2010, 57, 1168-1174.	2.0	17
583	Luminescence Mechanism in Doubly Doped ${m LaF}_{3}$:Er,Nd VUV Scintillator. IEEE Transactions on Nuclear Science, 2010, 57, 1196-1199.	2.0	5
584	10.1007/s11449-008-1011-3., 2010, 104, 75.		0
585	Crystal growth and scintillation properties of NdF <inf>3</inf> single crystal., 2009,,.		O
586	Assignment of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>f</mml:mi><mml:mtext>â^'</mml:mtext><mml:mtext> and:mtext> and:m</mml:mtext></mml:mrow></mml:math>	:mn>5 <td>ml:mn><mm< td=""></mm<></td>	ml:mn> <mm< td=""></mm<>

#	Article	IF	CITATIONS
595	New crystals for dual-readout calorimetry. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604, 512-526.	1.6	24
596	Synthesis and characterization of Mn2+ doped ZnS nanocrystals self-assembled in a tight mesoporous structure. Superlattices and Microstructures, 2009, 46, 306-311.	3.1	35
597	Temperature dependence of the Pr3+ luminescence in LSO and YSO hosts. Journal of Luminescence, 2009, 129, 1857-1861.	3.1	32
598	Tunneling recombination luminescence under excitation of PbWO4:Mo crystals in the defect-related absorption region. Journal of Luminescence, 2009, 129, 767-772.	3.1	9
599	Phase transition control, melt growth of (Gd,RE)F3 single crystal and their luminescent properties. Journal of Luminescence, 2009, 129, 1646-1650.	3.1	4
600	Decay kinetics of the defect-based visible luminescence in ZnO. Journal of Luminescence, 2009, 129, 1564-1567.	3.1	9
601	Luminescence characteristics of LuAG:Pr and YAG:Pr single crystalline films. Optical Materials, 2009, 31, 1805-1807.	3.6	22
602	Luminescence and decay kinetics of Pb2+ center in LiCaAlF6 single crystal host. Optical Materials, 2009, 31, 1673-1677.	3.6	15
603	Suppression of defect related host luminescence in LuAG single crystals. Physics Procedia, 2009, 2, 191-205.	1.2	16
604	Crystal growth and scintillation properties of YAlO3:Pr co-doped with Mo3+ and Ga3+ ions. Journal of Crystal Growth, 2009, 311, 537-540.	1.5	13
605	Growth and optical properties of Lu3(Ga,Al)5O12 single crystals for scintillator application. Journal of Crystal Growth, 2009, 311, 908-911.	1.5	66
606	Pr ³⁺ luminescence center in Lu ₂ Si ₂ O ₇ host. Physica Status Solidi - Rapid Research Letters, 2009, 3, 293-295.	2.4	27
607	Pr ³⁺ -doped complex oxide single crystal scintillators. Journal Physics D: Applied Physics, 2009, 42, 055117.	2.8	128
608	Trap-center recombination processes by rare earth activators in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>YAlO</mml:mtext></mml:mrow><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><mml:mncw><</mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:mncw></mml:msub></mml:mrow></mml:math>	>3 ² 7mml:	mn ³⁴
609	Intrinsic trapping and recombination centers in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>CdWO</mml:mtext></mml:mrow><mml:nusing 2009,="" 80.<="" b.="" luminescence.="" physical="" review="" stimulated="" td="" thermally=""><td>nn3:2<td>nl:15 nl:mn></td></td></mml:nusing></mml:mrow></mml:mrow></mml:math>	nn3: 2 <td>nl:15 nl:mn></td>	nl: 1 5 nl:mn>
610	Effect of reducing sintering atmosphere on Ce-doped sol–gel silica glasses. Journal of Non-Crystalline Solids, 2009, 355, 1140-1144.	3.1	46
611	Direct Comparison of Yb^3+:CaF_2 and heavily doped Yb^3+:YLF as laser media at room temperature. Optics Express, 2009, 17, 18312.	3.4	27
612	Optical, luminescence and scintillation characteristics of Bi-doped LuAG and YAG single crystalline films. Journal Physics D: Applied Physics, 2009, 42, 075501.	2.8	30

#	Article	IF	CITATIONS
613	LuAG:Pr, LuAG:La, and LuAP:Ce thin film scintillators for visualisation of x-ray images., 2009,,.		13
614	Lu 3 Al 5 O 12 -based materials for high 2D-resolution scintillation detectors. Proceedings of SPIE, 2009, , .	0.8	17
615	Hole and electron traps in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mrow> <mml:mtext>YAlO </mml:mtext> </mml:mrow> <mml:mn> crystal scintillator. Physical Review B, 2009, 80, .</mml:mn></mml:msub></mml:mrow></mml:math>	∙3κ ⊉ mml:n	nı s ⊭
616	Factors affecting the transmission and stability in complex fluorides in VUV spectral region. Proceedings of SPIE, 2009, , .	0.8	1
617	Crystal growth and scintillation properties of Nd doped CaF <inf>2</inf> single crystal. , 2009, , .		O
618	Structural and optical properties of Tb-doped Na–Gd metaphosphate glasses and glass-ceramics. Journal of Physics Condensed Matter, 2009, 21, 155103.	1.8	0
619	Single Crystal Growth, Optical Properties and Neutron Response of \${m Ce}^{3+}\$ Doped \${m LiCaAIF}_{6}\$. IEEE Transactions on Nuclear Science, 2009, 56, 3796-3799.	2.0	84
620	Laser performance at room-temperature of diode-pumped Yb3+:YLF and Yb3+:CaF2 crystals., 2009,,.		1
621	Complex oxide scintillators: Material defects and scintillation performance. Physica Status Solidi (B): Basic Research, 2008, 245, 1701-1722.	1.5	182
622	Luminescence of La3+ and Sc3+ impurity centers in YAlO3 single-crystalline films. Journal of Luminescence, 2008, 128, 595-602.	3.1	11
623	Luminescence and scintillation characteristics of heavily Pr3+-doped PbWO4 single crystals. Journal of Applied Physics, 2008, 104, 093514.	2.5	20
624	Luminescence spectroscopy of excitons and antisite defects in Lu3Al5O12 single crystals and single-crystal films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 104, 75-87.	0.6	25
625	Intrinsic and \${m Ce}^{3+}\$-Related Luminescence in Single Crystalline Films and Single Crystals of LuAP and LuAP:Ce Perovskites. IEEE Transactions on Nuclear Science, 2008, 55, 1192-1196.	2.0	17
626	Single Crystal Growth and Luminescence Properties of CeF\$_{3}\$-CaF\$_{2}\$ Solid Solution Grown by the Micro-Pulling-Down Method. IEEE Transactions on Nuclear Science, 2008, 55, 1484-1487.	2.0	12
627	The $\hat{l}\pm$ -particle excited scintillation response of the liquid phase epitaxy grown LuAG:Ce thin films. Applied Physics Letters, 2008, 92, .	3.3	34
628	Scintillation Response Comparison Among Ce-Doped Aluminum Garnets, Perovskites and Orthosilicates. IEEE Transactions on Nuclear Science, 2008, 55, 1142-1147.	2.0	15
629	Intrinsic and \${m Ce}^{3+}\$- Related Luminescence of Single Crystals and Single Crystalline Films of YAP Perovskites: New Results. IEEE Transactions on Nuclear Science, 2008, 55, 1186-1191.	2.0	20
630	Luminescence and ESR Study of Irregular Ce\$^{3+}\$ lons in LuAG:Ce Single Crystals. IEEE Transactions on Nuclear Science, 2008, 55, 1156-1159.	2.0	16

