Paul D Bieniasz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3529523/publications.pdf Version: 2024-02-01

DALLI D RIENIASZ

#	Article	IF	CITATIONS
1	Poly(ADP-ribose) potentiates ZAP antiviral activity. PLoS Pathogens, 2022, 18, e1009202.	4.7	19
2	Plasma Neutralization of the SARS-CoV-2 Omicron Variant. New England Journal of Medicine, 2022, 386, 599-601.	27.0	371
3	Evaluation of SARS-CoV-2 antibody point of care devices in the laboratory and clinical setting. PLoS ONE, 2022, 17, e0266086.	2.5	6
4	VPS29 Exerts Opposing Effects on Endocytic Viral Entry. MBio, 2022, 13, e0300221.	4.1	5
5	Analysis of memory B cells identifies conserved neutralizing epitopes on the N-terminal domain of variant SARS-Cov-2 spike proteins. Immunity, 2022, 55, 998-1012.e8.	14.3	86
6	Increased memory B cell potency and breadth after a SARS-CoV-2 mRNA boost. Nature, 2022, 607, 128-134.	27.8	197
7	Severe Acute Respiratory Syndrome Coronavirus 2 Neutralization After Messenger RNA Vaccination and Variant Breakthrough Infection. Open Forum Infectious Diseases, 2022, 9, .	0.9	5
8	Longitudinal variation in SARS-CoV-2 antibody levels and emergence of viral variants: a serological analysis. Lancet Microbe, The, 2022, 3, e493-e502.	7.3	22
9	Antibody and Memory B-Cell Immunity in a Heterogeneously SARS-CoV-2-Infected and -Vaccinated Population. MBio, 2022, 13, .	4.1	9
10	Antibody evolution to SARS-CoV-2 after single-dose Ad26.COV2.S vaccine in humans. Journal of Experimental Medicine, 2022, 219, .	8.5	10
11	Plasma and memory antibody responses to Gamma SARS-CoV-2 provide limited cross-protection to other variants. Journal of Experimental Medicine, 2022, 219, .	8.5	6
12	Absence of Severe Acute Respiratory Syndrome Coronavirus 2 Neutralizing Activity in Prepandemic Sera From Individuals With Recent Seasonal Coronavirus Infection. Clinical Infectious Diseases, 2021, 73, e1208-e1211.	5.8	65
13	Longitudinal Serological Analysis and Neutralizing Antibody Levels in Coronavirus Disease 2019 Convalescent Patients. Journal of Infectious Diseases, 2021, 223, 389-398.	4.0	233
14	Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021, 13, .	12.4	379
15	Mechanisms of Attenuation by Genetic Recoding of Viruses. MBio, 2021, 12, .	4.1	12
16	Evolution of antibody immunity to SARS-CoV-2. Nature, 2021, 591, 639-644.	27.8	1,355
17	mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature, 2021, 592, 616-622.	27.8	1,232
18	Bispecific lgG neutralizes SARS-CoV-2 variants and prevents escape in mice. Nature, 2021, 593, 424-428.	27.8	108

#	Article	IF	CITATIONS
19	Origin and evolution of the zinc finger antiviral protein. PLoS Pathogens, 2021, 17, e1009545.	4.7	33
20	Naturally enhanced neutralizing breadth against SARS-CoV-2 one year after infection. Nature, 2021, 595, 426-431.	27.8	610
21	B cell genomics behind cross-neutralization of SARS-CoV-2 variants and SARS-CoV. Cell, 2021, 184, 3205-3221.e24.	28.9	73
22	Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature, 2021, 595, 278-282.	27.8	154
23	Vaccine Breakthrough Infections with SARS-CoV-2 Variants. New England Journal of Medicine, 2021, 384, 2212-2218.	27.0	647
24	Early treatment with a combination of two potent neutralizing antibodies improves clinical outcomes and reduces virus replication and lung inflammation in SARS-CoV-2 infected macaques. PLoS Pathogens, 2021, 17, e1009688.	4.7	16
