Chaoyong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3532467/publications.pdf

Version: 2024-02-01

8159 12910 20,786 297 76 131 citations h-index g-index papers 316 316 316 18891 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Aptamers evolved from live cells as effective molecular probes for cancer study. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11838-11843.	3.3	1,344
2	Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation. Carbon, 2010, 48, 1124-1130.	5.4	898
3	Molecular Engineering of DNA: Molecular Beacons. Angewandte Chemie - International Edition, 2009, 48, 856-870.	7.2	581
4	Pyreneâ€Excimer Probes Based on the Hybridization Chain Reaction for the Detection of Nucleic Acids in Complex Biological Fluids. Angewandte Chemie - International Edition, 2011, 50, 401-404.	7.2	486
5	Optimization of Dye-Doped Silica Nanoparticles Prepared Using a Reverse Microemulsion Method. Langmuir, 2004, 20, 8336-8342.	1.6	471
6	Selection of DNA Aptamers against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture. Analytical Chemistry, 2013, 85, 4141-4149.	3.2	399
7	Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Sensitivity. Journal of the American Chemical Society, 2015, 137, 5149-5154.	6.6	360
8	Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17278-17283.	3.3	334
9	An Aptamer Crossâ€Linked Hydrogel as a Colorimetric Platform for Visual Detection. Angewandte Chemie - International Edition, 2010, 49, 1052-1056.	7.2	328
10	Dual-Luminophore-Doped Silica Nanoparticles for Multiplexed Signaling. Nano Letters, 2005, 5, 37-43.	4.5	311
11	Target-Responsive "Sweet―Hydrogel with Glucometer Readout for Portable and Quantitative Detection of Non-Glucose Targets. Journal of the American Chemical Society, 2013, 135, 3748-3751.	6.6	303
12	Discovery of Aptamers Targeting the Receptor-Binding Domain of the SARS-CoV-2 Spike Glycoprotein. Analytical Chemistry, 2020, 92, 9895-9900.	3.2	296
13	Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chemical Reviews, 2021, 121, 12035-12105.	23.0	294
14	Pyrene Excimer Signaling Molecular Beacons for Probing Nucleic Acids. Journal of the American Chemical Society, 2008, 130, 336-342.	6.6	289
15	Au@Pt Nanoparticle Encapsulated Targetâ€Responsive Hydrogel with Volumetric Barâ€Chart Chip Readout for Quantitative Pointâ€ofâ€Care Testing. Angewandte Chemie - International Edition, 2014, 53, 12503-12507.	7.2	205
16	Locked Nucleic Acid Molecular Beacons. Journal of the American Chemical Society, 2005, 127, 15664-15665.	6.6	198
17	High-Throughput Single Copy DNA Amplification and Cell Analysis in Engineered Nanoliter Droplets. Analytical Chemistry, 2008, 80, 3522-3529.	3.2	196
18	Molecular aptamers for drug delivery. Trends in Biotechnology, 2011, 29, 634-640.	4.9	190

#	Article	IF	Citations
19	Graphene oxide-protected DNA probes for multiplex microRNA analysis in complex biological samples based on a cyclic enzymatic amplification method. Chemical Communications, 2012, 48, 194-196.	2.2	186
20	A Multifunctional Nanomicelle for Realâ€Time Targeted Imaging and Precise Nearâ€Infrared Cancer Therapy. Angewandte Chemie - International Edition, 2014, 53, 9544-9549.	7.2	177
21	Twist2 contributes to breast cancer progression by promoting an epithelial–mesenchymal transition and cancer stem-like cell self-renewal. Oncogene, 2011, 30, 4707-4720.	2.6	175
22	Microfluidic Distance Readout Sweet Hydrogel Integrated Paper-Based Analytical Device (νDiSH-PAD) for Visual Quantitative Point-of-Care Testing. Analytical Chemistry, 2016, 88, 2345-2352.	3.2	175
23	Bioinspired Engineering of a Multivalent Aptamerâ€Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells. Angewandte Chemie - International Edition, 2019, 58, 2236-2240.	7.2	175
24	<scp> </scp> -DNA Molecular Beacon: A Safe, Stable, and Accurate Intracellular Nano-thermometer for Temperature Sensing in Living Cells. Journal of the American Chemical Society, 2012, 134, 18908-18911.	6.6	173
25	Homogeneous, Lowâ€volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD‣1 for Cancer Diagnosis and Immunotherapy Response Prediction. Angewandte Chemie - International Edition, 2020, 59, 4800-4805.	7.2	159
26	Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis. Accounts of Chemical Research, 2017, 50, 22-31.	7.6	158
27	Target-Responsive DNAzyme Cross-Linked Hydrogel for Visual Quantitative Detection of Lead. Analytical Chemistry, 2014, 86, 11434-11439.	3.2	155
28	Molecular Assembly of Superquenchers in Signaling Molecular Interactions. Journal of the American Chemical Society, 2005, 127, 12772-12773.	6.6	152
29	PMMA/PDMS valves and pumps for disposable microfluidics. Lab on A Chip, 2009, 9, 3088.	3.1	150
30	Enrichment and single-cell analysis of circulating tumor cells. Chemical Science, 2017, 8, 1736-1751.	3.7	148
31	Translating Molecular Recognition into a Pressure Signal to enable Rapid, Sensitive, and Portable Biomedical Analysis. Angewandte Chemie - International Edition, 2015, 54, 10448-10453.	7.2	147
32	Aptamer Blocking Strategy Inhibits SARSâ€CoVâ€2 Virus Infection. Angewandte Chemie - International Edition, 2021, 60, 10266-10272.	7.2	144
33	A Controllable Aptamer-Based Self-Assembled DNA Dendrimer for High Affinity Targeting, Bioimaging and Drug Delivery. Scientific Reports, 2015, 5, 10099.	1.6	143
34	Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab on A Chip, 2016, 16, 1139-1151.	3.1	143
35	Bioinspired Engineering of Multivalent Aptamerâ€Functionalized Nanointerface to Enhance Capture and Release of Circulating Tumor Cells. Angewandte Chemie, 2018, 131, 2258.	1.6	141
36	DNA Aptamerâ€Mediated Cell Targeting. Angewandte Chemie - International Edition, 2013, 52, 1472-1476.	7.2	137