#	Article	IF	CITATIONS
631	Scintillator Materialsâ€"Achievements, Opportunities, and Puzzles. IEEE Transactions on Nuclear Science, 2008, 55, 1035-1041.	2.0	60
632	Ce-doped YAG and LuAG Epitaxial Films for Scintillation Detectors. IEEE Transactions on Nuclear Science, 2008, 55, 1201-1205.	2.0	43
633	Crystal growth and scintillation property of Nd ³⁺ -doped LaF <inf>3</inf> single crystal., 2008,,.		2
634	Gd-incorporation and luminescence properties in sol–gel silica glasses. Journal of Non-Crystalline Solids, 2008, 354, 3817-3823.	3.1	28
635	Crystal growth and scintillation properties of YAP:Pr co-doped with tetravalent and trivalent ions. , 2008, , .		1
636	Physics of Lead Tungstate Scintillators. IEEE Transactions on Nuclear Science, 2008, 55, 1275-1282.	2.0	21
637	Transformations of Absorption and Emission Centers in \${hbox {PbWO}} _{4}\$. IEEE Transactions on Nuclear Science, 2008, 55, 1289-1294.	2.0	3
638	Suppression of Host Luminescence in the Pr:LuAG Scintillator. IEEE Transactions on Nuclear Science, 2008, 55, 1197-1200.	2.0	9
639	Crystal Growth and Scintillating Properties of Zr/Si-Codoped ${m YAIO}_{3}:{m Pr}^{3+}$. IEEE Transactions on Nuclear Science, 2008, 55, 1476-1479.	2.0	15
640	Thermally stimulated tunneling in rare-earth-doped oxyorthosilicates. Physical Review B, 2008, 78, .	3.2	139
641	Crystal growth, optical properties and neutron responses of Ce ³⁺ doped LiCaAlF <inf>6</inf> single crystal. , 2008, , .		7
642	Shallow Traps in $M YAIO_{3}:m Ce}$ Single Crystal Perovskites. IEEE Transactions on Nuclear Science, 2008, 55, 1114-1117.	2.0	22
643	Growth, optical properties and neutron responses of Ce ³⁺ doped LiYF <inf>4</inf> single crystals., 2008,,.		0
644	Electron spin resonance study of self-trapped holes in CdWO4 scintillator crystals. Journal of Applied Physics, 2008, 104, .	2.5	23
645	Crystal growth and scintillating properties of Pb-doped LiCaAlF <inf>6</inf> ., 2007,,.		0
646	Growth and Luminescence Properties of Pr-doped Lu3(Ga,Al)5O12Single Crystals. Japanese Journal of Applied Physics, 2007, 46, 3514-3517.	1.5	28
647	Localized excitons and their decay into electron and hole centres in PbWO ₄ single systals grown by the Bridgman method, lournal of Physics Condensed Matter, 2007, 19, 306202. Shallow traps and radiative recombination processes in millimath	1.8	7
648	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Lu</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">Al</mml:mi><mml:mn>5</mml:mn></mml:msub><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>12</mml:mn></mml:msub><mml:mo>:</mml:mo><mml:mi mathvariant="normal">Ce</mml:mi></mml:mrow> single crystal scintillator. Physical Revi	3.2	168

#	Article	IF	CITATIONS
649	Radiation damage processes in complex-oxide scintillators. , 2007, , .		17
650	Scintillation characteristics of Lu3Al5O12:Ce optical ceramics. Journal of Applied Physics, 2007, 101, 033515.	2.5	64
651	Scintillating Bulk Oxide Crystals. , 2007, , 143-157.		3
652	Luminescence characteristics of undoped and Eu-doped GdCa4O(BO3)3 single crystals and nanopowders. Crystal Research and Technology, 2007, 42, 1308-1313.	1.3	7
653	Crystal growth, optical and luminescence properties of (Ce,Sr)â€doped PrAlO ₃ single crystals. Crystal Research and Technology, 2007, 42, 1320-1323.	1.3	6
654	Crystal growth and scintillating properties of (Pr,Si)â€doped YAlO ₃ . Crystal Research and Technology, 2007, 42, 1324-1328.	1.3	10
655	Luminescence of Pr3+-doped garnet single crystals. Optical Materials, 2007, 30, 30-32.	3.6	18
656	Paramagnetic impurity defects in LuAG and LuAG: Sc single crystals. Optical Materials, 2007, 30, 79-81.	3.6	17
657	Luminescence and surface layer defects in PbWO4 crystals. Optical Materials, 2007, 30, 66-68.	3.6	6
658	Energy migration in the Ce3+-doped Na–Gd phosphate glasses. Optical Materials, 2007, 30, 113-115.	3.6	9
659	Crystal growth and scintillation properties of Pr-doped YAIO3. Optical Materials, 2007, 30, 171-173.	3.6	31
660	Photoluminescence of ZnO-aggregates in oxide glasses. Optical Materials, 2007, 29, 552-555.	3.6	9
661	Crystal growth, optical and luminescence properties of Pr-doped Y2SiO5 single crystals. Optical Materials, 2007, 29, 1381-1384.	3.6	12
662	Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method. Optical Materials, 2007, 30, 6-10.	3.6	187
663	Crystal growth and scintillation properties of Ce-doped PrAlO3. Optical Materials, 2007, 30, 168-170.	3.6	9
664	Temperature dependence of photoluminescence in ZnO-containing glasses. Optical Materials, 2007, 30, 91-94.	3.6	23
665	Luminescence of undoped and Ce3+-doped Lu(Sc,Y)AG crystals. Journal of Luminescence, 2007, 122-123, 332-334.	3.1	11
666	Origin of green luminescence in PbWO4 crystals. Journal of Luminescence, 2007, 124, 113-119.	3.1	37

#	Article	IF	CITATIONS
667	Irregular Ce3+and defect-related luminescence in YAlO3 single crystal. Journal of Luminescence, 2007, 124, 273-278.	3.1	17
668	Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics. Journal of Luminescence, 2007, 126, 77-80.	3.1	159
669	Luminescence characteristics of Pb2+ centres in undoped and Ce3+-doped Lu3Al5O12 single-crystalline films and Pb2+â†'Ce3+ energy transfer processes. Journal of Luminescence, 2007, 127, 384-390.	3.1	7 3
670	Luminescence and decay of excitons in lead tungstate crystals. Radiation Measurements, 2007, 42, 515-520.	1.4	13
671	Single crystalline film scintillators based on Ce- and Pr-doped aluminium garnets. Radiation Measurements, 2007, 42, 521-527.	1.4	92
672	Radio-luminescence efficiency and rare-earth dispersion in Tb-doped silica glasses. Radiation Measurements, 2007, 42, 784-787.	1.4	8
673	Origin of TSL peaks located at 200–250K in UV-irradiated crystals. Radiation Measurements, 2007, 42, 807-810.	1.4	4
674	Luminescence of ions in single crystalline films. Radiation Measurements, 2007, 42, 882-886.	1.4	48
675	Luminescence and scintillation properties of Y3Al5O12:Pr single crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1012-1015.	0.8	12
676	Tunneling recombination processes in PbWO4 crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 918-921.	0.8	17
677	EPR hyperfine structure of F-type centres in pure LiBaF3crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1284-1287.	0.8	6
678	The role of Pb2+ ions in the luminescence of LuAG:Ce single crystalline films. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 797-800.	0.8	13
679	Luminescence characteristics of the LPE-grown undoped and In-doped ZnO thin films and bulk single crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 942-945.	0.8	10
680	Time development of scintillating response in Ce- or Pr-doped crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 996-999.	0.8	36
681	Intrinsic luminescence of YAlO3 perovskites. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 963-967.	0.8	17
682	Energy transfer and charge carrier capture processes in wide-band-gap scintillators. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 683-689.	1.8	29
683	Exciton and antisite defect-related luminescence in Lu3Al5O12 and Y3Al5O12 garnets. Physica Status Solidi (B): Basic Research, 2007, 244, 2180-2189.	1.5	149
684	Scintillating properties of Pr-doped YAlO3 single crystals grown by the micro-pulling-down method. Inorganic Materials, 2007, 43, 753-757.	0.8	6

