Paul Gustafson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3532919/publications.pdf Version: 2024-02-01

DALLI CLISTAFSON

#	Article	IF	CITATIONS
1	Multinational prediction of household and personal exposure to fine particulate matter (PM2.5) in the PURE cohort study. Environment International, 2022, 159, 107021.	10.0	7
2	Systematic Review Reveals Lack of Causal Methodology Applied to Pooled Longitudinal Observational Infectious Disease Studies. Journal of Clinical Epidemiology, 2022, 145, 29-38.	5.0	2
3	Uncertainty and the Value of Information in Risk Prediction Modeling. Medical Decision Making, 2022, 42, 661-671.	2.4	3
4	Bayesian adjustment for preferential testing in estimating infection fatality rates, as motivated by the COVID-19 pandemic. Annals of Applied Statistics, 2022, 16, .	1.1	2
5	Assessing Trade-Offs and Optimal Ranges of Density for Life Expectancy and 12 Causes of Mortality in Metro Vancouver, Canada, 1990–2016. International Journal of Environmental Research and Public Health, 2022, 19, 2900.	2.6	1
6	A few things to consider when deciding whether or not to conduct underpowered research. Journal of Clinical Epidemiology, 2022, 144, 194-197.	5.0	1
7	Reflections on Bayesian inference and Markov chain Monte Carlo. Canadian Journal of Statistics, 2022, 50, 1213-1227.	0.9	2
8	On logistic Box–Cox regression for flexibly estimating the shape and strength of exposureâ€disease relationships. Canadian Journal of Statistics, 2021, 49, 808-825.	0.9	0
9	Invited Commentary: Quantitative Bias Analysis Can See the Forest for the Trees. American Journal of Epidemiology, 2021, 190, 1841-1843.	3.4	1
10	A Bayesian approach to improving spatial estimates of prevalence of COVID-19 after accounting for misclassification bias in surveillance data in Philadelphia, PA. Spatial and Spatio-temporal Epidemiology, 2021, 36, 100401.	1.7	14
11	Invited Commentary: Toward Better Bias Analysis. American Journal of Epidemiology, 2021, 190, 1613-1616.	3.4	3
12	Geospatial indicators of exposure, sensitivity, and adaptive capacity to assess neighbourhood variation in vulnerability to climate change-related health hazards. Environmental Health, 2021, 20, 31.	4.0	28
13	Incorporating partial adherence into the principal stratification analysis framework. Statistics in Medicine, 2021, 40, 3625-3644.	1.6	2
14	Current trends in the application of causal inference methods to pooled longitudinal observational infectious disease studies—A protocol for a methodological systematic review. PLoS ONE, 2021, 16, e0250778.	2.5	3
15	To Bound or Not to Bound. Epidemiology, 2021, 32, 635-637.	2.7	1
16	A spatiotemporal analysis of inequalities in life expectancy and 20 causes of mortality in sub-neighbourhoods of Metro Vancouver, Canada, 1990-2016. ISEE Conference Abstracts, 2021, 2021, .	0.0	0
17	Measurement error in metaâ€analysis (MEMA)—A Bayesian framework for continuous outcome data subject to nonâ€differential measurement error. Research Synthesis Methods, 2021, 12, 796-815.	8.7	2
18	CRTpowerdist: An R package to calculate attained power and construct the power distribution for cross-sectional stepped-wedge and parallel cluster randomized trials. Computer Methods and Programs in Biomedicine, 2021, 208, 106255.	4.7	5

#	Article	IF	CITATIONS
19	A Theoretical Investigation of How Evidence Flows in Bayesian Network Meta-Analysis of Disconnected Networks. Bayesian Analysis, 2021, 16, .	3.0	3
20	A spatiotemporal analysis of inequalities in life expectancy and 20 causes of mortality in sub-neighbourhoods of Metro Vancouver, British Columbia, Canada, 1990–2016. Health and Place, 2021, 72, 102692.	3.3	5
21	Inferring the COVID-19 infection fatality rate in the community-dwelling population: a simple Bayesian evidence synthesis of seroprevalence study data and imprecise mortality data. Epidemiology and Infection, 2021, 149, .	2.1	5