#	Article	IF	Citations
37	Design and Synthesis of Target-Responsive Aptamer-Cross-linked Hydrogel for Visual Quantitative Detection of Ochratoxin A. ACS Applied Materials & Samp; Interfaces, 2015, 7, 6982-6990.	4.0	137
38	Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2â°' sensing. Nanoscale, 2012, 4, 4103.	2.8	134
39	Isolation, Detection, and Antigenâ€Based Profiling of Circulating Tumor Cells Using a Sizeâ€Dictated Immunocapture Chip. Angewandte Chemie - International Edition, 2017, 56, 10681-10685.	7.2	132
40	Target-Responsive DNA Hydrogel Mediated "Stop-Flow―Microfluidic Paper-Based Analytic Device for Rapid, Portable and Visual Detection of Multiple Targets. Analytical Chemistry, 2015, 87, 4275-4282.	3.2	131
41	Facile synthesis of red-emitting lysozyme-stabilized Ag nanoclusters. Nanoscale, 2012, 4, 5312.	2.8	129
42	MicroRNA-33b Inhibits Breast Cancer Metastasis by Targeting HMGA2, SALL4 and Twist1. Scientific Reports, 2015, 5, 9995.	1.6	128
43	DNAzyme crosslinked hydrogel: a new platform for visual detection of metal ions. Chemical Communications, 2011, 47, 9312.	2.2	126
44	Engineering of Switchable Aptamer Micelle Flares for Molecular Imaging in Living Cells. ACS Nano, 2013, 7, 5724-5731.	7.3	124
45	Massively Parallel Single-Molecule and Single-Cell Emulsion Reverse Transcription Polymerase Chain Reaction Using Agarose Droplet Microfluidics. Analytical Chemistry, 2012, 84, 3599-3606.	3.2	123
46	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. Angewandte Chemie - International Edition, 2016, 55, 7483-7486.	7.2	122
47	A Surface Energy Transfer Nanoruler for Measuring Binding Site Distances on Live Cell Surfaces. Journal of the American Chemical Society, 2010, 132, 16559-16570.	6.6	119
48	Trends in miniaturized biosensors for point-of-care testing. TrAC - Trends in Analytical Chemistry, 2020, 122, 115701.	5.8	119
49	Tracing Tumorâ€Derived Exosomal PDâ€L1 by Dualâ€Aptamer Activated Proximityâ€Induced Droplet Digital PCR. Angewandte Chemie - International Edition, 2021, 60, 7582-7586.	7.2	117
50	Direct Synthesis of an Oligonucleotide–Poly(phenylene ethynylene) Conjugate with a Precise One-to-One Molecular Ratio. Angewandte Chemie - International Edition, 2005, 44, 2572-2576.	7.2	114
51	Fluidic Multivalent Membrane Nanointerface Enables Synergetic Enrichment of Circulating Tumor Cells with High Efficiency and Viability. Journal of the American Chemical Society, 2020, 142, 4800-4806.	6.6	114
52	Agarose droplet microfluidics for highly parallel and efficient single molecule emulsion PCR. Lab on A Chip, 2010, 10, 2841.	3.1	111
53	Backbone-modified molecular beacons for highly sensitive and selective detection of microRNAs based on duplex specific nuclease signal amplification. Chemical Communications, 2013, 49, 7243.	2.2	110
54	In Vitro and in Vivo Studies on the Transport of PEGylated Silica Nanoparticles across the Blood–Brain Barrier. ACS Applied Materials & Diverge 1988 (1998) and 1989 (1998) are supplied to the Blood–Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) and 1989 (1998) are supplied to the Blood–Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood–Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood–Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood–Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood–Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood— Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood— Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood— Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood— Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood— Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood— Brain Barrier. ACS Applied Materials & Diverge 1989 (1998) are supplied to the Blood— Brain Br	4.0	109

#	Article	IF	Citations
55	A Synthetic Light-Driven Substrate Channeling System for Precise Regulation of Enzyme Cascade Activity Based on DNA Origami. Journal of the American Chemical Society, 2018, 140, 8990-8996.	6.6	108
56	Highly Sensitive and Automated Surface Enhanced Raman Scattering-based Immunoassay for H5N1 Detection with Digital Microfluidics. Analytical Chemistry, 2018, 90, 5224-5231.	3.2	107
57	Mass Amplifying Probe for Sensitive Fluorescence Anisotropy Detection of Small Molecules in Complex Biological Samples. Analytical Chemistry, 2012, 84, 5535-5541.	3.2	105
58	<i>In Vitro</i> Selection of DNA Aptamers for Metastatic Breast Cancer Cell Recognition and Tissue Imaging. Analytical Chemistry, 2014, 86, 6596-6603.	3.2	102
59	Portable visual quantitative detection of aflatoxin B $<$ sub $>$ 1 $<$ /sub $>$ using a target-responsive hydrogel and a distance-readout microfluidic chip. Lab on A Chip, 2016, 16, 3097-3104.	3.1	102
60	A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-IF-RPA) assay for rapid COVID-19 detection. Lab on A Chip, 2021, 21, 2019-2026.	3.1	101
61	A Cell-Surface-Anchored Ratiometric Fluorescent Probe for Extracellular pH Sensing. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15329-15334.	4.0	99
62	DNA-directed nanofabrication of high-performance carbon nanotube field-effect transistors. Science, 2020, 368, 878-881.	6.0	99
63	Integration of target responsive hydrogel with cascaded enzymatic reactions and microfluidic paper-based analytic devices (µPADs) for point-of-care testing (POCT). Biosensors and Bioelectronics, 2016, 77, 537-542.	5.3	96
64	Superior structure stability and selectivity of hairpin nucleic acid probes with an L-DNA stem. Nucleic Acids Research, 2007, 35, 7279-7287.	6.5	89
65	Recent Progress in Microfluidics-Based Biosensing. Analytical Chemistry, 2019, 91, 388-404.	3.2	89
66	Molecular signaling of the epithelial to mesenchymal transition in generating and maintaining cancer stem cells. Cellular and Molecular Life Sciences, 2010, 67, 2605-2618.	2.4	88
67	A fully integrated distance readout ELISA-Chip for point-of-care testing with sample-in-answer-out capability. Biosensors and Bioelectronics, 2017, 96, 332-338.	5.3	88
68	Integrating Target-Responsive Hydrogel with Pressuremeter Readout Enables Simple, Sensitive, User-Friendly, Quantitative Point-of-Care Testing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22252-22258.	4.0	88
69	Nucleic Acids Analysis. Science China Chemistry, 2021, 64, 171-203.	4.2	88
70	A general excimer signaling approach for aptamer sensors. Biosensors and Bioelectronics, 2010, 25, 2232-2237.	5.3	87
71	Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. Analytical Chemistry, 2016, 88, 7828-7836.	3.2	84
72	Design and synthesis of target-responsive hydrogel for portable visual quantitative detection of uranium with a microfluidic distance-based readout device. Biosensors and Bioelectronics, 2016, 85, 496-502.	5.3	83

