
Manuel Comabella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3532069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.	27.8	2,400
2	Neurofilaments as biomarkers in neurological disorders. Nature Reviews Neurology, 2018, 14, 577-589.	10.1	1,177
3	Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science, 2019, 365, .	12.6	710
4	A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology, 2009, 73, 1914-1922.	1.1	653
5	Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain, 2015, 138, 1863-1874.	7.6	403
6	Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis?. Neurology, 2008, 70, 1079-1083.	1.1	317
7	Defining the response to interferonâ€Î² in relapsingâ€remitting multiple sclerosis patients. Annals of Neurology, 2006, 59, 344-352.	5.3	295
8	Baseline MRI predicts future attacks and disability in clinically isolated syndromes. Neurology, 2006, 67, 968-972.	1.1	253
9	Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Multiple Sclerosis Journal, 2015, 21, 1013-1024.	3.0	249
10	Cerebrospinal fluid chitinase 3-like 1 levels are associated with conversion to multiple sclerosis. Brain, 2010, 133, 1082-1093.	7.6	240
11	Multicentre comparison of a diagnostic assay: aquaporin-4 antibodies in neuromyelitis optica. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1005-1015.	1.9	228
12	Measures in the first year of therapy predict the response to interferon Î ² in MS. Multiple Sclerosis Journal, 2009, 15, 848-853.	3.0	215
13	Body fluid biomarkers in multiple sclerosis. Lancet Neurology, The, 2014, 13, 113-126.	10.2	204
14	Consensus guidelines for lumbar puncture in patients with neurological diseases. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2017, 8, 111-126.	2.4	197
15	Elevated interleukin-12 in progressive multiple sclerosis correlates with disease activity and is normalized by pulse cyclophosphamide therapy Journal of Clinical Investigation, 1998, 102, 671-678.	8.2	197
16	A type I interferon signature in monocytes is associated with poor response to interferon-β in multiple sclerosis. Brain, 2009, 132, 3353-3365.	7.6	186
17	Elevated Epstein–Barr virusâ€encoded nuclear antigenâ€1 immune responses predict conversion to multiple sclerosis. Annals of Neurology, 2010, 67, 159-169.	5.3	181
18	Plasma osteopontin levels in multiple sclerosis. Journal of Neuroimmunology, 2005, 158, 231-239.	2.3	171

#	Article	IF	CITATIONS
19	Brainstem lesions in clinically isolated syndromes. Neurology, 2010, 75, 1933-1938.	1.1	164
20	Network-Based Multiple Sclerosis Pathway Analysis with GWAS Data from 15,000 Cases and 30,000 Controls. American Journal of Human Genetics, 2013, 92, 854-865.	6.2	164
21	Genome-Wide Pharmacogenomic Analysis of the Response to Interferon Beta Therapy in Multiple Sclerosis. Archives of Neurology, 2008, 65, 337-44.	4.5	154
22	Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain, 2015, 138, 918-931.	7.6	147
23	Transcription-Based Prediction of Response to IFNÎ ² Using Supervised Computational Methods. PLoS Biology, 2004, 3, e2.	5.6	144
24	FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nature Medicine, 2014, 20, 272-282.	30.7	141
25	Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 1802-1809.	3.0	133
26	Immunopathogenesis of multiple sclerosis. Clinical Immunology, 2012, 142, 2-8.	3.2	128
27	Neurofilament light chain and oligoclonal bands are prognostic biomarkers in radiologically isolated syndrome. Brain, 2018, 141, 1085-1093.	7.6	115
28	Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.	28.9	115
29	Assessment of different treatment failure criteria in a cohort of relapsing–remitting multiple sclerosis patients treated with interferon β: Implications for clinical trials. Annals of Neurology, 2002, 52, 400-406.	5.3	114
30	Predicting responders to therapies for multiple sclerosis. Nature Reviews Neurology, 2009, 5, 553-560.	10.1	114
31	COVIDâ€19 in multiple sclerosis patients: susceptibility, severity risk factors and serological response. European Journal of Neurology, 2021, 28, 3384-3395.	3.3	111
32	Tumor necrosis factor alpha (TNF-α), anti-TNF-α and demyelination revisited: An ongoing story. Journal of Neuroimmunology, 2011, 234, 1-6.	2.3	109
33	ls optic neuritis more benign than other first attacks in multiple sclerosis?. Annals of Neurology, 2005, 57, 210-215.	5.3	108
34	Relationship between MRI lesion activity and response to IFN-β in relapsing–remitting multiple sclerosis patients. Multiple Sclerosis Journal, 2008, 14, 479-484.	3.0	104