25	Mapping mutations to the SARS-CoV-2 RBD that escape binding by different classes of antibodies. Nature Communications, 2021, 12, 4196.	12.8	332
26	Derivation and characterization of an HIV-1 mutant that rescues IP6 binding deficiency. Retrovirology, 2021, 18, 25.	2.0	7
27	Affinity maturation of SARS-CoV-2 neutralizing antibodies confers potency, breadth, and resilience to viral escape mutations. Immunity, 2021, 54, 1853-1868.e7.	14.3	230
28	Broad cross-reactivity across sarbecoviruses exhibited by a subset of COVID-19 donor-derived neutralizing antibodies. Cell Reports, 2021, 36, 109760.	6.4	80
29	HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization. Cell Host and Microbe, 2021, 29, 1421-1436.e7.	11.0	22
30	Predictors of Nonseroconversion after SARS-CoV-2 Infection. Emerging Infectious Diseases, 2021, 27, 2454-2458.	4.3	48
31	Comparison of SARS-CoV-2 serological assays for use in epidemiological surveillance in Scotland. Journal of Clinical Virology Plus, 2021, 1, 100028.	1.0	2
32	High genetic barrier to SARS-CoV-2 polyclonal neutralizing antibody escape. Nature, 2021, 600, 512-516.	27.8	174
33	Convalescent plasma-mediated resolution of COVID-19 in a patient with humoral immunodeficiency. Cell Reports Medicine, 2021, 2, 100164.	6.5	26
34	The Case Against Delaying Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA Vaccine Boosting Doses. Clinical Infectious Diseases, 2021, 73, 1321-1323.	5.8	22
35	Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. Journal of Experimental Medicine, 2021, 218, .	8.5	283
36	Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA vaccination. Nature, 2021, 600, 517-522.	27.8	239

#	Article	IF	CITATIONS
37	Replication and single-cycle delivery of SARS-CoV-2 replicons. Science, 2021, 374, 1099-1106.	12.6	49
38	Low-dose in vivo protection and neutralization across SARS-CoV-2 variants by monoclonal antibody combinations. Nature Immunology, 2021, 22, 1503-1514.	14.5	40
39	Highly synergistic combinations of nanobodies that target SARS-CoV-2 and are resistant to escape. ELife, 2021, 10, .	6.0	36
40	Inhibition of spumavirus gene expression by PHF11. PLoS Pathogens, 2020, 16, e1008644.	4.7	11
41	Convergent antibody responses to SARS-CoV-2 in convalescent individuals. Nature, 2020, 584, 437-442.	27.8	1,742
42	Measuring SARS-CoV-2 neutralizing antibody activity using pseudotyped and chimeric viruses. Journal of Experimental Medicine, 2020, 217, .	8.5	503
43	Serological Assays Estimate Highly Variable SARS-CoV-2 Neutralizing Antibody Activity in Recovered COVID-19 Patients. Journal of Clinical Microbiology, 2020, 58, .	3.9	154
44	Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature, 2020, 582, 438-442.	27.8	136
45	Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, 2020, 182, 828-842.e16.	28.9	724
46	VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA. Cell Host and Microbe, 2020, 27, 963-975.e5.	11.0	23
47	HIV-1 Vpr induces cell cycle arrest and enhances viral gene expression by depleting CCDC137. ELife, 2020, 9, .	6.0	37
48	Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. ELife, 2020, 9, .	6.0	1,239
49	Genome-Wide Analysis of Heterogeneous Nuclear Ribonucleoprotein (hnRNP) Binding to HIV-1 RNA Reveals a Key Role for hnRNP H1 in Alternative Viral mRNA Splicing. Journal of Virology, 2019, 93, .	3.4	19