#	Article	IF	Citations
685	Rare earth doped LiCaAlF6 as a new potential dosimetric material. Optical Materials, 2007, 30, 69-71.	3.6	21
686	Peculiarities of luminescence and scintillation properties of YAP:Ce and LuAP:Ce single crystals and single crystalline films. Radiation Measurements, 2007, 42, 528-532.	1.4	55
687	Scintillation and optical properties of YAG:Ce films grown by liquid phase epitaxy. Radiation Measurements, 2007, 42, 533-536.	1.4	42
688	Paramagnetic impurity defects in LuAG:Ce thick film scintillators. Radiation Measurements, 2007, 42, 835-838.	1.4	46
689	Energy transfer and storage processes in scintillators: The role and nature of defects. Radiation Measurements, 2007, 42, 509-514.	1.4	23
690	Antisite defect-free Lu3(GaxAl1â^2x)5O12:Pr scintillator. Applied Physics Letters, 2006, 88, 141916.	3.3	143
691	Fabrication and luminescence properties of single-crystalline, homoepitaxial zinc oxide films doped with tri- and tetravalent cations prepared by liquid phase epitaxy. Journal of Materials Chemistry, 2006, 16, 3369.	6.7	29
692	Luminescence characteristics and energy transfer in the mixed YxGd1â^'xF3:Ce, Me (Me = Mg, Ca, Sr, Ba) crystals. Journal of Physics Condensed Matter, 2006, 18, 3069-3079.	1.8	10
693	Insights into Microstructural Features Governing Ce3+ Luminescence Efficiency in Solâ´Gel Silica Glasses. Chemistry of Materials, 2006, 18, 6178-6185.	6.7	44
694	Scintillation detectors for x-rays. Measurement Science and Technology, 2006, 17, R37-R54.	2.6	707
695	Localized excitons and defects in PbWO4 single crystals: a luminescence and photo-thermally stimulated disintegration study. Physica Status Solidi (B): Basic Research, 2006, 243, 1727-1743.	1.5	28
696	Realization and infrared to green upconversion luminescence in Er3+:YAlO3 ion-implanted optical waveguides. Optical Materials, 2006, 28, 162-166.	3.6	32
697	Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals. Journal of Crystal Growth, 2006, 287, 335-338.	1.5	124
698	Study on crystal growth and luminescence properties of Pr-doped RE2SiO5 (RE=Y, Lu). Journal of Crystal Growth, 2006, 287, 309-312.	1.5	17
699	Fabrication of homoepitaxial ZnO films by low-temperature liquid-phase epitaxy. Journal of Crystal Growth, 2006, 287, 367-371.	1.5	41
700	Study on crystal growth and scintillating properties of Bi-doped Lu3Ga5O12. Journal of Crystal Growth, 2006, 292, 236-238.	1.5	18
701	Scintillation characteristics of Pr-doped Lu3Al5O12 single crystals. Journal of Crystal Growth, 2006, 292, 239-242.	1.5	123
702	Development of novel scintillator crystals. Journal of Crystal Growth, 2006, 292, 416-421.	1.5	78

#	Article	IF	CITATIONS
703	Defects creation under UV irradiation of PbWO4 crystals. Radiation Protection Dosimetry, 2006, 119, 164-167.	0.8	3
704	Electron paramagnetic resonance properties of Gd3+ions in PbWO4scintillator crystals. Journal of Physics Condensed Matter, 2006, 18, 719-728.	1.8	17
705	SCINTILLATOR AND PHOSPHOR MATERIALS: LATEST DEVELOPMENTS AND APPLICATIONS. , 2006, , .		O
706	Luminescence and defects creation in Ce3+-doped aluminium and lutetium perovskites and garnets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 130-133.	1.6	14
707	Boron based oxide scintillation glass for neutron detection. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 282-285.	1.6	24
708	Growth and luminescent properties of Pr:KY3F10 single crystal. Journal of Crystal Growth, 2005, 285, 445-449.	1.5	28
709	Crystal growth and luminescence properties of Yb-doped aluminate, gallate, phosphate and vanadate single crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 76-80.	1.6	9
710	Czochralski growth of 8 inch size BaF2 single crystal for a fast scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 159-162.	1.6	6
711	Shaped single crystal growth and scintillation properties of Bi:Gd3Ga5O12. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 247-250.	1.6	7
712	Further study on different dopings into PbWO4 single crystals to increase the scintillation light yield. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 540, 381-394.	1.6	32
713	Fast 5d→4f luminescence of Pr3+ in Lu2SiO5 single crystal host. Chemical Physics Letters, 2005, 410, 218-221.	2.6	85
714	Luminescence of excitons and antisite defects in Lu3Al5O12:Ce single crystals and single-crystal films. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 923-931.	0.6	28
715	In Vitro Evaluation of Screws and Suture Anchors in Metaphyseal Bone of the Canine Tibia. Veterinary Surgery, 2005, 34, 499-508.	1.0	22
716	Influence of Si-codoping on YAG:Ce scintillation characteristics. IEEE Transactions on Nuclear Science, 2005, 52, 1105-1108.	2.0	18
717	Study on shaped single crystal growth and scintillating properties of Bi-doped rare-earth garnets. Crystal Research and Technology, 2005, 40, 419-423.	1.3	16
718	Annealing induced absorption phenomena in PbWO4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 86-88.	1.6	7
719	Scintillation properties of REF3 (RE=Ce, Pr, Nd) single crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 139-143.	1.6	19
720	Ce3+-doped scintillators: status and properties of (Y,Lu) aluminium perovskites and garnets. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 271-275.	1.6	30

#	Article	IF	Citations
721	On-line measurement of gamma radiation-induced absorption in A3+-codoped PbWO4: Mo crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537, 446-448.	1.6	1
722	Na-Gd phosphate glasses. Journal of Thermal Analysis and Calorimetry, 2005, 80, 735-738.	3 . 6	10
723	Influence of non-stoichiometry and doping on scintillating response of PbWO4 crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 73-76.	0.8	8
724	Luminescence of the PbWO4:5% Cd crystal. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 77-80.	0.8	9
725	Formation of absorption and emission centres in PbWO4 surface layers induced by mechanical processing. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 81-84.	0.8	2
726	Luminescence of undoped LuAG and YAG crystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 97-100.	0.8	118
727	Optical properties of BaY2F8:Ce3+. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 244-247.	0.8	2
728	Nanocrystalline CsPbBr3 thin films: a grain boundary opto-electronic study. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 306-309.	0.8	6
729	Defects in UV-irradiated PbWO4: Mo crystals monitored by TSL measurements. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 547-550.	0.8	8
730	Rare-earth aggregates in sol-gel silica and their influence on optical properties. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 620-623.	0.8	11
731	Photo- and radioluminescence of Pr-doped Lu3Al5O12 single crystal. Physica Status Solidi A, 2005, 202, R4-R6.	1.7	178
732	Exciton-related luminescence in LuAG:Ce single crystals and single crystalline films. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 1113-1119.	1.8	44
733	Energy transfer phenomena in the luminescence of wide band-gap scintillators. Physica Status Solidi A, 2005, 202, 201-206.	1.7	103
734	Luminescence and defects creation in Ce3+-doped YAlO3 and Lu0.3Y0.7AlO3 crystals. Physica Status Solidi (B): Basic Research, 2005, 242, 1315-1323.	1.5	25
735	The antisite LuAl defect-related trap in Lu3Al5O12:Ce single crystal. Physica Status Solidi (B): Basic Research, 2005, 242, R119-R121.	1.5	199
736	Electron capture inPbWO4: Mo andPbWO4:Mo,La single crystals: ESR and TSL study. Physical Review B, 2005, 71, .	3.2	39
737	Temperature dependence of the photoluminescence and scintillation decay of Yb3+-doped YAlO3 single crystals. Journal of Applied Physics, 2005, 98, 016104.	2.5	3
738	Temperature dependence of the electron paramagnetic resonance spectra of Mn2+ impurity ions in PbWO4 single crystals. Journal of Physics Condensed Matter, 2005, 17, 719-728.	1.8	9

