
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/353130/publications.pdf Version: 2024-02-01

ANDREA RANEL

#	Article	lF	CITATIONS
1	Fibrin-based factor delivery for therapeutic angiogenesis: friend or foe?. Cell and Tissue Research, 2022, 387, 451-460.	2.9	6
2	Robust coupling of angiogenesis and osteogenesis by VEGF-decorated matrices for bone regeneration. Acta Biomaterialia, 2022, 149, 111-125.	8.3	26
3	The osteo-angiogenic signaling crosstalk for bone regeneration: harmony out of complexity. Current Opinion in Biotechnology, 2022, 76, 102750.	6.6	12
4	Strategies for re-vascularization and promotion of angiogenesis in trauma and disease. Biomaterials, 2021, 269, 120628.	11.4	32
5	The NFIBâ€ERO1A axis promotes breast cancer metastatic colonization of disseminated tumour cells. EMBO Molecular Medicine, 2021, 13, e13162.	6.9	27
6	Robust Angiogenesis and Arteriogenesis in the Skin of Diabetic Mice by Transient Delivery of Engineered VEGF and PDGF-BB Proteins in Fibrin Hydrogels. Frontiers in Bioengineering and Biotechnology, 2021, 9, 688467.	4.1	18
7	Balanced single-vector co-delivery of VEGF/PDGF-BB improves functional collateralization in chronic cerebral ischemia. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 404-419.	4.3	29
8	Therapeutic vascularization in regenerative medicine. Stem Cells Translational Medicine, 2020, 9, 433-444.	3.3	56
9	Hypoxia Triggers the Intravasation of Clustered Circulating Tumor Cells. Cell Reports, 2020, 32, 108105.	6.4	126
10	Fibrin hydrogels promote scar formation and prevent therapeutic angiogenesis in the heart. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 1513-1523.	2.7	8
11	Endothelial Lactate Controls Muscle Regeneration from Ischemia by Inducing M2-like Macrophage Polarization. Cell Metabolism, 2020, 31, 1136-1153.e7.	16.2	233
12	VEGF Over-Expression by Engineered BMSC Accelerates Functional Perfusion, Improving Tissue Density and In-Growth in Clinical-Size Osteogenic Grafts. Frontiers in Bioengineering and Biotechnology, 2020, 8, 755.	4.1	4
13	Stable Angiogenesis: Mechanically Defined Microenvironment Promotes Stabilization of Microvasculature, Which Correlates with the Enrichment of a Novel Piezoâ€1 + Population of Circulating CD11b + /CD115 + Monocytes (Adv. Mater. 21/2019). Advanced Materials, 2019, 31, 1970150.	21.0	0
14	Mechanically Defined Microenvironment Promotes Stabilization of Microvasculature, Which Correlates with the Enrichment of a Novel Piezoâ€1 ⁺ Population of Circulating CD11b ⁺ /CD115 ⁺ Monocytes. Advanced Materials, 2019, 31, e1808050.	21.0	23
15	Pioneering updates in vascular biology. Vascular Pharmacology, 2019, 112, 1.	2.1	0
16	Vascular endothelial growth factor biology for regenerative angiogenesis. Swiss Medical Weekly, 2019, 149, w20011.	1.6	55
17	Myocardial infarction stabilization by cellâ€based expression of controlled Vascular Endothelial Growth Factor levels. Journal of Cellular and Molecular Medicine, 2018, 22, 2580-2591.	3.6	11
18	EphrinB2/EphB4 signaling regulates nonâ€sprouting angiogenesis by <scp>VEGF</scp> . EMBO Reports, 2018, 19, .	4.5	62