50	Structure of the zinc-finger antiviral protein in complex with RNA reveals a mechanism for selective targeting of CG-rich viral sequences. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24303-24309.	7.1	106
51	Derivation of simian tropic HIV-1 infectious clone reveals virus adaptation to a new host. Proceedings of the United States of America, 2019, 116, 10504-10509.	7.1	14
52	Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathogens, 2019, 15, e1007632.	4.7	20
53	Vesicular Stomatitis Virus Transcription Is Inhibited by TRIM69 in the Interferon-Induced Antiviral State. Journal of Virology, 2019, 93, .	3.4	28
54	Short Communication: Ultrasensitive Immunoassay for Assessing Residual Simian-Tropic HIV in Nonhuman Primate Models of AIDS. AIDS Research and Human Retroviruses, 2019, 35, 473-476.	1.1	0

#	Article	IF	CITATIONS
55	Rhabdo-immunodeficiency virus, a murine model of acute HIV-1 infection. ELife, 2019, 8, .	6.0	6
56	A multimodal antiretroviral protein. Nature Microbiology, 2018, 3, 122-123.	13.3	3
57	Multiple, Switchable Protein:RNA Interactions Regulate Human Immunodeficiency Virus Type 1 Assembly. Annual Review of Virology, 2018, 5, 165-183.	6.7	50
58	Reconstruction of a replication-competent ancestral murine endogenous retrovirus-L. Retrovirology, 2018, 15, 34.	2.0	11
59	CLIP-related methodologies and their application to retrovirology. Retrovirology, 2018, 15, 35.	2.0	12
60	Global synonymous mutagenesis identifies cis-acting RNA elements that regulate HIV-1 splicing and replication. PLoS Pathogens, 2018, 14, e1006824.	4.7	37
61	Nuclear pore heterogeneity influences HIV-1 infection and the antiviral activity of MX2. ELife, 2018, 7, .	6.0	100
62	The aryl hydrocarbon receptor and interferon gamma generate antiviral states via transcriptional repression. ELife, 2018, 7, .	6.0	27
63	Tetherin Inhibits Cell-Free Virus Dissemination and Retards Murine Leukemia Virus Pathogenesis. Journal of Virology, 2017, 91, .	3.4	16
64	Repurposing a Bacterial Immune System to Discover Antiviral Targets. New England Journal of Medicine, 2017, 376, 1290-1291.	27.0	3
65	CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature, 2017, 550, 124-127.	27.8	336
66	A single gp120 residue can affect HIV-1 tropism in macaques. PLoS Pathogens, 2017, 13, e1006572.	4.7	28
67	Co-option of an endogenous retrovirus envelope for host defense in hominid ancestors. ELife, 2017, 6,	6.0	75
68	The RNA Binding Specificity of Human APOBEC3 Proteins Resembles That of HIV-1 Nucleocapsid. PLoS Pathogens, 2016, 12, e1005833.	4.7	54
69	HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis. Cell, 2016, 166, 1257-1268.e12.	28.9	110
70	Identification of Interferon-Stimulated Genes with Antiretroviral Activity. Cell Host and Microbe, 2016, 20, 392-405.	11.0	215
71	Origins and Evolution of tetherin , an Orphan Antiviral Gene. Cell Host and Microbe, 2016, 20, 189-201.	11.0	35
72	Analysis of the human immunodeficiency virus-1 RNA packageome. Rna, 2016, 22, 1228-1238.	3.5	46

#	Article	IF	CITATIONS
73	Single-Cell and Single-Cycle Analysis of HIV-1 Replication. PLoS Pathogens, 2015, 11, e1004961.	4.7	58
74	A Serpin Shapes the Extracellular Environment to Prevent Influenza A Virus Maturation. Cell, 2015, 160, 631-643.	28.9	137
75	Uneven Genetic Robustness of HIV-1 Integrase. Journal of Virology, 2015, 89, 552-567.	3.4	20