#	Article	IF	CITATIONS
739	Photoluminescence of Bi3+in Y3Ga5O12single-crystal host. Journal of Physics Condensed Matter, 2005, 17, 3367-3375.	1.8	53
740	Scintillators based on aromatic dye molecules doped in a sol-gel glass host. Applied Physics Letters, 2005, 86, 101914.	3.3	14
741	Growth and Characterization of Yb3+-doped (Lu,Y)AlO3Fiber Single Crystals Grown by the Micro-Pulling-Down Method. Japanese Journal of Applied Physics, 2004, 43, 7661-7664.	1.5	2
742	Ce3+-doped fibers for remote radiation dosimetry. Applied Physics Letters, 2004, 85, 6356-6358.	3.3	123
743	Growth and charge transfer luminescence of Yb3+-doped YAlO3 single crystals. Journal of Applied Physics, 2004, 95, 3063-3068.	2.5	18
744	Very fast YbxY1â^'xAlO3 single-crystal scintillators. Applied Physics Letters, 2004, 84, 882-884.	3.3	25
745	The Red-Shift of Ultraviolet Spectra and the Relation to Optical Basicity of Ce-Doped Alkali Rare-Earth Phosphate Glasses. Journal of the American Ceramic Society, 2004, 87, 1378-1380.	3.8	35
746	Growth and scintillation characteristics of CeF3, PrF3 and NdF3 single crystals. Journal of Crystal Growth, 2004, 264, 208-215.	1.5	56
747	Shaped single crystal growth and scintillating application of Yb:(Gd,Lu)3(Ga,Al)5O12 solid solutions. Optical Materials, 2004, 26, 541-543.	3.6	5
748	Growth and scintillation properties of Yb doped aluminate, vanadate and silicate single crystals. Optical Materials, 2004, 26, 529-534.	3.6	9
749	Charge transfer luminescence in Yb3+-containing compounds. Optical Materials, 2004, 26, 545-549.	3.6	55
750	Growth and luminescent properties of Yb3+â€"doped oxide single crystals for scintillator application. Radiation Measurements, 2004, 38, 467-470.	1.4	6
751	Red emission of PbWO4 crystals. Radiation Measurements, 2004, 38, 623-626.	1.4	18
752	Trap levels in Y-aluminum garnet scintillating crystals. Radiation Measurements, 2004, 38, 673-676.	1.4	21
753	Recombination luminescence in lead tungstate scintillating crystals. Radiation Measurements, 2004, 38, 381-384.	1.4	3
754	Photoelectric properties of lead tungstate crystals. Physica Status Solidi A, 2004, 201, 3172-3176.	1.7	2
755	The 3.83 eV luminescence of Gd-enriched phosphate glasses. Physica Status Solidi A, 2004, 201, R38-R40.	1.7	6
756	Energy transfer to the Ce3+ centers in Lu3Al5O12:Ce scintillator. Physica Status Solidi A, 2004, 201, R41-R44.	1.7	44

#	Article	IF	Citations
757	Scintillation characteristics of PrF3:Ce single crystal. Physica Status Solidi A, 2004, 201, R108-R110.	1.7	14
758	Luminescence and defects creation in Ce3+-doped Lu3Al5O12 crystals. Physica Status Solidi (B): Basic Research, 2004, 241, 1134-1140.	1.5	71
759	Coherent phonon oscillations in CsPbCl3 nanocrystals. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 2670-2673.	0.8	5
760	Excited-state dynamics of Yb2+ in LiCaAlF6 single crystal. Radiation Measurements, 2004, 38, 545-548.	1.4	15
761	Photoluminescent properties of nanocrystallized zinc borosilicate glasses. Radiation Measurements, 2004, 38, 771-774.	1.4	34
762	Radioluminescence spectra of PWO crystals (co)doped by Ba. Radiation Measurements, 2004, 38, 363-365.	1.4	6
763	Scintillation properties of Yb3+-doped garnet crystals. Radiation Measurements, 2004, 38, 485-488.	1.4	8
764	EPR characterization of Mn2+ impurity ions in PbWO4 single crystals. Radiation Measurements, 2004, 38, 655-658.	1.4	11
765	Radiation damage of doubly doped PbWO4:(Mo,A3+) scintillator. Radiation Measurements, 2004, 38, 385-388.	1.4	9
766	Scintillation properties of the Yb-doped YAlO3 crystals. Radiation Measurements, 2004, 38, 493-496.	1.4	7
767	Electron paramagnetic resonance study of copper impurity charge-states in PbWO4 scintillator. Radiation Measurements, 2004, 38, 703-706.	1.4	2
768	Electron spin resonance study of Mo3+ centers in YAlO3. Radiation Measurements, 2004, 38, 735-738.	1.4	16
769	X-ray damage characterization in BaLiF3,KMgF3 and LiCaAlF6 complex fluorides. Radiation Measurements, 2004, 38, 463-466.	1.4	20
770	Shaped crystal growth and scintillating properties of Yb:(Gd,Lu)3Ga5O12 solid solutions. Radiation Measurements, 2004, 38, 481-483.	1.4	5
771	Decay kinetics of the green emission in tungstates and molybdates. Radiation Measurements, 2004, 38, 533-537.	1.4	55
772	Thermostimulated recombination processes in LiBaF3 crystals. Radiation Measurements, 2004, 38, 723-726.	1.4	4
773	On-line induced absorption measurement on PbWO4, YAlO3:Ce and CsI scintillating crystals. Radiation Measurements, 2004, 38, 393-396.	1.4	3
774	Magnetooptical studies of defects and recombination luminescence in LiBaF3. Radiation Measurements, 2004, 38, 663-666.	1.4	7

#	Article	IF	CITATIONS
775	Luminescence of doped lithium tetraborate single crystals and glass. Radiation Measurements, 2004, 38, 571-574.	1.4	45
776	Scintillation response of Ce-doped or intrinsic scintillating crystals in the range up to 1MeV. Radiation Measurements, 2004, 38, 353-357.	1.4	161
777	Crystal growth of Ce: PrF3 by micro-pulling-down method. Journal of Crystal Growth, 2004, 270, 427-432.	1.5	144
778	Growth and characterization of Yb3+ doped garnet crystals for scintillator application. Optical Materials, 2004, 26, 535-539.	3.6	21
779	Luminescence properties of rare-earth ions in SiO2 glasses prepared by the sol–gel method. Journal of Non-Crystalline Solids, 2004, 345-346, 338-342.	3.1	13
780	Electron traps related to oxygen vacancies inPbWO4. Physical Review B, 2003, 67, .	3.2	49
781	Growth and Characterization of BaLiF3 Single Crystal as a New Optical Material in the VUV Region ChemInform, 2003, 34, no.	0.0	0
782	The Effect of Co-Doping by Ca2+, Ta5+, Sn4+, and Ru4+ lons on the X-Ray Luminescent Properties of Gd2O2S:Tb3+ Phosphors ChemInform, 2003, 34, no.	0.0	1
783	Growth and characterization of aliovalent ion-doped LiCaAlF6 single crystals. Journal of Crystal Growth, 2003, 250, 83-89.	1.5	11
784	Crystal growth of Yb3+-doped oxide single crystals for scintillator application. Journal of Crystal Growth, 2003, 250, 94-99.	1.5	21
785	Growth and characterization of 3-in size Tm, Ho-codoped LiYF4 and LiLuF4 single crystals by the Czochralski method. Journal of Crystal Growth, 2003, 253, 221-229.	1.5	18
786	Growth and scintillation properties of Yb-doped Lu3Al5O12 crystals. Journal of Crystal Growth, 2003, 253, 314-318.	1.5	21
787	Growth and characterization of Yb3+-doped YAlO3 fiber single crystals grown by the modified micro-pulling-down method. Journal of Crystal Growth, 2003, 256, 298-304.	1.5	17
788	Luminescence and relaxed excited state origin in CsI:Pb crystals. Journal of Luminescence, 2003, 101, 219-226.	3.1	13
789	Decay kinetics of the green emission in PbWO4:Mo. Journal of Luminescence, 2003, 102-103, 618-622.	3.1	20
790	Delayed recombination luminescence in lead tungstate (PWO) scintillating crystals. Journal of Luminescence, 2003, 102-103, 791-796.	3.1	10
791	Stimulated self-trapped exciton emission in Csl:Pb. Solid State Communications, 2003, 126, 665-669.	1.9	2
792	Scintillation and spectroscopic properties of Ce3+-doped YAlO3 and Lux(RE)1â^xAlO3(RE=Y3+ and Gd3+) scintillators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 498, 312-327.	1.6	54