35	Genome-wide Scan of 500Â000 Single-Nucleotide Polymorphisms Among Responders and Nonresponders to Interferon Beta Therapy in Multiple Sclerosis. Archives of Neurology, 2009, 66, 972-8.	4.5	104
36	Environmental modifiable risk factors for multiple sclerosis: Report from the 2016 ECTRIMS focused workshop. Multiple Sclerosis Journal, 2018, 24, 590-603.	3.0	101

#	Article	IF	CITATIONS
37	Serum neurofilament light as a biomarker in progressive multiple sclerosis. Neurology, 2020, 95, 436-444.	1.1	100
38	ldentification of a Novel Risk Locus for Multiple Sclerosis at 13q31.3 by a Pooled Genome-Wide Scan of 500,000 Single Nucleotide Polymorphisms. PLoS ONE, 2008, 3, e3490.	2.5	99
39	The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain, 2018, 141, 1075-1084.	7.6	98
40	Tyrosine kinase 2 variant influences T lymphocyte polarization and multiple sclerosis susceptibility. Brain, 2011, 134, 693-703.	7.6	96
41	NLRP3 inflammasome is associated with the response to IFN-β in patients with multiple sclerosis. Brain, 2015, 138, 644-652.	7.6	93
42	NLRP3 inflammasome as prognostic factor and therapeutic target in primary progressive multiple sclerosis patients. Brain, 2020, 143, 1414-1430.	7.6	92
43	Metabolomic signatures associated with disease severity in multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e321.	6.0	89
44	Biomarkers in Multiple Sclerosis. Cold Spring Harbor Perspectives in Medicine, 2019, 9, a029058.	6.2	88
45	Neurofilament ELISA validation. Journal of Immunological Methods, 2010, 352, 23-31.	1.4	86
46	Neurofilament light chain level is a weak risk factor for the development of MS. Neurology, 2016, 87, 1076-1084.	1.1	85
47	Circulating microparticles reflect treatment effects and clinical status in multiple sclerosis. Biomarkers in Medicine, 2014, 8, 653-661.	1.4	84
48	The autoimmune disease-associated KIF5A, CD226 and SH2B3 gene variants confer susceptibility for multiple sclerosis. Genes and Immunity, 2010, 11, 439-445.	4.1	79
49	Spinal cord lesions: A modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Multiple Sclerosis Journal, 2018, 24, 301-312.	3.0	79
50	Natural killer cell phenotype and clinical response to interferon-beta therapy in multiple sclerosis. Clinical Immunology, 2011, 141, 348-356.	3.2	72
51	Genomics in multiple sclerosis—Current state and future directions. Journal of Neuroimmunology, 2007, 187, 1-8.	2.3	66
52	Multiple sclerosis: current treatment algorithms. Current Opinion in Neurology, 2011, 24, 230-237.	3.6	65
53	PML risk stratification using anti-JCV antibody index and L-selectin. Multiple Sclerosis Journal, 2016, 22, 1048-1060.	3.0	62
54	Targeting dendritic cells to treat multiple sclerosis. Nature Reviews Neurology, 2010, 6, 499-507.	10.1	61

#	Article	IF	CITATIONS
55	MANBA, CXCR5, SOX8, RPS6KB1 and ZBTB46 are genetic risk loci for multiple sclerosis. Brain, 2013, 136, 1778-1782.	7.6	60
56	Disability progression markers over 6–12 years in interferon-β-treated multiple sclerosis patients. Multiple Sclerosis Journal, 2018, 24, 322-330.	3.0	60
57	Identification of a functional variant in the <i>KIF5A-CYP27B1-METTL1-FAM119B</i> locus associated with multiple sclerosis. Journal of Medical Genetics, 2013, 50, 25-33.	3.2	59
58	A cytokine gene screen uncovers SOCS1 as genetic risk factor for multiple sclerosis. Genes and Immunity, 2012, 13, 21-28.	4.1	56
59	Change in the clinical activity of multiple sclerosis after treatment switch for suboptimal response. European Journal of Neurology, 2012, 19, 899-904.	3.3	55
60	Do multimodal evoked potentials add information to MRI in clinically isolated syndromes?. Multiple Sclerosis Journal, 2010, 16, 55-61.	3.0	54
61	Chitinase 3-like 1 plasma levels are increased in patients with progressive forms of multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 983-990.	3.0	54
62	Genetic variants are major determinants of CSF antibody levels in multiple sclerosis. Brain, 2015, 138, 632-643.	7.6	54
63	Cognitive impairment in early stages of multiple sclerosis is associated with high cerebrospinal fluid levels of chitinase 3â€kike 1 and neurofilament light chain. European Journal of Neurology, 2018, 25, 1189-1191.	3.3	53
64	Consensus Guidelines for CSF and Blood Biobanking for CNS Biomarker Studies. Multiple Sclerosis International, 2011, 2011, 1-9.	0.8	52
65	N-Acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. Journal of Neurology, 2014, 261, 2338-2343.	3.6	52
66	Kappa free light chains is a valid tool in the diagnostics of MS: A large multicenter study. Multiple Sclerosis Journal, 2020, 26, 912-923.	3.0	52