76	Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding. Proceedings of the United States of America, 2014, 111, 12211-12216.	7.1	93
77	Tetherin Promotes the Innate and Adaptive Cell–Mediated Immune Response against Retrovirus Infection In Vivo. Journal of Immunology, 2014, 193, 306-316.	0.8	45
78	Global Changes in the RNA Binding Specificity of HIV-1 Gag Regulate Virion Genesis. Cell, 2014, 159, 1096-1109.	28.9	216
79	Host and Viral Determinants of Mx2 Antiretroviral Activity. Journal of Virology, 2014, 88, 7738-7752.	3.4	144
80	Selection of Unadapted, Pathogenic SHIVs Encoding Newly Transmitted HIV-1 Envelope Proteins. Cell Host and Microbe, 2014, 16, 412-418.	11.0	47
81	HIV-1–induced AIDS in monkeys. Science, 2014, 344, 1401-1405.	12.6	76
82	SAMHD1-dependent retroviral control and escape in mice. EMBO Journal, 2013, 32, 2454-2462.	7.8	141
83	MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature, 2013, 502, 563-566.	27.8	445
84	Vpu Binds Directly to Tetherin and Displaces It from Nascent Virions. PLoS Pathogens, 2013, 9, e1003299.	4.7	102
85	Mechanism of HIV-1 Virion Entrapment by Tetherin. PLoS Pathogens, 2013, 9, e1003483.	4.7	97
86	Extreme Genetic Fragility of the HIV-1 Capsid. PLoS Pathogens, 2013, 9, e1003461.	4.7	178
87	Assisted Evolution Enables HIV-1 to Overcome a High TRIM5α-Imposed Genetic Barrier to Rhesus Macaque Tropism. PLoS Pathogens, 2013, 9, e1003667.	4.7	32
88	Fates of Retroviral Core Components during Unrestricted and TRIM5-Restricted Infection. PLoS Pathogens, 2013, 9, e1003214.	4.7	82
89	Adaptation to the Interferon-Induced Antiviral State by Human and Simian Immunodeficiency Viruses. Journal of Virology, 2013, 87, 3549-3560.	3.4	28
90	HIV Restriction Factors and Mechanisms of Evasion. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006940-a006940.	6.2	421

#	Article	IF	CITATIONS
91	An overview of intracellular interactions between immunodeficiency viruses and their hosts. Aids, 2012, 26, 1243-1254.	2.2	18
92	Inhibition of HIV-1 Particle Assembly by 2′,3′-Cyclic-Nucleotide 3′-Phosphodiesterase. Cell Host and Microbe, 2012, 12, 585-597.	11.0	54
93	Intrinsic Cellular Defenses against Human Immunodeficiency Viruses. Immunity, 2012, 37, 399-411.	14.3	96
94	HIV therapy by a combination of broadly neutralizing antibodies in humanized mice. Nature, 2012, 492, 118-122.	27.8	463
95	Tetherin is a key effector of the antiretroviral activity of type I interferon in vitro and in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18097-18101.	7.1	112
96	Antiretroviral restriction factors. Current Opinion in Virology, 2011, 1, 526-532.	5.4	32
97	Visualizing HIV-1 Assembly. Journal of Molecular Biology, 2011, 410, 501-511.	4.2	73
98	Dynamics of ESCRT protein recruitment during retroviral assembly. Nature Cell Biology, 2011, 13, 394-401.	10.3	198
99	A diverse range of gene products are effectors of the type I interferon antiviral response. Nature, 2011, 472, 481-485.	27.8	2,054
100	Sensing Retroviruses. Immunity, 2011, 35, 8-10.	14.3	2
101	Clathrin Facilitates the Morphogenesis of Retrovirus Particles. PLoS Pathogens, 2011, 7, e1002119.	4.7	45
102	SIV Nef Proteins Recruit the AP-2 Complex to Antagonize Tetherin and Facilitate Virion Release. PLoS Pathogens, 2011, 7, e1002039.	4.7	59