22	Current trends in the application of causal inference methods to pooled longitudinal non-randomised data: a protocol for a methodological systematic review. BMJ Open, 2021, 11, e052969.	1.9	3
23	Comparative effectiveness of buprenorphine-naloxone versus methadone for treatment of opioid use disorder: a population-based observational study protocol in British Columbia, Canada. BMJ Open, 2020, 10, e036102.	1.9	17
24	A Bayesian mixture of experts approach to covariate misclassification. Canadian Journal of Statistics, 2020, 48, 731-750.	0.9	2
25	Towards reduction in bias in epidemic curves due to outcome misclassification through Bayesian analysis of time-series of laboratory test results: case study of COVID-19 in Alberta, Canada and Philadelphia, USA. BMC Medical Research Methodology, 2020, 20, 146.	3.1	25
26	STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 2—More complex methods of adjustment and advanced topics. Statistics in Medicine, 2020, 39, 2232-2263.	1.6	43
27	STRATOS guidance document on measurement error and misclassification of variables in observational epidemiology: Part 1—Basic theory and simple methods of adjustment. Statistics in Medicine, 2020, 39, 2197-2231.	1.6	90
28	It can be dangerous to take epidemic curves of COVID-19 at face value. Canadian Journal of Public Health, 2020, 111, 397-400.	2.3	12
29	Explaining the variation in the attained power of a stepped-wedge trial with unequal cluster sizes. BMC Medical Research Methodology, 2020, 20, 166.	3.1	8
30	A thresholdâ€free summary index for quantifying the capacity of covariates to yield efficient treatment rules. Statistics in Medicine, 2020, 39, 1362-1373.	1.6	1
31	Reconciling randomized trial evidence on proximal versus distal outcomes, with application to trials of influenza vaccination for healthcare workers. Statistics in Medicine, 2019, 38, 4323-4333.	1.6	Ο
32	Household, community, sub-national and country-level predictors of primary cooking fuel switching in nine countries from the PURE study. Environmental Research Letters, 2019, 14, 085006.	5.2	27
33	Adjusting for differential misclassification in matched caseâ€control studies utilizing health administrative data. Statistics in Medicine, 2019, 38, 3669-3681.	1.6	3
34	New perspective on the benefits of the gene–environment independence in case–control studies. Canadian Journal of Statistics, 2019, 47, 473-486.	0.9	0
35	What to Do When Accumulated Exposure Affects Health but Only Its Duration Was Measured? A Case of Linear Regression. International Journal of Environmental Research and Public Health, 2019, 16, 1896.	2.6	2
36	The World of Research Has Gone Berserk: Modeling the Consequences of Requiring "Greater Statistical Stringency―for Scientific Publication. American Statistician, 2019, 73, 358-373.	1.6	8

#	Article	IF	CITATIONS
37	When exposure is subject to nondifferential misclassification, are validation data helpful in testing for an exposure–disease association?. Canadian Journal of Statistics, 2019, 47, 222-237.	0.9	0
38	Effects of tailored advice on injury prevention knowledge and behaviours in runners: Secondary analysis from a randomised controlled trial. Physical Therapy in Sport, 2019, 37, 164-170.	1.9	2
39	Effects of Multiple Forms of Information Bias on Estimated Prevalence of Suicide Attempts According to Sexual Orientation: An Application of a Bayesian Misclassification Correction Method to Data From a Systematic Review. American Journal of Epidemiology, 2019, 188, 239-249.	3.4	25
40	Authors' reply: Letter to the Editor: Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies (SMMR, Vol 27, Issue 6, 2018). Statistical Methods in Medical Research, 2019, 28, 323-324.	1.5	0