#	Article	IF	CITATIONS
19	Editorial: Vascularization for Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2018, 6, 175.	4.1	10
20	PDGF-BB regulates splitting angiogenesis in skeletal muscle by limiting VEGF-induced endothelial proliferation. Angiogenesis, 2018, 21, 883-900.	7.2	101
21	Engineered Extracellular Matrices as Biomaterials of Tunable Composition and Function. Advanced Functional Materials, 2017, 27, 1605486.	14.9	44
22	Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy. Scientific Reports, 2017, 7, 41842.	3.3	42
23	Scaffold Composition Determines the Angiogenic Outcome of Cellâ€Based Vascular Endothelial Growth Factor Expression by Modulating Its Microenvironmental Distribution. Advanced Healthcare Materials, 2017, 6, 1700600.	7.6	12
24	Vascular Endothelial Growth Factor Sequestration Enhances In Vivo Cartilage Formation. International Journal of Molecular Sciences, 2017, 18, 2478.	4.1	8
25	It Takes Two to Tango: Coupling of Angiogenesis and Osteogenesis for Bone Regeneration. Frontiers in Bioengineering and Biotechnology, 2017, 5, 68.	4.1	272
26	Long-term safety and stability of angiogenesis induced by balanced single-vector co-expression of PDGF-BB and VEGF164 in skeletal muscle. Scientific Reports, 2016, 6, 21546.	3.3	32
27	Rapid and efficient magnetization of mesenchymal stem cells by dendrimer-functionalized magnetic nanoparticles. Nanomedicine, 2016, 11, 1519-1534.	3.3	15
28	Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling. Stem Cells Translational Medicine, 2016, 5, 1730-1738.	3.3	47
29	Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis. Acta Biomaterialia, 2016, 42, 127-135.	8.3	21
30	Three dimensional multiâ€cellular muscleâ€like tissue engineering in perfusionâ€based bioreactors. Biotechnology and Bioengineering, 2016, 113, 226-236.	3.3	31
31	VEGF, shear stress and muscle angiogenesis: a complicated triangle. Acta Physiologica, 2015, 214, 298-299.	3.8	4
32	<scp>VEGF</scp> dose regulates vascular stabilization through Semaphorin3A and the Neuropilinâ€1 ⁺ monocyte/ <scp>TGF</scp> â€i²1 paracrine axis. EMBO Molecular Medicine, 2015, 7, 1366-1384.	6.9	31
33	Extracellular Matrix and Growth Factor Engineering for Controlled Angiogenesis in Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2015, 3, 45.	4.1	159
34	Non-Adherent Mesenchymal Progenitors from Adipose Tissue Stromal Vascular Fraction. Tissue Engineering - Part A, 2014, 20, 1081-1088.	3.1	8
35	Split for the cure: VEGF, PDGF-BB and intussusception in therapeutic angiogenesis. Biochemical Society Transactions, 2014, 42, 1637-1642.	3.4	44
36	Long-term biostability and bioactivity of "fibrin linked―VEGF121in vitro and in vivo. Biomaterials Science, 2014, 2, 581.	5.4	13

#	Article	IF	CITATIONS
37	Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF ₁₆₄ . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6952-6957.	7.1	136
38	Macrophage-mediated angiogenic activation of outgrowth endothelial cells in co-culture with primary osteoblasts. , 2014, 27, 149-165.		49
39	Induction of Aberrant Vascular Growth, But Not of Normal Angiogenesis, by Cell-Based Expression of Different Doses of Human and Mouse VEGF Is Species-Dependent. Human Gene Therapy Methods, 2013, 24, 28-37.	2.1	23
40	Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials, 2013, 34, 5025-5035.	11.4	77
41	VEGF over-expression in skeletal muscle induces angiogenesis by intussusception rather than sprouting. Angiogenesis, 2013, 16, 123-136.	7.2	67
42	The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials, 2013, 34, 393-401.	11.4	71
43	Therapeutic angiogenesis due to balanced singleâ€vector delivery of VEGF and PDGFâ€BB. FASEB Journal, 2012, 26, 2486-2497.	0.5	89
44	Generation of Human Adult Mesenchymal Stromal/Stem Cells Expressing Defined Xenogenic Vascular Endothelial Growth Factor Levels by Optimized Transduction and Flow Cytometry Purification. Tissue Engineering - Part C: Methods, 2012, 18, 283-292.	2.1	27
45	Controlled Angiogenesis in the Heart by Cell-Based Expression of Specific Vascular Endothelial Growth Factor Levels. Human Gene Therapy Methods, 2012, 23, 346-356.	2.1	24
46	Cell and Gene Therapy Approaches for Cardiac Vascularization. Cells, 2012, 1, 961-975.	4.1	11
47	Fibroblast Growth Factor-2 Maintains a Niche-Dependent Population of Self-Renewing Highly Potent Non-adherent Mesenchymal Progenitors Through FGFR2c. Stem Cells, 2012, 30, 1455-1464.	3.2	55
48	FACSâ€purified myoblasts producing controlled VEGF levels induce safe and stable angiogenesis in chronic hind limb ischemia. Journal of Cellular and Molecular Medicine, 2012, 16, 107-117.	3.6	20
49	To sprout or to split? VEGF, Notch and vascular morphogenesis. Biochemical Society Transactions, 2011, 39, 1644-1648.	3.4	54
50	Taming of the wild vessel: promoting vessel stabilization for safe therapeutic angiogenesis. Biochemical Society Transactions, 2011, 39, 1654-1658.	3.4	34
51	High-Throughput Flow Cytometry Purification of Transduced Progenitors Expressing Defined Levels of Vascular Endothelial Growth Factor Induces Controlled Angiogenesis In Vivo. Stem Cells, 2010, 28, 611-619.	3.2	40
52	Adipose tissueâ€derived progenitors for engineering osteogenic and vasculogenic grafts. Journal of Cellular Physiology, 2010, 225, 348-353.	4.1	76
53	Cotransfection of Vascular Endothelial Growth Factor-A and Platelet-Derived Growth Factor-B Via Recombinant Adeno-Associated Virus Resolves Chronic Ischemic Malperfusion. Journal of the American College of Cardiology, 2010, 56, 414-422.	2.8	70
54	B2-kinin receptor plays a key role in B1-, angiotensin converting enzyme inhibitor-, and vascular endothelial growth factor-stimulated in vitro angiogenesis in the hypoxic mouse heart. Cardiovascular Research, 2008, 80, 106-113.	3.8	26