103	Identification of a receptor for an extinct virus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19496-19501.	7.1	27
104	Structural insight into the mechanisms of enveloped virus tethering by tetherin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18428-18432.	7.1	97
105	Functional Interchangeability of Late Domains, Late Domain Cofactors and Ubiquitin in Viral Budding. PLoS Pathogens, 2010, 6, e1001153.	4.7	57
106	The RING-CH Ligase K5 Antagonizes Restriction of KSHV and HIV-1 Particle Release by Mediating Ubiquitin-Dependent Endosomal Degradation of Tetherin. PLoS Pathogens, 2010, 6, e1000843.	4.7	129
107	Analysis of the Initiating Events in HIV-1 Particle Assembly and Genome Packaging. PLoS Pathogens, 2010, 6, e1001200.	4.7	162
108	Human Immunodeficiency Virus, Restriction Factors, and Interferon. Journal of Interferon and Cytokine Research, 2009, 29, 569-580.	1.2	116

#	Article	IF	CITATIONS
109	Integration target site selection by a resurrected human endogenous retrovirus. Genes and Development, 2009, 23, 633-642.	5.9	95
110	A role for ubiquitin ligases and Spartin/SPG20 in lipid droplet turnover. Journal of Cell Biology, 2009, 184, 881-894.	5.2	120
111	Broad-Spectrum Inhibition of Retroviral and Filoviral Particle Release by Tetherin. Journal of Virology, 2009, 83, 1837-1844.	3.4	347
112	Imaging the interaction of HIV-1 genomes and Gag during assembly of individual viral particles. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19114-19119.	7.1	233
113	Species-Specific Activity of HIV-1 Vpu and Positive Selection of Tetherin Transmembrane Domain Variants. PLoS Pathogens, 2009, 5, e1000300.	4.7	273
114	A macaque model of HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4425-4429.	7.1	150
115	Tetherin Inhibits HIV-1 Release by Directly Tethering Virions to Cells. Cell, 2009, 139, 499-511.	28.9	517
116	Nef Proteins from Simian Immunodeficiency Viruses Are Tetherin Antagonists. Cell Host and Microbe, 2009, 6, 54-67.	11.0	324
117	The Cell Biology of HIV-1 Virion Genesis. Cell Host and Microbe, 2009, 5, 550-558.	11.0	175
118	Tetherin-Driven Adaptation of Vpu and Nef Function and the Evolution of Pandemic and Nonpandemic HIV-1 Strains. Cell Host and Microbe, 2009, 6, 409-421.	11.0	391
119	Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature, 2008, 451, 425-430.	27.8	1,618
120	Imaging the biogenesis of individual HIV-1 virions in live cells. Nature, 2008, 454, 236-240.	27.8	290
121	No effect of endogenous TRIM5α on HIV-1 production. Nature Medicine, 2008, 14, 235-236.	30.7	35
122	HIV-1 at 25. Cell, 2008, 133, 561-565.	28.9	43
123	Evidence for Restriction of Ancient Primate Gammaretroviruses by APOBEC3 but Not TRIM5α Proteins. PLoS Pathogens, 2008, 4, e1000181.	4.7	33
124	Hypermutation of an Ancient Human Retrovirus by APOBEC3G. Journal of Virology, 2008, 82, 8762-8770.	3.4	84
125	Primate Lentivirus Capsid Sensitivity to TRIM5 Proteins. Journal of Virology, 2008, 82, 6772-6777.	3.4	51
126	Independent genesis of chimeric TRIM5-cyclophilin proteins in two primate species. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3563-3568.	7.1	183

#	Article	IF	CITATIONS
127	Ubiquitin-dependent virus particle budding without viral protein ubiquitination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 20031-20036.	7.1	77
128	Reconstitution of an Infectious Human Endogenous Retrovirus. PLoS Pathogens, 2007, 3, e10.	4.7	249