67	Transcriptomics: mRNA and alternative splicing. Journal of Neuroimmunology, 2012, 248, 23-31.	2.3	51
68	Immunoglobulin <scp>M</scp> oligoclonal bands: Biomarker of targetable inflammation in primary progressive multiple sclerosis. Annals of Neurology, 2014, 76, 231-240.	5.3	51
69	Precision medicine in multiple sclerosis. Current Opinion in Neurology, 2016, 29, 254-262.	3.6	51
70	C onversion to multiple sclerosis after a clinically isolated syndrome of the brainstem: cranial magnetic resonance imaging, cerebrospinal fl uid and neurophysiological findings. Multiple Sclerosis Journal, 2003, 9, 39-43.	3.0	49
71	Menarche, pregnancies, and breastfeeding do not modify long-term prognosis in multiple sclerosis. Neurology, 2019, 92, e1507-e1516.	1.1	49
72	Neutralising antibodies to interferon \hat{I}^2 in multiple sclerosis. Journal of Neurology, 2007, 254, 827-837.	3.6	48

#	Article	IF	CITATIONS
73	Lipidâ€specific immunoglobulin <scp>M</scp> bands in cerebrospinal fluid are associated with a reduced risk of developing progressive multifocal leukoencephalopathy during treatment with natalizumab. Annals of Neurology, 2015, 77, 447-457.	5.3	48
74	Interferon-β treatment alters peripheral blood monocytes chemokine production in MS patients. Journal of Neuroimmunology, 2002, 126, 205-212.	2.3	46
75	Targeting Inflammasomes to Treat Neurological Diseases. Annals of Neurology, 2021, 90, 177-188.	5.3	46
76	Search for Specific Biomarkers of IFNÎ ² Bioactivity in Patients with Multiple Sclerosis. PLoS ONE, 2011, 6, e23634.	2.5	45
77	Interferon Beta-1b for the Treatment of Primary Progressive Multiple Sclerosis. Archives of Neurology, 2011, 68, 1421.	4.5	44
78	ANKRD55 and DHCR7 are novel multiple sclerosis risk loci. Genes and Immunity, 2012, 13, 253-257.	4.1	44
79	Pharmacogenomics and Multiple Sclerosis: Moving Toward Individualized Medicine. Current Neurology and Neuroscience Reports, 2011, 11, 484-491.	4.2	43
80	A functional variant that affects exon-skipping and protein expression of <i>SP140</i> as genetic mechanism predisposing to multiple sclerosis. Human Molecular Genetics, 2015, 24, 5619-5627.	2.9	43
81	Significant clinical worsening after natalizumab withdrawal: Predictive factors. Multiple Sclerosis Journal, 2015, 21, 780-785.	3.0	43
82	Contribution of the symptomatic lesion in establishing MS diagnosis and prognosis. Neurology, 2016, 87, 1368-1374.	1.1	42
83	Changes in matrix metalloproteinases and their inhibitors during interferon-beta treatment in multiple sclerosis. Clinical Immunology, 2009, 130, 145-150.	3.2	41
84	The long-term outcomes of CIS patients in the Barcelona inception cohort: Looking back to recognize aggressive MS. Multiple Sclerosis Journal, 2020, 26, 1658-1669.	3.0	41
85	Early detection of neutralizing antibodies to interferon-beta in multiple sclerosis patients: binding antibodies predict neutralizing antibody development. Multiple Sclerosis Journal, 2014, 20, 577-587.	3.0	40
86	Multiple sclerosis, and other demyelinating and autoimmune inflammatory diseases of the central nervous system. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 146, 67-84.	1.8	39
87	SIGLEC1 and SIGLEC7 expression in circulating monocytes of patients with multiple sclerosis. Multiple Sclerosis Journal, 2013, 19, 524-531.	3.0	38
88	Altered maturation of circulating dendritic cells in primary progressive MS patients. Journal of Neuroimmunology, 2006, 175, 183-191.	2.3	37
89	Role of tumour necrosis factor (TNF)-α and <i>TNFRSF1A</i> R92Q mutation in the pathogenesis of TNF receptor-associated periodic syndrome and multiple sclerosis. Clinical and Experimental Immunology, 2011, 166, 338-345.	2.6	36
90	Replication of top markers of a genome-wide association study in multiple sclerosis in Spain. Genes and Immunity, 2011, 12, 110-115.	4.1	36

#	Article	IF	CITATIONS
91	Evaluating the response to glatiramer acetate in relapsing–remitting multiple sclerosis (RRMS) patients. Multiple Sclerosis Journal, 2014, 20, 1602-1608.	3.0	36
92	Power estimation for non-standardized multisite studies. NeuroImage, 2016, 134, 281-294.	4.2	36
93	A genomic screen of Spanish multiple sclerosis patients reveals multiple loci associated with the disease. Journal of Neuroimmunology, 2003, 143, 124-128.	2.3	35
94	Implication of the tollâ€like receptor 4 pathway in the response to interferonâ€Î² in multiple sclerosis. Annals of Neurology, 2011, 70, 634-645.	5.3	35