#	Article	IF	Citations
73	Selfâ€Assembly of a Bifunctional DNA Carrier for Drug Delivery. Angewandte Chemie - International Edition, 2011, 50, 6098-6101.	7.2	82
74	Single-molecule emulsion PCR in microfluidic droplets. Analytical and Bioanalytical Chemistry, 2012, 403, 2127-2143.	1.9	81
75	Microfluidicâ€Based Exosome Analysis for Liquid Biopsy. Small Methods, 2021, 5, e2001131.	4.6	81
76	Microfluidic Singleâ€Cell Omics Analysis. Small, 2020, 16, e1903905.	5.2	80
77	Integrated Distance-Based Origami Paper Analytical Device for One-Step Visualized Analysis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30480-30487.	4.0	79
78	Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Research, 2007, 35, 4030-4041.	6.5	77
79	Nucleic Acid Beacons for Long-Term Real-Time Intracellular Monitoring. Analytical Chemistry, 2008, 80, 3025-3028.	3.2	76
80	In Vitro Selection of Highly Efficient G-Quadruplex-Based DNAzymes. Analytical Chemistry, 2012, 84, 8383-8390.	3.2	76
81	A T7 exonuclease-assisted cyclic enzymatic amplification method coupled with rolling circle amplification: a dual-amplification strategy for sensitive and selective microRNA detection. Chemical Communications, 2014, 50, 1576-1578.	2.2	76
82	Platinum nanoflowers supported on graphene oxide nanosheets: their green synthesis, growth mechanism, and advanced electrocatalytic properties for methanol oxidation. Journal of Materials Chemistry, 2012, 22, 11284.	6.7	75
83	DNA Nanolithography Enables a Highly Ordered Recognition Interface in a Microfluidic Chip for the Efficient Capture and Release of Circulating Tumor Cells. Angewandte Chemie - International Edition, 2020, 59, 14115-14119.	7.2	74
84	Highly sensitive and quantitative detection of rare pathogens through agarose droplet microfluidic emulsion PCR at the single-cell level. Lab on A Chip, 2012, 12, 3907.	3.1	71
85	ICP-MS-Based Multiplex and Ultrasensitive Assay of Viruses with Lanthanide-Coded Biospecific Tagging and Amplification Strategies. Analytical Chemistry, 2013, 85, 9428-9432.	3.2	71
86	Enzyme-Encapsulated Liposome-Linked Immunosorbent Assay Enabling Sensitive Personal Glucose Meter Readout for Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Materials & Englished Portable Detection of Disease Biomarkers. ACS Applied Detection of Disease Biomarkers. ACS Applied Detection of Disease Biomarkers.	4.0	71
87	Metabolic Labeling of Peptidoglycan with NIRâ€II Dye Enables In Vivo Imaging of Gut Microbiota. Angewandte Chemie - International Edition, 2020, 59, 2628-2633.	7.2	71
88	Stabilization of ssRNA on Graphene Oxide Surface: An Effective Way to Design Highly Robust RNA Probes. Analytical Chemistry, 2013, 85, 2269-2275.	3.2	70
89	Monoclonal Surface Display SELEX for Simple, Rapid, Efficient, and Cost-Effective Aptamer Enrichment and Identification. Analytical Chemistry, 2014, 86, 5881-5888.	3.2	70
90	Molecular beacons for bioanalytical applications. Analyst, The, 2005, 130, 1002.	1.7	69

#	Article	IF	Citations
91	Highly sensitive and selective detection of miRNA: DNase I-assisted target recycling using DNA probes protected by polydopamine nanospheres. Chemical Communications, 2015, 51, 2156-2158.	2.2	69
92	Assessing the viability of transplanted gut microbiota by sequential tagging with D-amino acid-based metabolic probes. Nature Communications, 2019, 10, 1317.	5.8	68
93	Coupling Aptamerâ€based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Proteinâ€Specific Glycosylation. Angewandte Chemie - International Edition, 2021, 60, 18111-18115.	7.2	66
94	An electrochemical sensor based on label-free functional allosteric molecular beacons for detection target DNA/miRNA. Biosensors and Bioelectronics, 2013, 41, 783-788.	5.3	65
95	Biostable L-DNAzyme for Sensing of Metal Ions in Biological Systems. Analytical Chemistry, 2016, 88, 1850-1855.	3.2	65
96	Integrated paper-based microfluidic devices for point-of-care testing. Analytical Methods, 2018, 10, 3567-3581.	1.3	65
97	Control of capillary behavior through target-responsive hydrogel permeability alteration for sensitive visual quantitative detection. Nature Communications, 2019, 10, 1036.	5.8	65
98	Highly Parallel Single-Molecule Amplification Approach Based on Agarose Droplet Polymerase Chain Reaction for Efficient and Cost-Effective Aptamer Selection. Analytical Chemistry, 2012, 84, 350-355.	3.2	64
99	A portable visual detection method based on a target-responsive DNA hydrogel and color change of gold nanorods. Chemical Communications, 2017, 53, 6375-6378.	2.2	64
100	Point-of-Care Assay of Telomerase Activity at Single-Cell Level via Gas Pressure Readout. Analytical Chemistry, 2017, 89, 8311-8318.	3.2	63
101	A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification. Biosensors and Bioelectronics, 2011, 26, 2796-2800.	5.3	61
102	Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. TrAC - Trends in Analytical Chemistry, 2019, 117, 69-77.	5.8	61
103	Target-responsive DNA hydrogel for non-enzymatic and visual detection of glucose. Analyst, The, 2018, 143, 1679-1684.	1.7	58
104	Selection of DNA aptamers against epidermal growth factor receptor with high affinity and specificity. Biochemical and Biophysical Research Communications, 2014, 453, 681-685.	1.0	57
105	Ultrasensitive and Facile Detection of MicroRNA via a Portable Pressure Meter. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 12526-12533.	4.0	57
106	Spherical Neutralizing Aptamer Inhibits SARS-CoV-2 Infection and Suppresses Mutational Escape. Journal of the American Chemical Society, 2021, 143, 21541-21548.	6.6	56
107	Evolution of DNA Aptamers through in Vitro Metastatic-Cell-Based Systematic Evolution of Ligands by Exponential Enrichment for Metastatic Cancer Recognition and Imaging. Analytical Chemistry, 2015, 87, 4941-4948.	3.2	55
108	A pressure-based bioassay for the rapid, portable and quantitative detection of C-reactive protein. Chemical Communications, 2016, 52, 8452-8454.	2.2	55