41	Bayesian inference for unidirectional misclassification of a binary response trait. Statistics in Medicine, 2018, 37, 933-947.	1.6	7
42	Comparison of statistical approaches dealing with time-dependent confounding in drug effectiveness studies. Statistical Methods in Medical Research, 2018, 27, 1709-1722.	1.5	13
43	Correction of odds ratios in case-control studies for exposure misclassification with partial knowledge of the degree of agreement among experts who assessed exposures. Occupational and Environmental Medicine, 2018, 75, 155-159.	2.8	7
44	Conditional equivalence testing: An alternative remedy for publication bias. PLoS ONE, 2018, 13, e0195145.	2.5	19
45	Relative impact characteristic curve: a graphical tool to visualize and quantify the clinical utility and population-level consequences of implementing markers. Annals of Epidemiology, 2018, 28, 717-723.e3.	1.9	3
46	Global estimation of exposure to fine particulate matter (PM2.5) from household air pollution. Environment International, 2018, 120, 354-363.	10.0	77
47	The impact of maternal smoking during pregnancy on childhood asthma: adjusted for exposure misclassification; results from the National Health and Nutrition Examination Survey, 2011–2012. Annals of Epidemiology, 2018, 28, 697-703.	1.9	18
48	Incidence, risk factors, and prevention of hepatitis C reinfection: a population-based cohort study. The Lancet Gastroenterology and Hepatology, 2017, 2, 200-210.	8.1	93
49	A comparison of Bayesian and Monte Carlo sensitivity analysis for unmeasured confounding. Statistics in Medicine, 2017, 36, 2887-2901.	1.6	25
50	Evaluating the safety of \hat{l}^2 -interferons in MS. Neurology, 2017, 88, 2310-2320.	1.1	45
51	Hepatitis C cross-genotype immunity and implications for vaccine development. Scientific Reports, 2017, 7, 12326.	3.3	11
52	Network metaâ€analysis of disconnected networks: How dangerous are random baseline treatment effects?. Research Synthesis Methods, 2017, 8, 465-474.	8.7	18
53	Bayesian analysis of pairâ€matched caseâ€control studies subject to outcome misclassification. Statistics in Medicine, 2017, 36, 4196-4213.	1.6	4
54	Inferring population size: extending the multiplier method to incorporate multiple traits with a likelihoodâ€based approach. Stat, 2017, 6, 4-13.	0.4	1

#	Article	IF	CITATIONS
55	On the application of statistical learning approaches to construct inverse probability weights in marginal structural Cox models: Hedging against weight-model misspecification. Communications in Statistics Part B: Simulation and Computation, 2017, 46, 7668-7697.	1.2	8
56	Bayesian adjustment for the misclassification in both dependent and independent variables with application to a breast cancer study. Statistics in Medicine, 2016, 35, 4252-4263.	1.6	1
57	Association between the use of selective serotonin reuptake inhibitors and multiple sclerosis disability progression. Pharmacoepidemiology and Drug Safety, 2016, 25, 1150-1159.	1.9	4
58	An assessment of population-based screening guidelines versus clinical prediction rules for chlamydia and gonorrhea case finding. Preventive Medicine, 2016, 89, 51-56.	3.4	5
59	Comparison of Statistical Approaches for Dealing With Immortal Time Bias in Drug Effectiveness Studies. American Journal of Epidemiology, 2016, 184, 325-335.	3.4	68
60	THE AUTHORS REPLY. American Journal of Epidemiology, 2016, 184, 857-858.	3.4	1
61	Hypothesis Testing for an Exposure–Disease Association in Case–Control Studies Under Nondifferential Exposure Misclassification in the Presence of Validation Data: Bayesian and Frequentist Adjustments. Statistics in Biosciences, 2016, 8, 234-252.	1.2	2
62	Bayesian regression models adjusting for unidirectional covariate misclassification. Canadian Journal of Statistics, 2016, 44, 198-218.	0.9	9