#	Article	IF	Citations
793	Improvement in the quality of LiCaAlF6 single crystal as window material. Optical Materials, 2003, 24, 123-127.	3.6	20
794	Luminescence and decay kinetics of Yb2+ in LiCaAlF6 single crystal host. Optical Materials, 2003, 24, 191-195.	3.6	18
795	Growth and optical properties of Yb doped new scintillator crystals. Optical Materials, 2003, 24, 275-279.	3.6	35
796	Scintillation photoelectron Nphels(E) and light LY(E) yields of YAP:Ce and YAG:Ce crystals. Optical Materials, 2003, 24, 281-284.	3.6	21
797	Radio-, photo- and thermo-luminescence characterization in Eu3+-doped Bi4Ge3O12 single crystal for scintillator application. Optical Materials, 2003, 24, 285-289.	3.6	16
798	Luminescence spectroscopy of theGd-rich Ce3-, Tb3- and Mn2-doped phosphate glasses. Physica Status Solidi A, 2003, 196, 484-495.	1.7	22
799	Gamma spectroscopy and optoelectronic imaging with hybrid photon detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 497, 186-197.	1.6	13
800	Growth and Characterization of Y-Lu-Gd Aluminium Perovskites. , 2003, , 63-74.		1
801	Rare-Earth Doped Sol-Gel Silicate Glasses for Scintillator Applications. Radiation Effects and Defects in Solids, 2003, 158, 463-467.	1.2	22
802	Radiation damage of silicate glasses doped with Tb3+ and Eu3+. Journal of Non-Crystalline Solids, 2003, 315, 271-275.	3.1	9
803	Ultraviolet transparency and activator oxidation state of Ce 3+ -doped phosphate glasses. Journal of Non-Crystalline Solids, 2003, 326-327, 339-342.	3.1	24
804	Growth and characterization of BaLiF3 single crystal as a new optical material in the VUV region. Journal of Alloys and Compounds, 2003, 348, 258-262.	5.5	38
805	The Effect of Co-Doping by Ca[sup 2+], Ta[sup 5+], Sn[sup 4+], and Ru[sup 4+] lons on the X-Ray Luminescent Properties of Gd[sub 2]O[sub 2]S:Tb[sup 3+] Phosphors. Journal of the Electrochemical Society, 2003, 150, H81.	2.9	9
806	Luminescence, radiation damage, and color center creation in Eu3+-doped Bi4Ge3O12 fiber single crystals. Journal of Applied Physics, 2003, 93, 5131-5135.	2.5	19
807	Photoinduced oxygen-vacancy related centers in PbWO 4: Electron spin resonance and thermally stimulated luminescence study. Radiation Effects and Defects in Solids, 2002, 157, 1025-1031.	1.2	3
808	Enhanced efficiency of PbWO4:Mo,Nb scintillator. Journal of Applied Physics, 2002, 91, 5041-5044.	2.5	66
809	X-ray induced color centres in pure and doped LiYF 4 AND LiLuF 4 single crystals. Radiation Effects and Defects in Solids, 2002, 157, 563-567.	1.2	8
810	Induced Absorption Phenomena, Thermoluminescence and Colour Centres in KMgF3, BaLiF3and LiCaAlF6Complex Fluorides. Japanese Journal of Applied Physics, 2002, 41, 2028-2033.	1.5	27

#	Article	IF	Citations
811	Complete characterization of doubly doped PbWO4:Mo,Y scintillators. Journal of Applied Physics, 2002, 91, 2791-2797.	2.5	42
812	Temperature dependence of anomalous luminescence decay:â€,â€,Theory and experiment. Physical Review B, 2002, 66, .	3.2	17
813	Radiation induced colour centers and damage in YAIO 3 :Ce and YAIO 3 :Ce,Zr scintillators. Radiation Effects and Defects in Solids, 2002, 157, 677-681.	1.2	4
814	Nanocrystalline CsPbCl3: Grain Boundary Transport Properties. Journal of Wide Bandgap Materials, 2002, 9, 149-161.	0.1	0
815	Enhanced efficiency of doubly doped PbWO 4 scintillator. Radiation Effects and Defects in Solids, 2002, 157, 937-941.	1.2	5
816	Defect states in Lu 3 Al 5 O 12 :Ce crystals. Radiation Effects and Defects in Solids, 2002, 157, 1003-1007.	1.2	16
817	Ce3+luminescence in aLiBaF3single crystal at low temperatures. Physical Review B, 2002, 66, .	3.2	17
818	High-efficiency SiO2:Ce3+ glass scintillators. Applied Physics Letters, 2002, 81, 4374-4376.	3.3	75
819	Color centers in LiCaAlF6 single crystals and their suppression by doping. Journal of Applied Physics, 2002, 91, 5666-5670.	2.5	24
820	Optical absorption and thermoluminescence of Tb3Â-doped phosphate scintillating glasses. Journal of Physics Condensed Matter, 2002, 14, 7417-7426.	1.8	21
821	Slow Relaxation, Confinement, and Solitons. Physical Review Letters, 2002, 88, 224101.	7.8	36
822	Theoretical study of the structured blue emission of PbWO 4. Radiation Effects and Defects in Solids, 2002, 157, 927-930.	1.2	0
823	Kinetics of induced absorption phenomena in YAIO 3 :Ce scintillator. Radiation Effects and Defects in Solids, 2002, 157, 963-968.	1.2	1
824	Defect states induced by UV–laser irradiation in scintillating glasses. Nuclear Instruments & Methods in Physics Research B, 2002, 191, 366-370.	1.4	11
825	On the Interpretation of Luminescence of Lead Halide Crystals. Physica Status Solidi (B): Basic Research, 2002, 229, 1295-1304.	1.5	12
826	Defect Creation under UV Irradiation of CsI:Pb Crystals in Pb2+-Induced Absorption Bands Investigated by Luminescence Methods. Physica Status Solidi (B): Basic Research, 2002, 234, 689-700.	1.5	5
827	Effect of \hat{l}^3 irradiation on optical properties of Ce3+-doped phosphate and silicate scintillating glasses. Radiation Physics and Chemistry, 2002, 63, 231-234.	2.8	10
828	Growth and properties of Ce3+-doped Lux(RE3+)1â^'xAP scintillators. Optical Materials, 2002, 19, 117-122.	3.6	12

#	Article	IF	Citations
829	Development of BSO (Bi4Si3O12) crystal for radiation detector. Optical Materials, 2002, 19, 201-212.	3.6	72
830	Vacuum evaporated CsPbX3 (X=Cl, Br, I) thin films: optical and transport properties. Materials Science and Engineering C, 2002, 19, 63-66.	7.3	1
831	Radiation damage induced by \hat{I}^3 irradiation on Ce3+ doped phosphate and silicate scintillating glasses. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 476, 785-789.	1.6	19
832	{Y3â^'x,Ybx}[Ga]2(Ga)3O12 and {Lu2Yb1}[Al]2(Al)3O12 single crystals for scintillator application grown by the modified micro-pulling-down method. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 79-82.	1.6	33
833	Doping PbWO4 with different ions to increase the light yield. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 170-175.	1.6	29
834	An effect of Zr4+ co-doping of YAP:Ce scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 250-253.	1.6	46
835	Optical properties of Ce3+-doped sol–gel silicate glasses. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 259-263.	1.6	34
836	Crystal growth and luminescence properties of Li2B4O7 single crystals doped with Ce, In, Ni, Cu and Ti ions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 264-267.	1.6	47
837	Gamma-radiation-induced absorption in doubly doped PbWO4:Mo,Y crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 345-349.	1.6	2
838	Influence of Y-codoping on the PbWO4:Mo luminescence and scintillator characteristics. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2002, 486, 453-457.	1.6	5
839	Growth of Bi4Ge3O12 single crystal by the micro-pulling-down method from bismuth rich composition. Journal of Crystal Growth, 2002, 243, 157-163.	1.5	30
840	Eu3+ doped Bi4Ge3O12 fiber single crystals grown by the micro-pulling-down method. Journal of Crystal Growth, 2002, 245, 67-72.	1.5	10
841	RADIATION INDUCED COLOR CENTERS IN TB3+–DOPED PHOSPHATE SCINTILLATION GLASSES. , 2002, , .		0
842	Structured emission of tetrahedral complexes due to Jahn-Teller and pseudo-Jahn-Teller effects. Physical Review B, 2001, 64, .	3.2	27
843	Optical characterization under irradiation of Ce/sup 3+/ (Tb/sup 3+/)-doped phosphate scintillating glasses. IEEE Transactions on Nuclear Science, 2001, 48, 360-366.	2.0	22
844	Structural and optical properties of ternary Cs–Pb–Cl nanoaggregates in thin films. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2237.	1.6	11
845	Optical Anisotropy of Exciton Band and Doping Effect in Scheelite PbWO4Crystals. Journal of the Physical Society of Japan, 2001, 70, 1439-1440.	1.6	7
846	A new heavy and radiation-hard Cherenkov radiator based on PbWO4. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 459, 482-493.	1.6	26