#	Article	IF	Citations
109	Lightâ€Switching Excimer Beacon Assays For Ribonuclease H Kinetic Study. ChemBioChem, 2008, 9, 355-359.	1.3	54
110	Digital-WGS: Automated, highly efficient whole-genome sequencing of single cells by digital microfluidics. Science Advances, 2020, 6, .	4.7	54
111	Selection of DNA Aptamers against Glioblastoma Cells with High Affinity and Specificity. PLoS ONE, 2012, 7, e42731.	1.1	52
112	Recent Progress in Aptamerâ€Based Functional Probes for Bioanalysis and Biomedicine. Chemistry - A European Journal, 2016, 22, 9886-9900.	1.7	52
113	SuperCT: a supervised-learning framework for enhanced characterization of single-cell transcriptomic profiles. Nucleic Acids Research, 2019, 47, e48-e48.	6.5	52
114	Hybrid Molecular Probe for Nucleic Acid Analysis in Biological Samples. Journal of the American Chemical Society, 2006, 128, 9986-9987.	6.6	51
115	Synthesis of Uniform-Size Hollow Silica Microspheres through Interfacial Polymerization in Monodisperse Water-in-Oil Droplets. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2711-2714.	4.0	50
116	Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein. Lab on A Chip, 2018, 18, 965-970.	3.1	50
117	Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nature Communications, 2020, 11, 2118.	5.8	50
118	A highly parallel microfluidic droplet method enabling single-molecule counting for digital enzyme detection. Biomicrofluidics, 2014, 8, 014110.	1.2	49
119	Simple and Rapid Functionalization of Gold Nanorods with Oligonucleotides Using an mPEG-SH/Tween 20-Assisted Approach. Langmuir, 2015, 31, 7869-7876.	1.6	48
120	Microfluidic-Integrated Multicolor Immunosensor for Visual Detection of HIV-1 p24 Antigen with the Naked Eye. Analytical Chemistry, 2020, 92, 11826-11833.	3.2	48
121	Synergetic Approach for Simple and Rapid Conjugation of Gold Nanoparticles with Oligonucleotides. ACS Applied Materials & Diterfaces, 2014, 6, 16800-16807.	4.0	47
122	Monitoring Nucleic Acids Using Molecular Beacons. Current Pharmaceutical Biotechnology, 2005, 6, 445-452.	0.9	46
123	A cyclic enzymatic amplification method for sensitive and selective detection of nucleic acids. Analyst, The, 2010, 135, 2069.	1.7	46
124	Identification, Characterization and Application of a G-Quadruplex Structured DNA Aptamer against Cancer Biomarker Protein Anterior Gradient Homolog 2. PLoS ONE, 2012, 7, e46393.	1.1	46
125	A Sequential Multidimensional Analysis Algorithm for Aptamer Identification based on Structure Analysis and Machine Learning. Analytical Chemistry, 2020, 92, 3307-3314.	3.2	45
126	Using DNA Aptamer Probe for Immunostaining of Cancer Frozen Tissues. Analytical Chemistry, 2015, 87, 1919-1924.	3.2	44

#	Article	IF	CITATIONS
127	Pyrene Excimer Nucleic Acid Probes for Biomolecule Signaling. Journal of Biomedical Nanotechnology, 2009, 5, 495-504.	0.5	42
128	Facile and Rapid Generation of Large-Scale Microcollagen Gel Array for Long-Term Single-Cell 3D Culture and Cell Proliferation Heterogeneity Analysis. Analytical Chemistry, 2014, 86, 2789-2797.	3.2	42
129	Positive carbon dots with dual roles of nanoquencher and reference signal for the ratiometric fluorescence sensing of DNA. Sensors and Actuators B: Chemical, 2018, 264, 193-201.	4.0	42
130	Visual Quantitative Detection of Circulating Tumor Cells with Single ell Sensitivity Using a Portable Microfluidic Device. Small, 2019, 15, 1804890.	5.2	42
131	Beyond Capture: Circulating Tumor Cell Release and Singleâ€Cell Analysis. Small Methods, 2019, 3, 1800544.	4.6	41
132	Linear molecular beacons for highly sensitive bioanalysis based on cyclic Exo III enzymatic amplification. Biosensors and Bioelectronics, 2011, 27, 119-124.	5.3	40
133	Preparation of Reversible Colorimetric Temperature Nanosensors and Their Application in Quantitative Two-Dimensional Thermo-Imaging. Analytical Chemistry, 2011, 83, 2434-2437.	3.2	40
134	Graphene Oxide Protected Nucleic Acid Probes for Bioanalysis and Biomedicine. Chemistry - A European Journal, 2013, 19, 10442-10451.	1.7	39
135	Label-Free Fluorescence Strategy for Sensitive Detection of Adenosine Triphosphate Using a Loop DNA Probe with Low Background Noise. Analytical Chemistry, 2014, 86, 6758-6762.	3.2	39
136	Preparation and electroâ€optical properties of polymer dispersed liquid crystal films with relatively low liquid crystal content. Polymers for Advanced Technologies, 2013, 24, 453-459.	1.6	38
137	Staining Traditional Colloidal Gold Test Strips with Pt Nanoshell Enables Quantitative Point-of-Care Testing with Simple and Portable Pressure Meter Readout. ACS Applied Materials & Samp; Interfaces, 2019, 11, 1800-1806.	4.0	38
138	Aptamer-Based Liquid Biopsy. ACS Applied Bio Materials, 2020, 3, 2743-2764.	2.3	38
139	A Gâ€Quadruplex Aptamer Inhibits the Phosphatase Activity of Oncogenic Protein Shp2 in vitro. ChemBioChem, 2011, 12, 424-430.	1.3	37
140	Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. Chemical Communications, 2014, 50, 7646-7648.	2,2	37
141	Imaging Commensal Microbiota and Pathogenic Bacteria in the Gut. Accounts of Chemical Research, 2021, 54, 2076-2087.	7.6	37
142	Microfluidic approaches to rapid and efficient aptamer selection. Biomicrofluidics, 2014, 8, 041501.	1.2	36
143	Evolution of DNA aptamers for malignant brain tumor gliosarcoma cell recognition and clinical tissue imaging. Biosensors and Bioelectronics, 2016, 80, 1-8.	5. 3	36
144	Gas-generating reactions for point-of-care testing. Analyst, The, 2018, 143, 1294-1304.	1.7	36