63	A validation study of a clinical prediction rule for screening asymptomatic chlamydia and gonorrhoea infections among heterosexuals in British Columbia. Sexually Transmitted Infections, 2016, 92, 12-18.	1.9	8
64	Gene-Environment Independence in Case–Control Studies: Issues of Parameterization and Bayesian Inference. Statistics in Biosciences, 2015, 7, 460-475.	1.2	2
65	Discussion of "On Bayesian Estimation of Marginal Structural Models― Biometrics, 2015, 71, 291-293.	1.4	3
66	Multiple Sclerosis in Older Adults: The Clinical Profile and Impact of Interferon Beta Treatment. BioMed Research International, 2015, 2015, 1-11.	1.9	40
67	Risk of intracranial hypertension with intrauterine levonorgestrel. Therapeutic Advances in Drug Safety, 2015, 6, 110-113.	2.4	12
68	Predictors identifying those at increased risk for STDs: a theory-guided review of empirical literature and clinical guidelines. International Journal of STD and AIDS, 2015, 26, 839-851.	1.1	29
69	Bayesian sensitivity analyses for hidden subâ€populations in weighted sampling. Canadian Journal of Statistics, 2014, 42, 436-450.	0.9	4
70	Commentary. Epidemiology, 2014, 25, 910-912.	2.7	7
71	Discordance in Hormone Receptor Status Among Primary, Metastatic, and Second Primary Breast Cancers: Biological Difference or Misclassification?. Oncologist, 2014, 19, 592-601.	3.7	39
72	Marginal Structural Cox Models for Estimating the Association Between β-Interferon Exposure and Disease Progression in a Multiple Sclerosis Cohort. American Journal of Epidemiology, 2014, 180, 160-171.	3.4	61

#	Article	IF	CITATIONS
73	On the Impact of Misclassification in an Ordinal Exposure Variable. Epidemiologic Methods, 2014, 3, .	0.9	9
74	Association between beta-interferon exposure and hospital events in multiple sclerosis. Pharmacoepidemiology and Drug Safety, 2014, 23, 1213-1222.	1.9	9
75	Misclassification. , 2014, , 639-658.		11
76	A comparison of Bayesian hierarchical modeling with groupâ€based exposure assessment in occupational epidemiology. Statistics in Medicine, 2013, 32, 3686-3699.	1.6	6
77	Impact of Statistical Adjustment for Frequency of Venue Attendance in a Venue-based Survey of Men Who Have Sex With Men. American Journal of Epidemiology, 2013, 177, 1157-1164.	3.4	27
78	Investigations of Gene–Disease Associations. Epidemiology, 2013, 24, 562-568.	2.7	6
79	Interferon Beta and Long-term Disability in Multiple Sclerosis. JAMA Neurology, 2013, 70, 651.	9.0	4
80	Partial Identification arising from Nondifferential Exposure Misclassification: How Informative are Data on the Unlikely, Maybe, and Likely Exposed?. International Journal of Biostatistics, 2012, 8, 31.	0.7	4
81	Association Between Use of Interferon Beta and Progression of Disability in Patients With Relapsing-Remitting Multiple Sclerosis. JAMA - Journal of the American Medical Association, 2012, 308, 247-56.	7.4	234
82	Is Probabilistic Bias Analysis Approximately Bayesian?. Epidemiology, 2012, 23, 151-158.	2.7	54
83	On the behaviour of Bayesian credible intervals in partially identified models. Electronic Journal of Statistics, 2012, 6, .	0.7	6
84	Hierarchical priors for bias parameters in Bayesian sensitivity analysis for unmeasured confounding. Statistics in Medicine, 2012, 31, 383-396.	1.6	19
85	A Bayesian method for estimating prevalence in the presence of a hidden subâ€population. Statistics in Medicine, 2012, 31, 2386-2398.	1.6	6
86	On the detectability of different forms of interaction in regression models. Metrika, 2012, 75, 347-365.	0.8	0
87	Discussion of "Bayesian local influence for survival models,―by Ibrahim, Zhu, and Tang. Lifetime Data Analysis, 2011, 17, 71-73.	0.9	ο
88	Bayesian methods in survival analysis. Lifetime Data Analysis, 2011, 17, 1-2.	0.9	2
89	Bayesian inference of gene–environment interaction from incomplete data: What happens when information on environment is disjoint from data on gene and disease?. Statistics in Medicine, 2011, 30, 877-889.	1.6	7