95	Treatment with MOG-DNA vaccines induces CD4+CD25+FoxP3+ regulatory T cells and up-regulates genes with neuroprotective functions in experimental autoimmune encephalomyelitis. Journal of Neuroinflammation, 2012, 9, 139.	7.2	35
96	Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	35
97	Effect of Changes in MS Diagnostic Criteria Over 25 Years on Time to Treatment and Prognosis in Patients With Clinically Isolated Syndrome. Neurology, 2021, 97, e1641-e1652.	1.1	35
98	Interferon regulatory factor 5 gene variants and pharmacological and clinical outcome of InterferonÎ ² therapy in multiple sclerosis. Genes and Immunity, 2011, 12, 466-472.	4.1	34
99	Genome-wide significant association ofANKRD55rs6859219 and multiple sclerosis risk. Journal of Medical Genetics, 2013, 50, 140-143.	3.2	34
100	Genome-wide significant association with seven novel multiple sclerosis risk loci. Journal of Medical Genetics, 2015, 52, 848-855.	3.2	34
101	Cytokine profiles show heterogeneity of interferon-Î ² response in multiple sclerosis patients. Neurology: Neuroimmunology and NeuroInflammation, 2016, 3, e202.	6.0	34
102	Clinical practice of analysis of anti-drug antibodies against interferon beta and natalizumab in multiple sclerosis patients in Europe: A descriptive study of test results. PLoS ONE, 2017, 12, e0170395.	2.5	34
103	HLA class I and II alleles and response to treatment with interferon-beta in relapsing–remitting multiple sclerosis. Journal of Neuroimmunology, 2009, 210, 116-119.	2.3	33
104	Pharmacogenomics in neurology: Current state and future steps. Annals of Neurology, 2011, 70, 684-697.	5.3	33
105	DNA-based vaccines for multiple sclerosis: Current status and future directions. Clinical Immunology, 2012, 142, 76-83.	3.2	32
106	Roles of the ubiquitin peptidase <i><scp>USP</scp>18</i> in multiple sclerosis and the response to interferonâ€ <i>î²</i> treatment. European Journal of Neurology, 2013, 20, 1390-1397.	3.3	32
107	Optic Nerve Topography in Multiple Sclerosis Diagnosis. Neurology, 2021, 96, e482-e490.	1.1	32
108	MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes. Human Molecular Genetics, 2016, 25, 308-316.	2.9	31

#	Article	IF	CITATIONS
109	Clinicogenomic factors of biotherapy immunogenicity in autoimmune disease: A prospective multicohort study of the ABIRISK consortium. PLoS Medicine, 2020, 17, e1003348.	8.4	31
110	Guidelines for uniform reporting of body fluid biomarker studies in neurologic disorders. Neurology, 2014, 83, 1210-1216.	1.1	30
111	Teriflunomide in Patients with Relapsing–Remitting Forms of Multiple Sclerosis. CNS Drugs, 2016, 30, 41-51.	5.9	29
112	Replication study of 10 genes showing evidence for association with multiple sclerosis: validation of TMEM39A, IL12B and CLBL genes. Multiple Sclerosis Journal, 2012, 18, 959-965.	3.0	28
113	<i>TNFRSF1A</i> polymorphisms rs1800693 and rs4149584 in patients with multiple sclerosis. Neurology, 2013, 80, 2010-2016.	1.1	28
114	Ancient and Recent Selective Pressures Shaped Genetic Diversity at AIM2-Like Nucleic Acid Sensors. Genome Biology and Evolution, 2014, 6, 830-845.	2.5	28
115	Validation of semaphorin 7A and ala-β-his-dipeptidase as biomarkers associated with the conversion from clinically isolated syndrome to multiple sclerosis. Journal of Neuroinflammation, 2014, 11, 181.	7.2	28
116	Protein-Based Classifier to Predict Conversion from Clinically Isolated Syndrome to Multiple Sclerosis. Molecular and Cellular Proteomics, 2016, 15, 318-328.	3.8	28
117	Response to interferon-beta treatment in multiple sclerosis patients: a genome-wide association study. Pharmacogenomics Journal, 2017, 17, 312-318.	2.0	28
118	Plasma chitotriosidase activity in multiple sclerosis. Clinical Immunology, 2009, 131, 216-222.	3.2	27
119	Gender-Associated Differences of Perforin Polymorphisms in the Susceptibility to Multiple Sclerosis. Journal of Immunology, 2010, 185, 5392-5404.	0.8	27
120	Baseline Gene Expression Signatures in Monocytes from Multiple Sclerosis Patients Treated with Interferon-beta. PLoS ONE, 2013, 8, e60994.	2.5	27
121	Lesion topographies in multiple sclerosis diagnosis. Neurology, 2017, 89, 2351-2356.	1.1	27
122	Chitinase 3-like 1 is neurotoxic in primary cultured neurons. Scientific Reports, 2020, 10, 7118.	3.3	27
123	Genetic association between polymorphisms in the ADAMTS14 gene and multiple sclerosis. Journal of Neuroimmunology, 2005, 164, 140-147.	2.3	26
124	Role of high mobility group box protein 1 (HMGB1) in peripheral blood from patients with multiple sclerosis. Journal of Neuroinflammation, 2015, 12, 48.	7.2	26