#	Article	IF	Citations
145	Homogeneous, Lowâ€volume, Efficient, and Sensitive Quantitation of Circulating Exosomal PD‣1 for Cancer Diagnosis and Immunotherapy Response Prediction. Angewandte Chemie, 2020, 132, 4830-4835.	1.6	36
146	Backbone modification promotes peroxidase activity of G-quadruplex-based DNAzyme. Chemical Communications, 2012, 48, 8347.	2.2	34
147	Microfluidic fabrication of cholesteric liquid crystal core–shell structures toward magnetically transportable microlasers. Lab on A Chip, 2016, 16, 1206-1213.	3.1	34
148	Microwell Array Method for Rapid Generation of Uniform Agarose Droplets and Beads for Single Molecule Analysis. Analytical Chemistry, 2018, 90, 2570-2577.	3.2	34
149	Molecular Crowding Evolution for Enabling Discovery of Enthalpy-Driven Aptamers for Robust Biomedical Applications. Analytical Chemistry, 2019, 91, 10879-10886.	3.2	34
150	Single cell transcriptomics: moving towards multi-omics. Analyst, The, 2019, 144, 3172-3189.	1.7	34
151	Rapid, real-time chemiluminescent detection of DNA mutation based on digital microfluidics and pyrosequencing. Biosensors and Bioelectronics, 2019, 126, 551-557.	5. 3	34
152	A Highly Sensitive, Accurate, and Automated Single-Cell RNA Sequencing Platform with Digital Microfluidics. Analytical Chemistry, 2020, 92, 8599-8606.	3.2	34
153	Quantification of Bacterial Metabolic Activities in the Gut by ⟨scp⟩d⟨ scp⟩â€Amino Acidâ€Based Inâ€Vivo Labeling. Angewandte Chemie - International Edition, 2020, 59, 11923-11926.	7.2	34
154	DNAâ€Mediated Morphological Control of Silver Nanoparticles. Small, 2016, 12, 5449-5487.	5.2	33
155	Caged molecular beacons: controlling nucleic acid hybridization with light. Chemical Communications, 2011, 47, 5708.	2.2	32
156	Cancer stem cell targeting: the next generation of cancer therapy and molecular imaging. Therapeutic Delivery, 2012, 3, 227-244.	1.2	32
157	Frequency-enhanced transferrin receptor antibody-labelled microfluidic chip (FETAL-Chip) enables efficient enrichment of circulating nucleated red blood cells for non-invasive prenatal diagnosis. Lab on A Chip, 2018, 18, 2749-2756.	3.1	32
158	Bacterial Extracellular Electron Transfer Occurs in Mammalian Gut. Analytical Chemistry, 2019, 91, 12138-12141.	3.2	32
159	Selection of Aptamers Against Vimentin for Isolation and Release of Circulating Tumor Cells Undergoing Epithelial Mesenchymal Transition. Analytical Chemistry, 2020, 92, 5178-5184.	3.2	32
160	Spatially Patterned Neutralizing Icosahedral DNA Nanocage for Efficient SARS-CoV-2 Blocking. Journal of the American Chemical Society, 2022, 144, 13146-13153.	6.6	32
161	Threeâ€Dimensional Quantitative Imaging of Native Microbiota Distribution in the Gut. Angewandte Chemie - International Edition, 2021, 60, 3055-3061.	7.2	31
162	Detection of T4 Polynucleotide Kinase via Allosteric Aptamer Probe Platform. ACS Applied Materials & Lamp; Interfaces, 2017, 9, 38356-38363.	4.0	30

#	Article	IF	Citations
163	Aptamer Generated by Cell-SELEX for Specific Targeting of Human Glioma Cells. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 9306-9315.	4.0	30
164	Allosteric Molecular Beacons for Sensitive Detection of Nucleic Acids, Proteins, and Small Molecules in Complex Biological Samples. Chemistry - A European Journal, 2011, 17, 9042-9046.	1.7	29
165	A Shake&Read distance-based microfluidic chip as a portable quantitative readout device for highly sensitive point-of-care testing. Chemical Communications, 2016, 52, 13377-13380.	2.2	29
166	Auto-affitech: an automated ligand binding affinity evaluation platform using digital microfluidics with a bidirectional magnetic separation method. Lab on A Chip, 2020, 20, 1577-1585.	3.1	29
167	Stable Colloidosomes Formed by Self-Assembly of Colloidal Surfactant for Highly Robust Digital PCR. Analytical Chemistry, 2019, 91, 6003-6011.	3.2	28
168	A dual-signal amplification method for the DNA detection based on exonuclease III. Biosensors and Bioelectronics, 2014, 61, 370-373.	5.3	27
169	In Situ Pt Staining Method for Simple, Stable, and Sensitive Pressure-Based Bioassays. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13390-13396.	4.0	27
170	Centrifugal-Driven Droplet Generation Method with Minimal Waste for Single-Cell Whole Genome Amplification. Analytical Chemistry, 2019, 91, 13611-13619.	3.2	27
171	A tridecaptin-based fluorescent probe for differential staining of Gram-negative bacteria. Analytical and Bioanalytical Chemistry, 2019, 411, 4017-4023.	1.9	27
172	TaqMan probe array for quantitative detection of DNA targets. Nucleic Acids Research, 2006, 34, e4-e4.	6.5	26
173	Sensitive, Rapid, and Automated Detection of DNA Methylation Based on Digital Microfluidics. ACS Applied Materials & Detection of DNA Methylation Based on Digital Microfluidics. ACS Applied Materials & Detection of DNA Methylation Based on Digital Microfluidics. ACS Applied Materials & Detection of DNA Methylation Based on Digital Microfluidics. ACS	4.0	26
174	A label-free fluorescence strategy for sensitive detection of ATP based on the ligation-triggered super-sandwich. Biosensors and Bioelectronics, 2015, 63, 562-565.	5.3	25
175	Evolution of Nucleic Acid Aptamers Capable of Specifically Targeting Glioma Stem Cells via Cell-SELEX. Analytical Chemistry, 2019, 91, 8070-8077.	3.2	25
176	Single-Cell Digital Microfluidic Mass Spectrometry Platform for Efficient and Multiplex Genotyping of Circulating Tumor Cells. Analytical Chemistry, 2022, 94, 1108-1117.	3.2	25
177	Single-molecule photon-fueled DNA nanoscissors for DNA cleavage based on the regulation of substrate binding affinity by azobenzene. Chemical Communications, 2013, 49, 8716.	2.2	24
178	Target-responsive DNAzyme hydrogel for portable colorimetric detection of lanthanide(III) ions. Science China Chemistry, 2017, 60, 293-298.	4.2	24
179	Highly Sensitive Minimal Residual Disease Detection by Biomimetic Multivalent Aptamer Nanoclimber Functionalized Microfluidic Chip. Small, 2020, 16, e2000949.	5.2	24
180	Pyrene Excimer for DNA Sensors. Current Organic Chemistry, 2011, 15, 465-476.	0.9	23