129	An Interferon-α-Induced Tethering Mechanism Inhibits HIV-1 and Ebola Virus Particle Release but Is Counteracted by the HIV-1 Vpu Protein. Cell Host and Microbe, 2007, 2, 193-203.	11.0	241
130	Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry. Nature, 2007, 446, 801-805.	27.8	1,082
131	HIV/AIDS: in search of an animal model. Trends in Biotechnology, 2007, 25, 333-337.	9.3	72
132	An intrinsic host defense against HIV-1 integration?. Journal of Clinical Investigation, 2007, 117, 302-304.	8.2	8
133	Comparative analysis of the antiretroviral activity of APOBEC3G and APOBEC3F from primates. Virology, 2006, 349, 31-40.	2.4	88
134	Generation of Simian-Tropic HIV-1 by Restriction Factor Evasion. Science, 2006, 314, 95-95.	12.6	140
135	Plasma Membrane Is the Site of Productive HIV-1 Particle Assembly. PLoS Biology, 2006, 4, e435.	5.6	299
136	Effect of DNA Repair Protein Rad18 on Viral Infection. PLoS Pathogens, 2006, 2, e40.	4.7	32
137	HIV-1 Vpu Promotes Release and Prevents Endocytosis of Nascent Retrovirus Particles from the Plasma Membrane. PLoS Pathogens, 2006, 2, e39.	4.7	239
138	The Betaretrovirus Mason-Pfizer Monkey Virus Selectively Excludes Simian APOBEC3G from Virion Particles. Journal of Virology, 2006, 80, 12102-12108.	3.4	30
139	Natural Variation in Vif: Differential Impact on APOBEC3G/3F and a Potential Role in HIV-1 Diversification. PLoS Pathogens, 2005, 1, e6.	4.7	226
140	Identification of Human VPS37C, a Component of Endosomal Sorting Complex Required for Transport-I Important for Viral Budding. Journal of Biological Chemistry, 2005, 280, 628-636.	3.4	71
141	HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. Journal of Cell Biology, 2005, 168, 89-101.	5.2	184
142	Identification of Domains in Gag Important for Prototypic Foamy Virus Egress. Journal of Virology, 2005, 79, 6392-6399.	3.4	41
143	Matrix-Induced Inhibition of Membrane Binding Contributes to Human Immunodeficiency Virus Type 1 Particle Assembly Defects in Murine Cells. Journal of Virology, 2005, 79, 15586-15589.	3.4	25
144	Cyclophilin Interactions with Incoming Human Immunodeficiency Virus Type 1 Capsids with Opposing Effects on Infectivity in Human Cells. Journal of Virology, 2005, 79, 176-183.	3.4	180

#	Article	IF	CITATIONS
145	Restriction of Human Immunodeficiency Virus Type 1 by TRIM-CypA Occurs with Rapid Kinetics and Independently of Cytoplasmic Bodies, Ubiquitin, and Proteasome Activity. Journal of Virology, 2005, 79, 15567-15572.	3.4	133
146	Human Tripartite Motif 5α Domains Responsible for Retrovirus Restriction Activity and Specificity. Journal of Virology, 2005, 79, 8969-8978.	3.4	223
147	Retrovirus resistance factors Ref1 and Lv1 are species-specific variants of TRIM5Â. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10774-10779.	7.1	345
148	Context-Dependent Effects of L Domains and Ubiquitination on Viral Budding. Journal of Virology, 2004, 78, 5554-5563.	3.4	129
149	Human Immunodeficiency Virus Type 1 Matrix Inhibits and Confers Cooperativity on Gag Precursor-Membrane Interactions. Journal of Virology, 2004, 78, 9560-9563.	3.4	79
150	APOBEC3G Incorporation into Human Immunodeficiency Virus Type 1 Particles. Journal of Virology, 2004, 78, 12058-12061.	3.4	264
151	Species-Specific Tropism Determinants in the Human Immunodeficiency Virus Type 1 Capsid. Journal of Virology, 2004, 78, 6005-6012.	3.4	119