125	Exome sequencing study in patients with multiple sclerosis reveals variants associated with disease course. Journal of Neuroinflammation, 2018, 15, 265.	7.2	25
126	NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.	8.1	24

#	Article	IF	CITATIONS
127	Induction of serum soluble tumor necrosis factor receptor II (sTNF-RII) and interleukin-1 receptor antagonist (IL-1ra) by interferon beta-1b in patients with progressive multiple sclerosis. Journal of Neurology, 2008, 255, 1136-1141.	3.6	23
128	Risk Acceptance in Multiple Sclerosis Patients on Natalizumab Treatment. PLoS ONE, 2013, 8, e82796.	2.5	23
129	The genetic diversity of multiple sclerosis risk among Hispanic and African American populations living in the United States. Multiple Sclerosis Journal, 2020, 26, 1329-1339.	3.0	23
130	Detection and kinetics of persistent neutralizing anti-interferon-beta antibodies in patients with multiple sclerosis. Results from the ABIRISK prospective cohort study. Journal of Neuroimmunology, 2019, 326, 19-27.	2.3	22
131	Novel Insights into the Multiple Sclerosis Risk Gene <i>ANKRD55</i> . Journal of Immunology, 2016, 196, 4553-4565.	0.8	21
132	Decreased MMP-9 production in primary progressive multiple sclerosis patients. Multiple Sclerosis Journal, 2004, 10, 376-380.	3.0	20
133	Genetic association between polymorphisms in the BTG1 gene and multiple sclerosis. Journal of Neuroimmunology, 2009, 213, 142-147.	2.3	20
134	Orchestrating innate immune responses in multiple sclerosis: Molecular players. Journal of Neuroimmunology, 2010, 225, 5-12.	2.3	20
135	IFN-β pharmacogenomics in multiple sclerosis. Pharmacogenomics, 2010, 11, 1137-1148.	1.3	20
136	EBV-specific immune responses in patients with multiple sclerosis responding to IFNβ therapy. Multiple Sclerosis Journal, 2012, 18, 605-609.	3.0	20
137	Concise Review: Modeling Multiple Sclerosis With Stem Cell Biological Platforms: Toward Functional Validation of Cellular and Molecular Phenotypes in Inflammation-Induced Neurodegeneration. Stem Cells Translational Medicine, 2015, 4, 252-260.	3.3	20
138	The clinical perspective: How to personalise treatment in MS and how may biomarkers including imaging contribute to this?. Multiple Sclerosis Journal, 2016, 22, 18-33.	3.0	20
139	Native ancestry is associated with optic neuritis and age of onset in hispanics with multiple sclerosis. Annals of Clinical and Translational Neurology, 2018, 5, 1362-1371.	3.7	20
140	The frequency and characteristics of MS misdiagnosis in patients referred to the multiple sclerosis centre of Catalonia. Multiple Sclerosis Journal, 2021, 27, 913-921.	3.0	20
141	Clinical features of CIS of the brainstem/cerebellum of the kind seen in MS. Journal of Neurology, 2010, 257, 742-746.	3.6	19
142	Natalizumab discontinuation after PML risk stratification: outcome from a shared and informed decision. Multiple Sclerosis Journal, 2012, 18, 1193-1196.	3.0	19
143	HLA alleles as biomarkers of high-titre neutralising antibodies to interferon-Î ² therapy in multiple sclerosis. Journal of Medical Genetics, 2014, 51, 395-400.	3.2	19
144	Pharmacogenomic study in patients with multiple sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2015, 2, e154.	6.0	19

#	Article	IF	CITATIONS
145	CSF SERPINA3 Levels Are Elevated in Patients With Progressive MS. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	19
146	IL28B polymorphisms are not associated with the response to interferon-beta in multiple sclerosis. Journal of Neuroimmunology, 2011, 239, 101-104.	2.3	18
147	CD62L test at 2 years of natalizumab predicts progressive multifocal leukoencephalopathy. Neurology, 2016, 87, 2491-2494.	1.1	18
148	TNF–α converting enzyme (TACE) protein expression in different clinical subtypes of multiple sclerosis. Journal of Neurology, 2006, 253, 701-706.	3.6	17
149	Up-regulation of inducible heat shock protein-70 expression in multiple sclerosis patients. Autoimmunity, 2014, 47, 127-133.	2.6	17
150	Humoral and Cellular Responses to SARS-CoV-2 in Convalescent COVID-19 Patients With Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, e1143.	6.0	17
151	Differential susceptibility to apoptosis of CD4+T cells expressing CCR5 and CXCR3 in patients with MS. Clinical Immunology, 2009, 133, 364-374.	3.2	16
152	Value of NMO-lgG determination at the time of presentation as CIS. Neurology, 2012, 78, 1608-1611.	1.1	16
153	Chitinase 3-like 1 is associated with the response to interferon-beta treatment in multiple sclerosis. Journal of Neuroimmunology, 2017, 303, 62-65.	2.3	16