#	Article	IF	CITATIONS
181	Control of CRISPR-Cas9 with small molecule-activated allosteric aptamer regulating sgRNAs. Chemical Communications, 2019, 55, 12223-12226.	2.2	23
182	Efficient Isolation and Phenotypic Profiling of Circulating Hepatocellular Carcinoma Cells via a Combinatorial-Antibody-Functionalized Microfluidic Synergetic-Chip. Analytical Chemistry, 2020, 92, 15229-15235.	3.2	23
183	Multichannel Paper Chip-Based Gas Pressure Bioassay for Simultaneous Detection of Multiple MicroRNAs. ACS Applied Materials & Samp; Interfaces, 2021, 13, 15008-15016.	4.0	23
184	Digital Microfluidic Thermal Control Chip-Based Multichannel Immunosensor for Noninvasively Detecting Acute Myocardial Infarction. Analytical Chemistry, 2021, 93, 15033-15041.	3.2	23
185	Spherical neutralizing aptamer suppresses SARS-CoV-2 Omicron escape. Nano Today, 2022, 44, 101499.	6.2	23
186	Ultrasensitive and portable assay of mercury (II) ions via gas pressure as readout. Biosensors and Bioelectronics, 2018, 122, 32-36.	5.3	22
187	Distance-based paper/PMMA integrated ELISA-chip for quantitative detection of immunoglobulin G. Lab on A Chip, 2020, 20, 3625-3632.	3.1	22
188	Directional Regulation of Enzyme Pathways through the Control of Substrate Channeling on a DNA Origami Scaffold. Angewandte Chemie, 2016, 128, 7609-7612.	1.6	21
189	Engineering Molecular Beacons for Intracellular Imaging. International Journal of Molecular Imaging, 2012, 2012, 1-10.	1.3	20
190	A diazirine-based photoaffinity probe for facile and efficient aptamer–protein covalent conjugation. Chemical Communications, 2014, 50, 4891-4894.	2.2	20
191	DNA aptamers from whole-cell SELEX as new diagnostic agents against glioblastoma multiforme cells. Analyst, The, 2018, 143, 2267-2275.	1.7	20
192	Design and synthesis of <i>ortho</i> -phthalaldehyde phosphoramidite for single-step, rapid, efficient and chemoselective coupling of DNA with proteins under physiological conditions. Chemical Communications, 2018, 54, 9434-9437.	2.2	20
193	Revealing the in vivo growth and division patterns of mouse gut bacteria. Science Advances, 2020, 6, .	4.7	20
194	Aptamer Blocking Strategy Inhibits SARSâ€CoVâ€2 Virus Infection. Angewandte Chemie, 2021, 133, 10354-10360.	1.6	20
195	A Fully Automated and Integrated Microfluidic System for Efficient CTC Detection and Its Application in Hepatocellular Carcinoma Screening and Prognosis. ACS Applied Materials & Samp; Interfaces, 2021, 13, 30174-30186.	4.0	20
196	Label-free visual detection of nucleic acids in biological samples with single-base mismatch detection capability. Chemical Communications, 2012, 48, 576-578.	2.2	19
197	Afi-Chip: An Equipment-Free, Low-Cost, and Universal Binding Ligand Affinity Evaluation Platform. Analytical Chemistry, 2016, 88, 8294-8301.	3.2	19
198	Isolation, Detection, and Antigenâ€Based Profiling of Circulating Tumor Cells Using a Sizeâ€Dictated Immunocapture Chip. Angewandte Chemie, 2017, 129, 10821-10825.	1.6	19

#	Article	IF	CITATIONS
199	Selection and identification of transferrin receptor-specific peptides as recognition probes for cancer cells. Analytical and Bioanalytical Chemistry, 2018, 410, 1071-1077.	1.9	19
200	Quantification of Bacterial Metabolic Activities in the Gut by <scp>d</scp> â€Amino Acidâ€Based Inâ€Vivo Labeling. Angewandte Chemie, 2020, 132, 12021-12024.	1.6	19
201	HUNTER-Chip: Bioinspired Hierarchically Aptamer Structure-Based Circulating Fetal Cell Isolation for Non-Invasive Prenatal Testing. Analytical Chemistry, 2021, 93, 7235-7241.	3.2	19
202	Direct and Simultaneous Identification of Multiple Mitochondrial Reactive Oxygen Species in Living Cells Using a SERS Borrowing Strategy. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
203	Bandwidth-controllable reflective cholesteric gels from photo- and thermally-induced processes. Liquid Crystals, 2010, 37, 311-316.	0.9	18
204	Centrifugal micropipette-tip with pressure signal readout for portable quantitative detection of myoglobin. Chemical Communications, 2017, 53, 11774-11777.	2.2	18
205	Microfluidic generation of cholesteric liquid crystal droplets with an integrative cavity for dual-gain and controllable lasing. Lab on A Chip, 2019, 19, 3116-3122.	3.1	18
206	3D-printed integrative probeheads for magnetic resonance. Nature Communications, 2020, 11, 5793.	5.8	18
207	Scaling Up DNA Self-Assembly. ACS Applied Bio Materials, 2020, 3, 2805-2815.	2.3	18
208	<i>In Situ</i> Visualization of PD-L1-Specific Glycosylation on Tissue Sections. Analytical Chemistry, 2021, 93, 15958-15963.	3.2	18
209	Quantificationâ€Promoted Discovery of Glycosylated Exosomal PD‣1 as a Potential Tumor Biomarker. Small Methods, 2022, 6, .	4.6	18
210	Studies on electro-optical properties of polymer dispersed liquid crystal films based on epoxy resins prepared by UV-initiated cationic polymerisation. Liquid Crystals, 2012, 39, 313-321.	0.9	17
211	Using aptamers to elucidate esophageal cancer clinical samples. Scientific Reports, 2016, 5, 18516.	1.6	17
212	Singleâ€Cell Sequencing Methodologies: From Transcriptome to Multiâ€Dimensional Measurement. Small Methods, 2021, 5, e2100111.	4.6	17
213	Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. Lab on A Chip, 2021, 21, 3829-3849.	3.1	17
214	SARS-CoV-2-Encoded MiRNAs Inhibit Host Type I Interferon Pathway and Mediate Allelic Differential Expression of Susceptible Gene. Frontiers in Immunology, 2021, 12, 767726.	2.2	17
215	Cyclic enzymatic amplification method (CEAM) based on exonuclease III for highly sensitive bioanalysis. Methods, 2013, 63, 202-211.	1.9	16
216	Inhibition of the superantigenic activities of Staphylococcal enterotoxin A by an aptamer antagonist. Toxicon, 2016, 119, 21-27.	0.8	16