#	Article	IF	CITATIONS
55	Angiotensin II Induces Angiogenesis in the Hypoxic Adult Mouse Heart In Vitro Through an AT ₂ –B2 Receptor Pathway. Hypertension, 2007, 49, 1178-1185.	2.7	47
56	Localization of vascular response to VEGF is not dependent on heparin binding. FASEB Journal, 2007, 21, 2074-2085.	0.5	17
57	The Maturation of Vessels $\hat{a} \in \hat{~}$ A Limitation to Forced Neovascularization?. , 2007, , 139-158.		0
58	Therapeutische Angiogenese mittels FACS-sortierter transduzierter Myoblasten. , 2007, , 329-332.		0
59	Atypical GPI-Anchored T-Cadherin Stimulates Angiogenesis In Vitro and In Vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 2222-2230.	2.4	59
60	Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB Journal, 2006, 20, 2657-2659.	0.5	117
61	Critical role of microenvironmental factors in angiogenesis. Current Atherosclerosis Reports, 2005, 7, 227-234.	4.8	63
62	Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. Journal of Clinical Investigation, 2004, 113, 516-527.	8.2	440
63	Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. Journal of Clinical Investigation, 2004, 113, 516-527.	8.2	52
64	Myoblast-mediated gene transfer for therapeutic angiogenesis and arteriogenesis. British Journal of Pharmacology, 2003, 140, 620-626.	5.4	33
65	Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Experimental Cell Research, 2003, 287, 98-105.	2.6	343
66	Localized arteriole formation directly adjacent to the site of VEGF-Induced angiogenesis in muscle. Molecular Therapy, 2003, 7, 441-449.	8.2	71
67	Replicative Aging and Gene Expression in Long-Term Cultures of Human Bone Marrow Stromal Cells. Tissue Engineering, 2002, 8, 901-910.	4.6	204
68	[9] Myoblast-mediated gene transfer for therapeutic angiogenesis. Methods in Enzymology, 2002, 346, 145-157.	1.0	23
69	Bone Marrow Stromal Damage after Chemo/Radiotherapy: Occurrence, Consequences and Possibilities of Treatment. Leukemia and Lymphoma, 2001, 42, 863-870.	1.3	107
70	High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors. Cancer, 2001, 92, 2419-2428.	4.1	128
71	The well-tempered vessel. Nature Medicine, 2001, 7, 532-534.	30.7	105
72	Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells. Experimental Hematology, 2000, 28, 707-715.	0.4	662

#	Article	IF	CITATIONS
73	Chondrocyte and osteoblast differentiation stage-specific monoclonal antibodies as a tool to investigate the initial bone formation in developing chick embryo. European Journal of Cell Biology, 1995, 67, 99-105.	3.6	6