90	Assessing large sample bias in misspecified model scenarios with reference to exposure model misspecification in errors-in-variable regression: A new computational approach. Journal of Statistical Planning and Inference, 2011, 141, 1161-1169.	0.6	0

#	Article	IF	CITATIONS
91	Reply to â€~Evidence is still required for treatment as prevention for riskier routes of HIV transmission'. Aids, 2010, 24, 2892-2893.	2.2	1
92	Expanding access to HAART: a cost-effective approach for treating and preventing HIV. Aids, 2010, 24, 1929-1935.	2.2	63
93	Bayesian adjustment for exposure misclassification in case–control studies. Statistics in Medicine, 2010, 29, 994-1003.	1.6	19
94	Probabilistic Approaches to Better Quantifying the Results of Epidemiologic Studies. International Journal of Environmental Research and Public Health, 2010, 7, 1520-1539.	2.6	23
95	Interval Estimation for Messy Observational Data. Statistical Science, 2009, 24, .	2.8	25
96	What Are the Limits of Posterior Distributions Arising From Nonidentified Models, and Why Should We Care?. Journal of the American Statistical Association, 2009, 104, 1682-1695.	3.1	28
97	Bayesian propensity score analysis for observational data. Statistics in Medicine, 2009, 28, 94-112.	1.6	79
98	Bayesian analysis of a matched case–control study with expert prior information on both the misclassification of exposure and the exposure–disease association. Statistics in Medicine, 2009, 28, 3411-3423.	1.6	29
99	Covariate balance in a Bayesian propensity score analysis of beta blocker therapy in heart failure patients. Epidemiologic Perspectives and Innovations, 2009, 6, 5.	7.0	8
100	A Bayesian multilevel model for estimating the diet/disease relationship in a multicenter study with exposures measured with error: The EPIC study. Statistics in Medicine, 2008, 27, 6037-6054.	1.6	11
101	On Average Predictive Comparisons and Interactions. International Statistical Review, 2008, 76, 419-432.	1.9	10
102	A sensitivity analysis using information about measured confounders yielded improved uncertainty assessments for unmeasured confounding. Journal of Clinical Epidemiology, 2008, 61, 247-255.	5.0	29
103	The application of Bayesian analysis to issues in developmental research. International Journal of Behavioral Development, 2007, 31, 366-373.	2.4	25
104	Describing the Dynamics of Attention to TV Commercials: A Hierarchical Bayes Analysis of the Time to Zap an Ad. Journal of Applied Statistics, 2007, 34, 585-609.	1.3	18
105	Bayesian sensitivity analysis for unmeasured confounding in observational studies. Statistics in Medicine, 2007, 26, 2331-2347.	1.6	133
106	Regression B-spline smoothing in Bayesian disease mapping: with an application to patient safety surveillance. Statistics in Medicine, 2007, 26, 4455-4474.	1.6	45
107	Measurement error modelling with an approximate instrumental variable. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2007, 69, 797-815.	2.2	9
108	On Robustness and Model Flexibility in Survival Analysis: Transformed Hazard Models and Average Effects. Biometrics, 2007, 63, 69-77.	1.4	12

#	Article	IF	CITATIONS
109	Neonatal Intensive Care Unit Characteristics Affect the Incidence of Severe Intraventricular Hemorrhage. Medical Care, 2006, 44, 754-759.	2.4	92
110	Curious phenomena in Bayesian adjustment for exposure misclassification. Statistics in Medicine, 2006, 25, 87-103.	1.6	30
111	An innovative application of Bayesian disease mapping methods to patient safety research: a Canadian adverse medical event study. Statistics in Medicine, 2006, 25, 3960-3980.	1.6	25
112	Sample size implications when biases are modelled rather than ignored. Journal of the Royal Statistical Society Series A: Statistics in Society, 2006, 169, 865-881.	1.1	13