#	Article	IF	CITATIONS
217	Selection and applications of functional nucleic acids for infectious disease detection and prevention. Analytical and Bioanalytical Chemistry, 2021, 413, 4563-4579.	1.9	16
218	Microfluidic devices with simplified signal readout. Sensors and Actuators B: Chemical, 2021, 339, 129730.	4.0	16
219	Trifluoromethylated nucleic acid analogues capable of self-assembly through hydrophobic interactions. Chemical Science, 2014, 5, 4076-4081.	3.7	15
220	Antibody-engineered red blood cell interface for high-performance capture and release of circulating tumor cells. Bioactive Materials, 2022, 11, 32-40.	8.6	15
221	Chameleon clothes for quantitative oxygen imaging. Journal of Materials Chemistry, 2011, 21, 17651.	6.7	14
222	Single-Molecule Force Spectroscopic Studies on Intra- and Intermolecular Interactions of G-Quadruplex Aptamer with Target Shp2 Protein. Journal of Physical Chemistry B, 2012, 116, 11397-11404.	1.2	14
223	Cilo-seq: highly sensitive cell-in-library-out single-cell transcriptome sequencing with digital microfluidics. Lab on A Chip, 2022, 22, 1971-1979.	3.1	14
224	Detection of DNA methyltransferase activity using allosteric molecular beacons. Analyst, The, 2016, 141, 579-584.	1.7	13
225	Exosomal PD-L1: an effective liquid biopsy target to predict immunotherapy response. National Science Review, 2019, 6, 1103-1104.	4.6	13
226	LINTâ€Web: A Webâ€Based Lipidomic Data Mining Tool Using Intraâ€Omic Integrative Correlation Strategy. Small Methods, 2021, 5, e2100206.	4.6	13
227	Stimuli-Responsive Microfluidic Interface Enables Highly Efficient Capture and Release of Circulating Fetal Cells for Non-Invasive Prenatal Testing. Analytical Chemistry, 2020, 92, 9281-9286.	3.2	13
228	Interfacing droplet microfluidics with antibody barcodes for multiplexed single-cell protein secretion profiling. Lab on A Chip, 2021, 21, 4823-4830.	3.1	13
229	Using Molecular Beacons for Sensitive Fluorescence Assays of the Enzymatic Cleavage of Nucleic Acids. , 2006, 335, 71-82.		12
230	Stimulus-Responsive Microfluidic Interface Enables Efficient Enrichment and Cytogenetic Profiling of Circulating Myeloma Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14920-14927.	4.0	12
231	Reversible Immunoaffinity Interface Enables Dynamic Manipulation of Trapping Force for Accumulated Capture and Efficient Release of Circulating Rare Cells. Advanced Science, 2021, 8, e2102070.	5 . 6	12
232	An electrochemical method for a rapid and sensitive immunoassay on digital microfluidics with integrated indium tin oxide electrodes coated on a PET film. Analyst, The, 2021, 146, 4473-4479.	1.7	12
233	Recent Advances in Aptamer-Based Liquid Biopsy. ACS Applied Bio Materials, 2022, 5, 1954-1979.	2.3	12
234	Amplified visualization and function exploration of exosomal protein-specific glycosylation using hybridization chain reaction from non-functional epitope. Science China Chemistry, 2022, 65, 1204-1211.	4.2	12

#	Article	IF	CITATIONS
235	An Allosteric-Probe for Detection of Alkaline Phosphatase Activity and Its Application in Immunoassay. Frontiers in Chemistry, 2018, 6, 618.	1.8	11
236	Crosstalk-free colloidosomes for high throughput single-molecule protein analysis. Science China Chemistry, 2020, 63, 1507-1514.	4.2	11
237	Activation of Aptamers with Gain of Function by Smallâ€Moleculeâ€Clipping of Intramolecular Motifs. Angewandte Chemie - International Edition, 2021, 60, 6021-6028.	7.2	11
238	Imaging the in vivo growth patterns of bacteria in human gut Microbiota. Gut Microbes, 2021, 13, 1960134.	4.3	11
239	Integrated microfluidic devices for in vitro diagnostics at point of care. Aggregate, 2022, 3, .	5.2	11
240	Decoding Expression Dynamics of Protein and Transcriptome at the Single-Cell Level in Paired Picoliter Chambers. Analytical Chemistry, 2022, 94, 8164-8173.	3.2	11
241	DNA-Programmed Orientation-Ordered Multivalent Microfluidic Interface for Liquid Biopsy. Analytical Chemistry, 2022, 94, 8766-8773.	3.2	11
242	Competitive excitation and osmotic-pressure-mediated control of lasing modes in cholesteric liquid crystal microshells. Applied Physics Letters, 2017, 110, .	1.5	10
243	Catalase-linked immunosorbent pressure assay for portable quantitative analysis. Analyst, The, 2019, 144, 4188-4193.	1.7	10
244	Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data. Nucleic Acids Research, 2021, 49, e18-e18.	6.5	10
245	Biodistributions of <scp>l</scp> , <scp>d</scp> -Transpeptidases in Gut Microbiota Revealed by <i>ln Vivo</i> Labeling with Peptidoglycan Analogs. ACS Chemical Biology, 2021, 16, 1164-1171.	1.6	10
246	Auto-Panning: a highly integrated and automated biopanning platform for peptide screening. Lab on A Chip, 2021, 21, 2702-2710.	3.1	10
247	Metabolic Labeling of Peptidoglycan with NIRâ€I Dye Enables In Vivo Imaging of Gut Microbiota. Angewandte Chemie, 2020, 132, 2650-2655.	1.6	9
248	Coupling Aptamerâ€based Protein Tagging with Metabolic Glycan Labeling for In Situ Visualization and Biological Function Study of Exosomal Proteinâ€Specific Glycosylation. Angewandte Chemie, 2021, 133, 18259-18263.	1.6	9
249	Mapping Gene Expression in the Spatial Dimension. Small Methods, 2021, 5, e2100722.	4.6	9
250	Structure―and Interactionâ€Based Design of Antiâ€SARS oVâ€⊋ Aptamers. Chemistry - A European Journal, 2022, 28, .	1.7	9
251	Reversible and Highly Ordered Biointerfaces for Efficient Capture and Nondestructive Release of Circulating Tumor Cells. Analytical Chemistry, 0, , .	3.2	9
252	LINEAGE: Label-free identification of endogenous informative single-cell mitochondrial RNA mutation for lineage analysis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8