#	Article	IF	CITATIONS
847	Scintillation characteristics of PbWO4 single crystals doped with Th, Zr, Ce, Sb and Mn ions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 465, 428-439.	1.6	24
848	Anomalous decay of the slow emission component in doped alkali halides. Journal of Luminescence, 2001, 92, 311-316.	3.1	19
849	Spectroscopy of CsPbBr3 quantum dots in CsBr:Pb crystals. Journal of Luminescence, 2001, 93, 27-41.	3.1	42
850	Excitons in CsPbX3 (X=Cl, Br, I) ternary nanocrystallites in thin film matrices. Journal of Luminescence, 2001, 94-95, 169-172.	3.1	13
851	A role of Gd3+ in scintillating processes in Tb-doped Na–Gd phosphate glasses. Journal of Luminescence, 2001, 94-95, 321-324.	3.1	36
852	Radio- and thermoluminescence and energy transfer processes in Ce3+(Tb3+)-doped phosphate scintillating glasses. Radiation Measurements, 2001, 33, 593-596.	1.4	28
853	The doping of PbWO4 in shaping its scintillator characteristics. Radiation Measurements, 2001, 33, 705-708.	1.4	18
854	Laser induced effects in the optical properties of Tb3+-doped phosphate scintillating glasses. Radiation Measurements, 2001, 33, 721-723.	1.4	5
855	Luminescence of CsPbCl3-like Quantum Dots in CsCl : Pb Crystals. Physica Status Solidi (B): Basic Research, 2001, 225, 247-255.	1.5	19
856	Relaxed Excited States Origin and Structure in Lead-Doped Caesium Bromide. Physica Status Solidi (B): Basic Research, 2001, 223, 745-756.	1.5	11
857	Luminescent CsPbI3 and Cs4PbI6 Aggregates in Annealed CsI:Pb Crystals. Physica Status Solidi (B): Basic Research, 2001, 226, 419-428.	1.5	27
858	Scintillation Decay of LiCaAlF6:Ce3+ Single Crystals. Physica Status Solidi A, 2001, 187, R1-R3.	1.7	38
859	Modification of PbWO4 scintillator characteristics by doping. Journal of Crystal Growth, 2001, 229, 312-315.	1.5	30
860	PhotoinducedPb+center inPbWO4:Electron spin resonance and thermally stimulated luminescence study. Physical Review B, 2001, 64, .	3.2	57
861	Behaviour of the lowest excited triplet state of a divalent lead ion. From an isolated impurity to an exciton. Journal of Luminescence, 2001, 94-95, 397-401.	3.1	2
862	Colour centres induced by \hat{I}^3 irradiation in scintillating glassy matrices for middle and low energy physics experiments. Nuclear Instruments & Methods in Physics Research B, 2001, 185, 294-298.	1.4	7
863	Free and localised exciton of ternary nanocrystals in CsX-PbX $<$ sub $>$ 2 $<$ /sub $>$ thin films (X = Cl, Br, I). Radiation Effects and Defects in Solids, 2001, 156, 103-107.	1.2	7
864	Luminescent CsPbI3 and Cs4PbI6 Aggregates in Annealed CsI:Pb Crystals. Physica Status Solidi (B): Basic Research, 2001, 226, 419.	1.5	2

#	Article	IF	CITATIONS
865	Visible photoluminescence and electroluminescence in wide-bandgap hydrogenated amorphous silicon. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2000, 80, 1811-1832.	0.6	12
866	Luminescence of Cs4PbBr6 Aggregates in As-Grown and in Annealed CsBr:Pb Single Crystals. Physica Status Solidi (B): Basic Research, 2000, 219, 205-214.	1.5	11
867	Wide Band Gap Scintillation Materials: Progress in the Technology and Material Understanding. Physica Status Solidi A, 2000, 178, 595-620.	1.7	359
868	Effect of La Doping on Calcium Tungstate (CaWO4) Crystals Radiation Hardness. Physica Status Solidi A, 2000, 178, 799-804.	1.7	16
869	Growth of Lead Tungstate Single Crystals from Gel and Their Luminescence. Physica Status Solidi A, 2000, 179, 261-264.	1.7	19
870	Influence of Gd3+ Concentration on PbWO4:Gd3+ Scintillation Characteristics. Physica Status Solidi A, 2000, 179, 445-454.	1.7	16
871	Traps and Timing Characteristics of LuAG:Ce3+ Scintillator. Physica Status Solidi A, 2000, 181, R10-R12.	1.7	194
872	Efficient Medium-Speed PbWO4:Mo,Y Scintillator. Physica Status Solidi A, 2000, 182, R3-R5.	1.7	24
873	Ce3+ or Tb3+-doped phosphate and silicate scintillating glasses. Journal of Luminescence, 2000, 87-89, 673-675.	3.1	95
874	Luminescence of ternary nanoaggregates in Csl–Pbl2 thin films. Journal of Luminescence, 2000, 87-89, 372-374.	3.1	13
875	Excitonic emission of scheelite tungstates AWO4 (A=Pb, Ca, Ba, Sr). Journal of Luminescence, 2000, 87-89, 1136-1139.	3.1	190
876	The growth, structure and optics of CsI–PbI2 co-evaporated thin films. Thin Solid Films, 2000, 373, 195-198.	1.8	10
877	Optical properties of Si+-ion implanted sol–gel derived SiO2 films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 564-569.	3.5	8
878	Development of new mixed Lux(RE3+)1â^'xAP:Ce scintillators (RE3+=Y3+ or Gd3+):comparison with other Ce-doped or intrinsic scintillating crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2000, 443, 331-341.	1.6	42
879	The study of time-resolved absorption and luminescence in PbWO4 crystals. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 329-333.	1.4	20
880	Tunneling process in thermally stimulated luminescence of mixedLuxY1â^'xAlO3:Cecrystals. Physical Review B, 2000, 61, 8081-8086.	3.2	70
881	Temperature behaviour of optical properties of Si \$mathsf{^+}\$ -implanted SiO \$mathsf{_2}\$. European Physical Journal D, 2000, 8, 395-398.	1.3	10
882	Influence of Annealing on the Optical Properties of PbWO4Single Crystals Grown by the Bridgman Method. Japanese Journal of Applied Physics, 2000, 39, 5134-5138.	1.5	24