113	The Performance of Random Coefficient Regression in Accounting for Residual Confounding. Biometrics, 2006, 62, 760-768.	1.4	22
114	Conservative prior distributions for variance parameters in hierarchical models. Canadian Journal of Statistics, 2006, 34, 377-390.	0.9	34
115	Accounting for Independent Nondifferential Misclassification Does Not Increase Certainty that an Observed Association Is in the Correct Direction. American Journal of Epidemiology, 2006, 164, 63-68.	3.4	51
116	The utility of prior information and stratification for parameter estimation with two screening tests but no gold standard. Statistics in Medicine, 2005, 24, 1203-1217.	1.6	27
117	Extending logistic regression to model diffuse interactions. Statistics in Medicine, 2005, 24, 2089-2104.	1.6	10
118	On Model Expansion, Model Contraction, Identifiability and Prior Information: Two Illustrative Scenarios Involving Mismeasured Variables. Statistical Science, 2005, 20, 111.	2.8	143
119	Innovative Bayesian Methods for Biostatistics and Epidemiology. Handbook of Statistics, 2005, 25, 763-792.	0.6	1
120	On the Value of derivative evaluations and random walk suppression in Markov Chain Monte Carlo algorithms. Statistics and Computing, 2004, 14, 23-38.	1.5	14
121	Hierarchical Bayes Analysis of Multilevel Health Services Data: A Canadian Neonatal Mortality Study. Health Services and Outcomes Research Methodology, 2004, 5, 5-26.	1.8	11
122	Decomposing posterior variance. Journal of Statistical Planning and Inference, 2004, 119, 311-327.	0.6	12
123	A simple approach to fitting Bayesian survival models. Lifetime Data Analysis, 2003, 9, 5-19.	0.9	15
124	An extension of the Dirichlet prior for the analysis of longitudinal multinomial data. Journal of Applied Statistics, 2003, 30, 293-310.	1.3	6
125	A Bayesian approach to case-control studies with errors in covariables. Biostatistics, 2002, 3, 229-243.	1.5	21
126	Comparing the Effects of Continuous and Discrete Covariate Mismeasurement, with Emphasis on the Dichotomization of Mismeasured Predictors. Biometrics, 2002, 58, 878-887.	1.4	37

#	Article	IF	CITATIONS
127	On the simultaneous effects of model misspecification and errors in variables. Canadian Journal of Statistics, 2002, 30, 463-474.	0.9	8
128	On cross-validation of Bayesian models. Canadian Journal of Statistics, 2001, 29, 333-340.	0.9	21
129	Case-Control Analysis with Partial Knowledge of Exposure Misclassification Probabilities. Biometrics, 2001, 57, 598-609.	1.4	83
130	The consolidation/transition model in moral reasoning development Developmental Psychology, 2001, 37, 187-197.	1.6	26
131	Bayesian Regression Modeling with Interactions and Smooth Effects. Journal of the American Statistical Association, 2000, 95, 795-806.	3.1	17
132	Bayesian Regression Modeling with Interactions and Smooth Effects. Journal of the American Statistical Association, 2000, 95, 795.	3.1	8
133	Flexible Bayesian modelling for survival data. Lifetime Data Analysis, 1998, 4, 281-299.	0.9	22
134	A guided walk Metropolis algorithm. Statistics and Computing, 1998, 8, 357-364.	1.5	23
135	Large Hierarchical Bayesian Analysis of Multivariate Survival Data. Biometrics, 1997, 53, 230.	1.4	60
136	Model influence functions based on mixtures. Canadian Journal of Statistics, 1996, 24, 535-548.	0.9	4
137	The effect of mixing-distribution misspecification in conjugate mixture models. Canadian Journal of Statistics, 1996, 24, 307-318.	0.9	9
138	Local Sensitivity of Inferences to Prior Marginals. Journal of the American Statistical Association, 1996, 91, 774-781.	3.1	21
139	Local Sensitivity of Inferences to Prior Marginals. Journal of the American Statistical Association, 1996, 91, 774.	3.1	10
140	A Bayesian analysis of bivariate survival data from a multicentre cancer clinical trial. Statistics in Medicine, 1995, 14, 2523-2535.	1.6	14