154	Deficient Fas expression by CD4+ CCR5+ T cells in multiple sclerosis. Journal of Neuroimmunology, 2006, 180, 147-158.	2.3	15
155	Antiviral immune response in patients with multiple sclerosis and healthy siblings. Multiple Sclerosis Journal, 2010, 16, 355-358.	3.0	15
156	Lack of efficacy of mitoxantrone in primary progressive Multiple Sclerosis irrespective of pharmacogenetic factors: A multi-center, retrospective analysis. Journal of Neuroimmunology, 2015, 278, 277-279.	2.3	15
157	Simultaneous CMV and <i>Listeria</i> infection following alemtuzumab treatment for multiple sclerosis. Neurology, 2019, 92, 296-298.	1.1	15
158	CSF Chitinase 3–Like 2 Is Associated With Long-term Disability Progression in Patients With Progressive Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	15
159	Matrix metalloproteinase 9 is decreased in natalizumabâ€ŧreated multiple sclerosis patients at risk for progressive multifocal leukoencephalopathy. Annals of Neurology, 2017, 82, 186-195.	5.3	14
160	Immunomodulatory Effects Associated with Cladribine Treatment. Cells, 2021, 10, 3488.	4.1	14
161	Single-Nucleotide Polymorphisms in Response to Interferon-Beta Therapy in Multiple Sclerosis. Journal of Interferon and Cytokine Research, 2010, 30, 727-732.	1.2	13
162	Circulating levels of soluble apoptosis-related molecules in patients with multiple sclerosis. Journal of Neuroimmunology, 2013, 263, 152-154.	2.3	13

#	Article	IF	CITATIONS
163	Analysis of Plasminogen Genetic Variants in Multiple Sclerosis Patients. G3: Genes, Genomes, Genetics, 2016, 6, 2073-2079.	1.8	13
164	Identification of the Immunological Changes Appearing in the CSF During the Early Immunosenescence Process Occurring in Multiple Sclerosis. Frontiers in Immunology, 2021, 12, 685139.	4.8	13
165	Genetic association of CASP8 polymorphisms with primary progressive multiple sclerosis. Journal of Neuroimmunology, 2010, 222, 70-75.	2.3	12
166	Peripheral blood non-MAIT CD8+CD161hi cells are decreased in relapsing-remitting multiple sclerosis patients treated with interferon beta. Journal of Neuroimmunology, 2015, 288, 98-101.	2.3	12
167	Decreased soluble IFN-β receptor (sIFNAR2) in multiple sclerosis patients: A potential serum diagnostic biomarker. Multiple Sclerosis Journal, 2017, 23, 937-945.	3.0	12
168	Radiologically isolated syndrome: targeting miRNAs as prognostic biomarkers. Epigenomics, 2020, 12, 2065-2076.	2.1	12
169	Serum Neurofilament Levels and PML Risk in Patients With Multiple Sclerosis Treated With Natalizumab. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	6.0	12
170	United Europeans for development of pharmacogenomics in multiple sclerosis network. Pharmacogenomics, 2009, 10, 885-894.	1.3	11
171	Natalizumab-related anaphylactoid reactions in MS patients are associated with HLA class II alleles. Neurology: Neuroimmunology and NeuroInflammation, 2014, 1, e47.	6.0	11
172	NLRP3 polymorphisms and response to interferon-beta in multiple sclerosis patients. Multiple Sclerosis Journal, 2018, 24, 1507-1510.	3.0	11
173	Is humoral and cellular response to SARS-CoV-2 vaccine modified by DMT in patients with multiple sclerosis and other autoimmune diseases?. Multiple Sclerosis Journal, 2022, 28, 1138-1145.	3.0	11
174	Should we systematically test patients with clinically isolated syndrome for auto-antibodies?. Multiple Sclerosis Journal, 2015, 21, 1802-1810.	3.0	10
175	Molecular dynamics and intracellular signaling of the TNF-R1 with the R92Q mutation. Journal of Neuroimmunology, 2015, 289, 12-20.	2.3	10
176	Interferon-beta affects mitochondrial activity in CD4 ⁺ lymphocytes: Implications for mechanism of action in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1262-1270.	3.0	10
177	Effect of Specific Mutations in Cd300 Complexes Formation; Potential Implication of Cd300f in Multiple Sclerosis. Scientific Reports, 2017, 7, 13544.	3.3	10
178	Generation of six multiple sclerosis patient-derived induced pluripotent stem cell lines. Stem Cell Research, 2017, 24, 155-159.	0.7	10
179	CSF chitinase 3-like 1 is associated with iron rims in patients with a first demyelinating event. Multiple Sclerosis Journal, 2022, 28, 71-81.	3.0	10
180	Treatment response scoring systems to assess long-term prognosis in self-injectable DMTs relapsing–remitting multiple sclerosis patients. Journal of Neurology, 2022, 269, 452-459.	3.6	10

#	Article	IF	CITATIONS
181	Genetic analysis of SLC11A1 polymorphisms in multiple sclerosis patients. Multiple Sclerosis Journal, 2004, 10, 618-620.	3.0	9