#	Article	IF	Citations
883	Efficient radioluminescence of the Ce3+-doped Na–Gd phosphate glasses. Applied Physics Letters, 2000, 77, 2159-2161.	3.3	115
884	Auger recombination as a probe of the Mott transition in semiconductor nanocrystals. Applied Physics Letters, 2000, 76, 2850-2852.	3.3	11
885	Influence of doping on the emission and scintillation characteristics of PbWO4 single crystals. Journal of Applied Physics, 2000, 87, 4243-4248.	2.5	43
886	Photoinduced(WO4)3â^'â^'La3+center inPbWO4:Electron spin resonance and thermally stimulated luminescence study. Physical Review B, 2000, 62, 10109-10115.	3.2	36
887	Optical and structural properties of ternary nanoaggregates in CsI-PbI2co-evaporated thin films. Journal of Physics Condensed Matter, 2000, 12, 1939-1946.	1.8	24
888	Wide Band Gap Scintillation Materials: Progress in the Technology and Material Understanding. Physica Status Solidi A, 2000, 178, 595-620.	1.7	3
889	Traps and Timing Characteristics of LuAG:Ce3+ Scintillator. , 2000, 181, R10.		1
890	Shallow traps inPbWO4studied by wavelength-resolved thermally stimulated luminescence. Physical Review B, 1999, 60, 4653-4658.	3.2	52
891	Electrical characterization of PbWO4single crystals. Radiation Effects and Defects in Solids, 1999, 150, 35-39.	1.2	1
892	Thermally stimulated polarization and depolarization phenomena in PbWO4 single crystals. Journal of Applied Physics, 1999, 86, 1090-1095.	2.5	8
893	Development and characterisation of czochralski grown LuxRE3+1-xAIO3: Ce crystals (Re3+= Y3+and) Tj ETQq1 1	0.784314 1.2	ggBT /Over
894	The influence of defect states on scintillation characteristics of PbWO4. Radiation Effects and Defects in Solids, 1999, 150, 15-19.	1.2	14
895	Optical properties of Pb ²⁺ -based aggregated phases in CsBr Thin film and single crystal matrices. Radiation Effects and Defects in Solids, 1999, 150, 341-345.	1.2	23
896	Luminescence of CsPbBr3-like quantum dots in CsBr single crystals. Physica E: Low-Dimensional Systems and Nanostructures, 1999, 4, 323-331.	2.7	56
897	Radiation damage processes in wide-gap scintillating crystals. New scintillation materials. Nuclear Physics, Section B, Proceedings Supplements, 1999, 78, 471-478.	0.4	12
898	Scintillation characteristics of nonstoichiometric phases formed in MF2–GdF3–CeF3 systems Part III. Dense Gd1â⁻'xâ⁻'yMxCeyF3â⁻'x tysonite-related crystals (M=Ca, Sr). Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 421, 199-210.	1.6	1
899	Significant improvement of PbWO4 scintillating crystals by doping with trivalent ions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 434, 412-423.	1.6	75
900	Photoluminescence of Cs4PbBr6 crystals and thin films. Chemical Physics Letters, 1999, 306, 280-284.	2.6	151

#	Article	IF	CITATIONS
901	Polarized luminescence of CsPbBr3 nanocrystals (quantum dots) in CsBr:Pb single crystal. Chemical Physics Letters, 1999, 314, 31-36.	2.6	38
902	Growth of PbX $<$ sub $>$ 2 $<$ /sub $>$ and CsPbX $<$ sub $>$ 3 $<$ /sub $>$ (X = Cl, Br) mesoscopic phases in alkali halide host lattices. Radiation Effects and Defects in Solids, 1999, 150, 359-363.	1.2	2
903	Luminescence of Pb ²⁺ -based aggregates in CsI matrix. Radiation Effects and Defects in Solids, 1999, 149, 119-123.	1.2	6
904	Trapping and emission centres in PbWO ₄ and CaWO ₄ crystals. Radiation Effects and Defects in Solids, 1999, 150, 53-57.	1.2	0
905	Modelling of the slow emission decay of Pb2+, Tl+centers. Radiation Effects and Defects in Solids, 1999, 149, 149-152.	1.2	O
906	Energy transfer processes in PbWO4 luminescence. Chemical Physics Letters, 1998, 291, 300-304.	2.6	34
907	Investigation of lead tungstate (PbWO4) crystal properties. Nuclear Physics, Section B, Proceedings Supplements, 1998, 61, 66-70.	0.4	17
908	Lead tungstate (PbWO4) scintillators for LHC EM-calorimeter. Radiation Physics and Chemistry, 1998, 52, 635-638.	2.8	6
909	Photo- and thermally stimulated luminescence and defects in UV-irradiated CsI:Tl and CsI:Pb crystals. Radiation Measurements, 1998, 29, 333-335.	1.4	13
910	Improvement of several properties of lead tungstate crystals with different doping ions. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 402, 75-84.	1.6	65
911	Improvement in radiation hardness of PbWO4 scintillating crystals by La-doping. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 404, 149-156.	1.6	63
912	La-doped PbWO4 scintillating crystals grown in large ingots. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1998, 414, 325-331.	1.6	45
913	Cerium-doped RE3+AlO3 perovskite scintillators: Spectroscopy and radiation induced defects. Journal of Alloys and Compounds, 1998, 275-277, 200-204.	5. 5	23
914	Coexistence of the impurity and perturbed exciton levels in the relaxed excited state of CsCl:Pb crystal. Journal of Physics Condensed Matter, 1998, 10, 5449-5461.	1.8	13
915	Anomalous decay of the slow component of Pb2+emission. Physical Review B, 1998, 58, 6938-6943.	3.2	30
916	Polaronic centres in single crystals. Journal of Physics Condensed Matter, 1998, 10, 7293-7302.	1.8	68
917	Radiation induced formation of color centers in PbWO4 single crystals. Journal of Applied Physics, 1997, 82, 5758-5762.	2.5	136
918	Decay kinetics and thermoluminescence of PbWO4: La3+. Applied Physics Letters, 1997, 71, 3755-3757.	3.3	90

#	Article	IF	CITATIONS
919	A study of electron excitations in and single crystals. Journal of Physics Condensed Matter, 1997, 9, 249-256.	1.8	81
920	Luminescence and Decay Kinetics of Relaxed Bound Excitons and Impurity States in CsX:Tl ⁺ (X=Cl, Br, I). Materials Science Forum, 1997, 239-241, 213-218.	0.3	6
921	Optical and EPR Study of Point Defects in PbWO ₄ Single Crystals. Materials Science Forum, 1997, 239-241, 271-274.	0.3	21
922	Ce3+luminescent centers of different symmetries in KMgF3single crystals. Physical Review B, 1997, 56, 15109-15114.	3.2	39
923	Thermally stimulated luminescence of PbWO4 crystals. Journal of Luminescence, 1997, 72-74, 689-690.	3.1	12
924	Lead tungstate single crystal scintillators. European Physical Journal D, 1997, 47, 717-724.	0.4	2
925	Improvement in transmittance and decay time of PbWO4 scintillating crystals by La-doping. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 399, 261-268.	1.6	104
926	Spectroscopy and transfer processes in LuxGd1â^'xAlO3: Ce scintillators. Journal of Luminescence, 1997, 72-74, 737-739.	3.1	21
927	Intrinsic conversion efficiency of X-rays to light in Gd2O2S: Tb3+ powder phosphors. Journal of Luminescence, 1997, 72-74, 772-774.	3.1	29
928	Quantum size effect in the excitonic luminescence of CsPbX3-like quantum dots in CsX (X = Cl, Br) single crystal host. Journal of Luminescence, 1997, 72-74, 377-379.	3.1	52
929	The blue luminescence of PbWO4 single crystals. Journal of Luminescence, 1997, 72-74, 781-783.	3.1	55
930	Influence of La3+-Doping on Radiation Hardness and Thermoluminescence Characteristics of PbWO4. Physica Status Solidi A, 1997, 160, R5-R6.	1.7	77
931	Radiation Damage and Thermoluminescence of Gd-Doped PbWO4. Physica Status Solidi A, 1997, 164, R9-R10.	1.7	37
932	Luminescence of a thallium-perturbed on-centre self-trapped exciton in CsCl:Tl crystal. Chemical Physics Letters, 1997, 268, 280-284.	2.6	6
933	Relaxed excited state structure and luminescence of thallium-doped caesium chloride and bromide. Journal of Physics Condensed Matter, 1996, 8, 4301-4314.	1.8	24
934	Ce doped hafniate scintillating glasses: thermally stimulated luminescence and photoluminescence. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 116-120.	1.4	12
935	Lead bromide and ternary alkali lead bromide single crystals â€" growth and emission properties. Chemical Physics Letters, 1996, 258, 518-522.	2.6	80
936	Trap levels in PbWO4 crystals: correlation with luminescence decay kinetics. Chemical Physics Letters, 1996, 260, 418-422.	2.6	32