#	Article	IF	CITATIONS
253	Wellâ€Pairedâ€Seq: A Sizeâ€Exclusion and Locally Quasiâ€Static Hydrodynamic Microwell Chip for Singleâ€Cell RNAâ€Seq. Small Methods, 2022, 6, e2200341.	4.6	8
254	Magnetofluid-Integrated Multicolor Immunochip for Visual Analysis of Neutralizing Antibodies to SARS-CoV-2 Variants. Analytical Chemistry, 2022, 94, 8458-8465.	3.2	8
255	The influence of charged ions on the electro-optical properties of polymer-dispersed liquid crystal films prepared by ultraviolet-initiated cationic polymerization. Journal of Applied Physics, 2012, 112, 043106.	1.1	7
256	Retrograde en bloc resection for non-muscle invasive bladder tumor can reduce the risk of seeding cancer cells into the peripheral circulation. World Journal of Surgical Oncology, 2020, 18, 33.	0.8	7
257	Molecular behavior of the aptamer HJ24 self-assembled on highly oriented pyrolytic graphite (HOPG). Science China Chemistry, 2015, 58, 1858-1865.	4.2	6
258	Portable detection of serum HER-2 in breast cancer by a pressure-based platform. Analytical and Bioanalytical Chemistry, 2018, 410, 7489-7498.	1.9	6
259	pH-Triggered Silk Fibroin/Alginate Structures Fabricated in Aqueous Two-Phase System. ACS Biomaterials Science and Engineering, 2019, 5, 5897-5905.	2.6	6
260	DNA Nanolithography Enables a Highly Ordered Recognition Interface in a Microfluidic Chip for the Efficient Capture and Release of Circulating Tumor Cells. Angewandte Chemie, 2020, 132, 14219-14223.	1.6	6
261	In situ Raman enhancement strategy for highly sensitive and quantitative lateral flow assay. Analytical and Bioanalytical Chemistry, 2022, 414, 507-513.	1.9	6
262	A polypyrrole-mediated photothermal biosensor with a temperature and pressure dual readout for the detection of protein biomarkers. Analyst, The, 2022, 147, 2671-2677.	1.7	6
263	Selection and Application of DNA Aptamer Against Oncogene Amplified in Breast Cancer 1. Journal of Molecular Evolution, 2015, 81, 179-185.	0.8	5
264	Highly paralleled emulsion droplets for efficient isolation, amplification, and screening of cancer biomarker binding phages. Lab on A Chip, 2021, 21, 1175-1184.	3.1	5
265	Tracing Tumorâ€Derived Exosomal PDâ€L1 by Dualâ€Aptamer Activated Proximityâ€Induced Droplet Digital PCR. Angewandte Chemie, 2021, 133, 7660-7664.	1.6	5
266	Visualizing the Growth and Division of Rat Gut Bacteria by D-Amino Acid-Based in vivo Labeling and FISH Staining. Frontiers in Molecular Biosciences, 2021, 8, 681938.	1.6	5
267	<scp>d</scp> â€Amino Acidâ€Based Metabolic Labeling Enables a Fast Antibiotic Susceptibility Test of Both Isolated Bacteria and Bronchoalveolar Lavage Fluid. Advanced Healthcare Materials, 2022, 11, e2101736.	3.9	5
268	Investigation of the hybrid molecular probe for intracellular studies. Analytical and Bioanalytical Chemistry, 2008, 391, 983-991.	1.9	4
269	Analytical chemistry for infectious disease detection and prevention. Analytical and Bioanalytical Chemistry, 2021, 413, 4561-4562.	1.9	4
270	HCV poly U/UC sequence–induced inflammation leads to metabolic disorders in vulvar lichen sclerosis. Life Science Alliance, 2021, 4, e202000906.	1.3	4

#	Article	IF	CITATIONS
271	Agarose Droplet Microfluidics for Highly Parallel and Efficient Single Molecule Emulsion PCR. Methods in Molecular Biology, 2013, 949, 413-422.	0.4	3
272	Innentitelbild: Bioinspired Engineering of a Multivalent Aptamer-Functionalized Nanointerface to Enhance the Capture and Release of Circulating Tumor Cells (Angew. Chem. 8/2019). Angewandte Chemie, 2019, 131, 2180-2180.	1.6	3
273	RNA can function as molecular chaperone for RNA folding. Giant, 2020, 1, 100008.	2.5	3
274	Molecular Aptamer Beacons. , 2013, , 175-194.		3
275	Polymerized cholesteric liquid crystal microdisks generated by centrifugal microfluidics towards tunable laser emissions [Invited]. Chinese Optics Letters, 2020, 18, 080006.	1.3	3
276	Selective, user-friendly, highly porous, efficient, and rapid (SUPER) filter for isolation and analysis of rare tumor cells. Lab on A Chip, 2022, 22, 367-376.	3.1	3
277	Quantification of Intracellular Proteins in Single Cells Based on Engineered Picoliter Droplets. Langmuir, 2022, 38, 7929-7937.	1.6	3
278	Effects of Molecular Crowding on G-Quadruplex-hemin Mediated Peroxidase Activity. Chemical Research in Chinese Universities, 2020, 36, 247-253.	1.3	2
279	Dispen-Seq: a single-microparticle dispenser based strategy towards flexible cell barcoding for single-cell RNA sequencing. Science China Chemistry, 2021, 64, 650-659.	4.2	2
280	Functional Biomaterials for Diagnosis and Therapeutics of Infectious Diseases. ACS Applied Bio Materials, 2021, 4, 3727-3728.	2.3	2
281	Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays. Nature Communications, 2022, 13, 2707.	5.8	2
282	The Clinical Application of Aptamers: Future Challenges and Prospects. , 2015, , 339-352.		1
283	Synthesis of Gold Nanoparticles and Functionalization With DNA for Bioanalytical Applications. , 2019, , $111-136$.		1
284	Molecular science <i>vs</i> . molecular medicine. National Science Review, 2019, 6, 1102-1102.	4.6	1
285	Activation of Aptamers with Gain of Function by Smallâ€Moleculeâ€Clipping of Intramolecular Motifs. Angewandte Chemie, 2021, 133, 6086-6093.	1.6	1
286	Threeâ€Dimensional Quantitative Imaging of Native Microbiota Distribution in the Gut. Angewandte Chemie, 2021, 133, 3092-3098.	1.6	1
287	Direct and Simultaneous Identification of Multiple Mitochondrial Reactive Oxygen Species in Living Cells Using a SERS Borrowing Strategy. Angewandte Chemie, 0, , .	1.6	1
288	Locked nucleic acid molecular beacons for intracellular mRNA monitoring. , 2006, , .		0

#	Article	IF	CITATIONS
289	Inside Cover: Allosteric Molecular Beacons for Sensitive Detection of Nucleic Acids, Proteins, and Small Molecules in Complex Biological Samples (Chem. Eur. J. 33/2011). Chemistry - A European Journal, 2011, 17, 8998-8998.	1.7	o
290	Frontispiece: Translating Molecular Recognition into a Pressure Signal to enable Rapid, Sensitive, and Portable Biomedical Analysis. Angewandte Chemie - International Edition, 2015, 54, .	7.2	O
291	Cancer Diagnostics: Visual Quantitative Detection of Circulating Tumor Cells with Single ell Sensitivity Using a Portable Microfluidic Device (Small 14/2019). Small, 2019, 15, 1970075.	5.2	O
292	Nucleic Acids: Chemistry, Nanotechnology, and Bioapplications Forum in Honor of Professor Weihong Tan on His 60th Birthday. ACS Applied Bio Materials, 2020, 3, 2543-2544.	2.3	0
293	Innenrücktitelbild: Aptamer Blocking Strategy Inhibits SARS oVâ€2 Virus Infection (Angew. Chem.) Tj ETQq1	1.0.7843	14 rgBT /Ov
294	XMUâ€100 Anniversary Special Issue. Small Methods, 2021, 5, e2100164.	4.6	0
295	Inside Front Cover: Singleâ€Cell Sequencing Methodologies: From Transcriptome to Multiâ€Dimensional Measurement (Small Methods 6/2021). Small Methods, 2021, 5, 2170024.	4.6	O
296	LINTâ€Web: A Webâ€Based Lipidomic Data Mining Tool Using Intraâ€Omic Integrative Correlation Strategy (Small Methods 9/2021). Small Methods, 2021, 5, 2170040.	4.6	0
297	Engineering Molecular Beacons for Advanced Applications. , 2013, , 107-122.		0