182	Analysis of the IL28RA locus as genetic risk factor for multiple sclerosis. Journal of Neuroimmunology, 2012, 245, 98-101.	2.3	9
183	New Algorithms Improving PML Risk Stratification in MS Patients Treated With Natalizumab. Frontiers in Neurology, 2020, 11, 579438.	2.4	9
184	Activation-induced cell death in T lymphocytes from multiple sclerosis patients. Journal of Neuroimmunology, 2014, 272, 51-55.	2.3	8
185	Nerve Conduction Velocity Is Regulated by the Inositol Polyphosphate-4-Phosphatase II Gene. American Journal of Pathology, 2014, 184, 2420-2429.	3.8	8
186	Cell-specific effects in different immune subsets associated with <i>SOCS1</i> genotypes in multiple sclerosis Journal, 2015, 21, 1498-1512.	3.0	8
187	Serum neurofilament light chain levels predict long-term disability progression in patients with progressive multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 732-740.	1.9	8
188	Plasma levels of 15dâ€₽GJ ₂ are not altered in multiple sclerosis. European Journal of Neurology, 2009, 16, 1197-1201.	3.3	7
189	Short commentary on â€~a consensus protocol for the standardization of cerebrospinal fluid collection and biobanking'. Multiple Sclerosis Journal, 2010, 16, 129-132.	3.0	7
190	Levels of soluble TNF-RII are increased in serum of patients with primary progressive multiple sclerosis. Journal of Neuroimmunology, 2014, 271, 56-59.	2.3	7
191	Are Leber's mitochondial DNA mutations associated with aquaporin-4 autoimmunity?. Multiple Sclerosis Journal, 2016, 22, 393-394.	3.0	7
192	Circulating EZH2-positive T cells are decreased in multiple sclerosis patients. Journal of Neuroinflammation, 2018, 15, 296.	7.2	7
193	Modelling multiple sclerosis using induced pluripotent stem cells. Journal of Neuroimmunology, 2020, 349, 577425.	2.3	7
194	Oral contraceptives do not modify the risk of a second attack and disability accrual in a prospective cohort of women with a clinically isolated syndrome and early multiple sclerosis. Multiple Sclerosis Journal, 2022, 28, 950-957.	3.0	7
195	Association Cluster Detector: a tool for heuristic detection of significance clusters in whole-genome scans. Bioinformatics, 2005, 21, ii180-ii181.	4.1	6
196	Polyregional and hemispheric syndromes: a study of these uncommon first attacks in a CIS cohort. Multiple Sclerosis Journal, 2007, 13, 731-736.	3.0	6
197	Evidence for association of chromosome 10 open reading frame (C10orf27) gene polymorphisms and multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 412-414.	3.0	6
198	Decision tree based fuzzy classifier of magnetic resonance spectra from cerebrospinal fluid samples. Fuzzy Sets and Systems, 2011, 170, 43-63.	2.7	6

#	Article	IF	CITATIONS
199	Breast regression protein-39 is not required for experimental autoimmune encephalomyelitis induction. Clinical Immunology, 2015, 160, 133-141.	3.2	6
200	Tocilizumab and multiple sclerosis: a causal relationship? Clinical Commentary on the case report entitled – MS arising during Tocilizumab therapy for rheumatoid arthritis. Multiple Sclerosis Journal, 2016, 22, 257-258.	3.0	6
201	Genomic Multiple Sclerosis Risk Variants Modulate the Expression of the ANKRD55–IL6ST Gene Region in Immature Dendritic Cells. Frontiers in Immunology, 2021, 12, 816930.	4.8	6
202	An observational study of the effectiveness and safety of natalizumab in the treatment of multiple sclerosis. Revista De Neurologia, 2011, 52, 321-30.	7.8	6
203	B cell expression of the inhibitory FcÎ ³ receptor is unchanged in early MS. Journal of Neuroimmunology, 2010, 223, 135-137.	2.3	5
204	Epstein–Barr virus and multiple sclerosis: causation or association?. Future Microbiology, 2010, 5, 1617-1619.	2.0	5
205	TRPM4 mRNA expression levels in peripheral blood mononuclear cells from multiple sclerosis patients. Journal of Neuroimmunology, 2013, 261, 146-148.	2.3	5
206	Cellular immune responses in multiple sclerosis patients treated with interferon-beta. Clinical and Experimental Immunology, 2013, 171, 243-246.	2.6	5
207	Influence of the LILRA3 Deletion on Multiple Sclerosis Risk: Original Data and Meta-Analysis. PLoS ONE, 2015, 10, e0134414.	2.5	5
208	Cerebrospinal fluid mitochondrial DNA levels in patients with multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 1535-1538.	3.0	5
209	A pharmacogenetic study implicates NINJ2 in the response to Interferon-β in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 1074-1082.	3.0	5
210	A New Risk Variant for Multiple Sclerosis at 11q23.3 Locus Is Associated with Expansion of CXCR5+ Circulating Regulatory T Cells. Journal of Clinical Medicine, 2020, 9, 625.	2.4	5