#	Article	IF	Citations
937	Direct measurements of relaxation time scales in Josephson junctions. Solid State Communications, 1996, 97, 439-444.	1.9	8
938	Cerium doped heavy metal fluoride glasses, a possible alternative for electromagnetic calorimetry. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 380, 524-536.	1.6	62
939	Growth of lead tungstate single crystal scintillators. Journal of Crystal Growth, 1996, 165, 163-165.	1.5	61
940	Extensive studies on CeF3 crystals, a good candidate for electromagnetic calorimetry at future accelerators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1996, 383, 367-390.	1.6	66
941	Electron Paramagnetic Resonance of Nd3+ and Ce3+ Impurities in PbWO4 Single Crystals. Physica Status Solidi A, 1996, 158, 573-578.	1.7	20
942	Slow components in the photoluminescence and scintillation decays of PbWO ₄ single crystals. Physica Status Solidi (B): Basic Research, 1996, 195, 311-323.	1.5	130
943	Origin of the 420 nm absorption band in PbWO ₄ single crystals. Physica Status Solidi (B): Basic Research, 1996, 196, K7.	1.5	74
944	Emission and storage properties of LiTaO3:Tb3+phosphor. Journal of Applied Physics, 1996, 79, 2853-2856.	2.5	36
945	Energy Transfer, Fluorescence and Scintillation Processes in Cerium-Doped RE3+AlO3Fast Scintillators. Acta Physica Polonica A, 1996, 90, 45-54.	0.5	12
946	Fluorescence and scintillation properties of LuAlO3:Ce crystal. Chemical Physics Letters, 1995, 241, 311-316.	2.6	45
947	Ternary alkali lead chlorides: Crystal growth, crystal structure, absorption and emission properties. Progress in Crystal Growth and Characterization of Materials, 1995, 30, 1-22.	4.0	108
948	Further results on GdAlO ₃ :Ce scintillator. Radiation Effects and Defects in Solids, 1995, 135, 369-373.	1.2	14
949	Optical properties of Pb ²⁺ -based aggregated phase in NaCl and CsCl alkali halide hosts. Radiation Effects and Defects in Solids, 1995, 135, 289-293.	1.2	9
950	Clustering in NaCl:Pb. Radiation Effects and Defects in Solids, 1995, 137, 57-62.	1.2	2
951	Decay kinetics of Ce3+ions under gamma and KrF excimer laser excitation in CeF3single crystals. Journal of Physics Condensed Matter, 1995, 7, 6355-6364.	1.8	14
952	Peculiarities of the triplet relaxed excited state structure in thallium-doped cesium halide crystals. Radiation Effects and Defects in Solids, 1995, 135, 379-382.	1.2	5
953	Optical properties of thePb2+-based aggregated phase in a CsCl host crystal: Quantum-confinement effects. Physical Review B, 1995, 51, 5192-5199.	3.2	94
954	Decay kinetics of the 408 nm emission band from Pb2+centres in KI single crystals. Journal of Physics Condensed Matter, 1994, 6, 293-300.	1.8	9

#	Article	IF	CITATIONS
955	Influence of Tl + concentration on emission and decay kinetics of Csl : Tl + single crystals. Journal of Luminescence, 1994, 60-61, 527-530.	3.1	14
956	GaAs based varicap as tunable capacitance at millikelvin temperatures. Cryogenics, 1994, 34, 773-775.	1.7	1
957	Photoluminescence and decay kinetics of CsPbCl3 single crystals. Chemical Physics Letters, 1994, 220, 14-18.	2.6	40
958	A new model for the visible emission of the CsI: TI crystal. Chemical Physics Letters, 1994, 227, 533-538.	2.6	61
959	Photoluminescence of heavily doped CeF3: Cd2+ single crystals. Solid State Communications, 1994, 90, 155-159.	1.9	24
960	Photoluminescence of KMgF3:Tl+. Journal of Physics and Chemistry of Solids, 1994, 55, 1-7.	4.0	13
961	Energy transfer in CeF 3 and CeF 3: Cd single crystals. Journal of Luminescence, 1994, 60-61, 971-974.	3.1	4
962	Photoluminescence and Scintillation Properties of Pb ²⁺ Based Quantum Dots in CsCI Host Crystal. Materials Research Society Symposia Proceedings, 1994, 348, 155.	0.1	1
963	CuCl quantum dots in CuCl-doped NaCl crystals. Solid State Communications, 1993, 85, 467-470.	1.9	0
964	The luminescence behaviour of porous silicon layers. Solid State Communications, 1993, 85, 347-350.	1.9	10
965	Energy transfer processes in CeF3 single crystals. Solid State Communications, 1993, 87, 185-188.	1.9	19
966	Energy Transfer Between A _T and A _X Minima in KBr: TI, Quantitative Fourâ€Levelâ€Model. Physica Status Solidi (B): Basic Research, 1993, 175, 523-540.	1.5	26
967	Luminescence of KI: Pb Crystals. Physica Status Solidi (B): Basic Research, 1993, 178, 173-184.	1.5	5
968	Growth and Characterization of Crystals of Incongruently Melting Ternary Alkali Lead Chlorides. Physica Status Solidi A, 1993, 135, 565-571.	1.7	23
969	Identification of trace impurities in pure and doped YAIO3 and Y3AI5O12 crystals by their fluorescence and by the EMA method. European Physical Journal D, 1993, 43, 683-696.	0.4	8
970	Decay kinetics of CsI: TI luminescence excited in the A absorption band. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 67, 627-649.	0.6	31
971	Fluorescence Properties of Tm3+ in Y3Al5O12 in the Near UV and Visible Ranges. Physica Status Solidi A, 1992, 133, 515-521.	1.7	14
972	Photoluminescence & decay kinetics of Cs4PbCl6 single crystals. Solid State Communications, 1992, 84, 1089-1092.	1.9	54

#	Article	IF	CITATIONS
973	A study of fluorescence emission of Ce3+ ions in YAlO3 crystals by the influence of doping concentration and codoping with Nd3+ and Cr3+. Materials Chemistry and Physics, 1992, 32, 342-348.	4.0	36
974	Decay kinetics of the slow component of Pb2+ emission in KX (X = Cl, Br, I) crystals. Journal of Luminescence, 1992, 54, 189-196.	3.1	45
975	Blue and Violet Emission of PbCl ₂ . Physica Status Solidi (B): Basic Research, 1991, 165, 611-621.	1.5	23
976	Kinetics of A‣uminescence in KCl:Tl Multiphonon Processes. Physica Status Solidi (B): Basic Research, 1991, 166, 503-510.	1.5	35
977	Photoluminescence of RbPb ₂ Cl ₅ . Physica Status Solidi (B): Basic Research, 1991, 166, 511-518.	1.5	24
978	Photoluminescence of KPb ₂ Cl ₅ . Physica Status Solidi (B): Basic Research, 1991, 168, K37.	1.5	28
979	Energy transfer in PbCl2: Sn2+ single crystals at low temperatures. Solid State Communications, 1989, 69, 45-47.	1.9	7
980	Decay Kinetics of UV Luminescence from Undoped PbCl ₂ Crystals. Physica Status Solidi (B): Basic Research, 1988, 145, 741-747.	1.5	32
981	Properties of new mixed Lu/sub x/(RE/sup 3+/)/sub 1-x/AlO/sub 3/:Ce scintillators (RE/sup 3+/=Y/sup 3+/ or) Tj ET	Qq1 1 0.7	84314 rgBT
982	Thermally stimulated polarization and depolarization currents in molybdenum doped PbWO/sub 4/single crystals. , 0, , .		0
983	Silicate Glass-Based Nanocomposite Scintillators. , 0, , .		3
984	Effects of Ga Content on Optical and Scintillation Properties in Ce ³⁺ -Doped YGd ₂ (Al,Ga) ₅ 0 ₁₂ Scintillators. Key Engineering Materials, 0, 675-676, 552-555.	0.4	0
985	Wide Band Gap Scintillation Materials: Progress in the Technology and Material Understanding. , 0, .		3
986	Basic study of ceramic lithium strontium borates as thermal neutron scintillators. Journal of the American Ceramic Society, 0, , .	3.8	1
987	Crystal growth and optical properties of Ce-doped (Y,Lu)AlO ₃ single crystal. Japanese Journal of Applied Physics, 0, , .	1.5	2