152	Intrinsic immunity: a front-line defense against viral attack. Nature Immunology, 2004, 5, 1109-1115.	14.5	396
153	Capsid-Dependent and -Independent Postentry Restriction of Primate Lentivirus Tropism in Rodent Cells. Journal of Virology, 2004, 78, 1006-1011.	3.4	43
154	Restriction of multiple divergent retroviruses by Lv1 and Ref1. EMBO Journal, 2003, 22, 385-394.	7.8	216
155	Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nature Medicine, 2003, 9, 1138-1143.	30.7	362
156	Restriction factors: a defense against retroviral infection. Trends in Microbiology, 2003, 11, 286-291.	7.7	100
157	Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12414-12419.	7.1	375
158	A Bipartite Late-Budding Domain in Human Immunodeficiency Virus Type 1. Journal of Virology, 2003, 77, 12373-12377.	3.4	55
159	Role of ESCRT-I in Retroviral Budding. Journal of Virology, 2003, 77, 4794-4804.	3.4	231
160	Cellular inhibitors with Fv1-like activity restrict human and simian immunodeficiency virus tropism. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 11914-11919.	7.1	261
161	Envelope-Dependent, Cyclophilin-Independent Effects of Glycosaminoglycans on Human Immunodeficiency Virus Type 1 Attachment and Infection. Journal of Virology, 2002, 76, 6332-6343.	3.4	111
162	Cyclin T1 Expression Is Mediated by a Complex and Constitutively Active Promoter and Does Not Limit Human Immunodeficiency Virus Type 1 Tat Function in Unstimulated Primary Lymphocytes. Journal of Virology, 2002, 76, 208-219.	3.4	16

#	Article	IF	CITATIONS
163	HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature Medicine, 2001, 7, 1313-1319.	30.7	676
164	Multiple Blocks to Human Immunodeficiency Virus Type 1 Replication in Rodent Cells. Journal of Virology, 2000, 74, 9868-9877.	3.4	176
165	Functional Differences between Human and Bovine Immunodeficiency Virus Tat Transcription Factors. Journal of Virology, 2000, 74, 4666-4671.	3.4	3
166	Role Of Chemokine Receptors In Hiv-1 Infection And Pathogenesis. Advances in Virus Research, 1999, 52, 233-267.	2.1	27
167	Highly Divergent Lentiviral Tat Proteins Activate Viral Gene Expression by a Common Mechanism. Molecular and Cellular Biology, 1999, 19, 4592-4599.	2.3	40
168	Analysis of the Effect of Natural Sequence Variation in Tat and in Cyclin T on the Formation and RNA Binding Properties of Tat-Cyclin T Complexes. Journal of Virology, 1999, 73, 5777-5786.	3.4	35
169	Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO Journal, 1998, 17, 7056-7065.	7.8	245
170	Multiple Residues Contribute to the Inability of Murine CCR-5 To Function as a Coreceptor for Macrophage-Tropic Human Immunodeficiency Virus Type 1 Isolates. Journal of Virology, 1998, 72, 1918-1924.	3.4	71
171	Sequences in <i>pol</i> Are Required for Transfer of Human Foamy Virus-Based Vectors. Journal of Virology, 1998, 72, 5510-5516.	3.4	51
172	No Evidence of Antibody to Human Foamy Virus in Widespread Human Populations. AIDS Research and Human Retroviruses, 1996, 12, 1473-1483.	1.1	61
173	A Comparative Study of Higher Primate Foamy Viruses, Including a New Virus from a Gorilla. Virology, 1995, 207, 217-228.	2.4	88
174	Development of a rapid quantitative assay for HIV-1 plasma infectious viraemia-culture-PCR (CPID). Journal of Medical Virology, 1994, 43, 28-32.	5.0	4