211	Angiogenin in the Neurogenic Subventricular Zone After Stroke. Frontiers in Neurology, 2021, 12, 662235.	2.4	5
212	Impact of COVID-19 pandemic on frequency of clinical visits, performance of MRI studies, and therapeutic choices in a multiple sclerosis referral centre. Journal of Neurology, 2022, 269, 1764-1772.	3.6	5
213	Late-onset metachromatic leukodystrophy clinically presenting as isolated peripheral neuropathy: compound heterozygosity for the IVS2+1G>A mutation and a newly identified missense mutation (Thr408Ile) in a Spanish family. Annals of Neurology, 2001, 50, 108-12.	5.3	5
214	A Polymorphism Within the MBP Gene Is Associated With a Higher Relapse Number in Male Patients of Multiple Sclerosis. Frontiers in Immunology, 2020, 11, 771.	4.8	4
215	Identification of the genetic mechanism that associates <i>L3MBTL3</i> to multiple sclerosis. Human Molecular Genetics, 2022, 31, 2155-2163.	2.9	4
216	Inflammation in multiple sclerosis induces a specific reactive astrocyte state driving nonâ€cellâ€autonomous neuronal damage. Clinical and Translational Medicine, 2022, 12, e837.	4.0	4

#	Article	IF	CITATIONS
217	Konsensusprotokoll zur Standardisierung von Entnahme und Biobanking des Liquor cerebrospinalis / A consensus protocol for the standardisation of cerebrospinal fluid collection and biobanking. Laboratoriums Medizin, 2010, 34, 1-12.	0.6	3
218	New technologies for biomarker discovery in multiple sclerosis. Journal of Neuroimmunology, 2012, 248, 1.	2.3	3
219	Increased expression of dedicator-cytokinesis-10, caspase-2 and Synaptotagmin-like 2 is associated with clinical disease activity in multiple sclerosis. Multiple Sclerosis and Demyelinating Disorders, 2016, 1, .	1.1	3
220	Chitinase 3-like 1 is not a target antigen in patients with multiple sclerosis. Multiple Sclerosis Journal, 2020, 27, 135245852098014.	3.0	3
221	Role of B Cell Profile for Predicting Secondary Autoimmunity in Patients Treated With Alemtuzumab. Frontiers in Immunology, 2021, 12, 760546.	4.8	3
222	Multiple sclerosis: Immunopathological heterogeneity and its implications. European Journal of Immunology, 2022, 52, 869-881.	2.9	3
223	DNA Vaccination Techniques. Methods in Molecular Biology, 2014, 1304, 39-50.	0.9	2
224	A case of neuromyelitis optica harboring both anti-aquaporin-4 antibodies and a pathogenic mitochondrial DNA mutation for Leber's hereditary optic neuropathy: clinical commentary. Multiple Sclerosis Journal, 2014, 20, 261-261.	3.0	2
225	No association of IF116 (interferon-inducible protein 16) variants with susceptibility to multiple sclerosis. Journal of Neuroimmunology, 2014, 271, 49-52.	2.3	2
226	B cells and variant BAFF in autoimmune disease. Nature Reviews Neurology, 2017, 13, 453-454.	10.1	2
227	Pharmacogenomics in multiple sclerosis: getting the right medicine to the right patient. Therapy: Open Access in Clinical Medicine, 2008, 5, 623-629.	0.2	1
228	Therapeutic strategies in multiple sclerosis. Clinical Immunology, 2012, 142, 1.	3.2	1
229	Treatment with interferon-beta does not induce anti-nuclear and anti-neuronal serum autoantibodies in multiple sclerosis patients. Journal of Neuroimmunology, 2013, 255, 102-104.	2.3	1
230	Targeted resequencing reveals rare variants enrichment in multiple sclerosis susceptibility genes. Human Mutation, 2020, 41, 1308-1320.	2.5	1
231	The Rare IL22RA2 Signal Peptide Coding Variant rs28385692 Decreases Secretion of IL-22BP Isoform-1, -2 and -3 and Is Associated with Risk for Multiple Sclerosis. Cells, 2020, 9, 175.	4.1	1
232	Transcriptome and Function of Novel Immunosuppressive Autoreactive Invariant Natural Killer T Cells That Are Absent in Progressive Multiple Sclerosis. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e1065.	6.0	1
233	Corrigendum to "HLA class I and II alleles and response to treatment with interferon-beta in relapsing–remitting multiple sclerosis―[J. Neuroimmunol. 210(2009)116–119]. Journal of Neuroimmunology, 2009, 214, 132.	2.3	0
234	Reply: Plasma chitotriosidase activity in multiple sclerosis. Clinical Immunology, 2009, 133, 284.	3.2	0

#	Article	IF	CITATIONS
235	Re: CASP8 in MS. Journal of Neuroimmunology, 2011, 230, 193-193.	2.3	ο
236	Risk of multiple sclerosis in children with acute demyelination. Lancet Neurology, The, 2011, 10, 399-400.	10.2	0
237	Correction: Gender-Associated Differences of Perforin Polymorphisms in the Susceptibility to Multiple Sclerosis. Journal of Immunology, 2011, 187, 1518-1521.	0.8	0
238	Reply. Annals of Neurology, 2017, 82, 647-648.	5.3	0