Dage Matts Börje Sundholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3529291/publications.pdf

Version: 2024-02-01

176 papers 6,637 citations

71102 41 h-index 79698 73 g-index

181 all docs

181 docs citations

times ranked

181

4111 citing authors

#	Article	IF	CITATIONS
1	Calculation of current densities using gauge-including atomic orbitals. Journal of Chemical Physics, 2004, 121, 3952-3963.	3.0	393
2	The gauge including magnetically induced current method. Physical Chemistry Chemical Physics, 2011, 13, 20500.	2.8	326
3	Au32: A 24-Carat Golden Fullerene. Angewandte Chemie - International Edition, 2004, 43, 2678-2681.	13.8	285
4	Calculations of magnetically induced current densities: theory and applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, 639-678.	14.6	244
5	Fully numerical hartree-fock methods for molecules. Computer Physics Reports, 1986, 4, 313-344.	2.2	240
6	Ab initio determination of the induced ring current in aromatic molecules. Physical Chemistry Chemical Physics, 1999, 1, 3429-3435.	2.8	173
7	Magnetically Induced Current Densities in Aromatic, Antiaromatic, Homoaromatic, and Nonaromatic Hydrocarbons. Journal of Physical Chemistry A, 2009, 113, 8668-8676.	2.5	164
8	Luminescent Characterization of Solution Oligomerization Process Mediated Goldâ^'Gold Interactions. DFT Calculations on [Au2Ag2R4L2]nMoieties. Journal of the American Chemical Society, 2000, 122, 7287-7293.	13.7	140
9	A numerical Hartree-Fock program for diatomic molecules. Computer Physics Communications, 1996, 98, 346-358.	7.5	123
10	Two-dimensional, fully numerical molecular calculations. Molecular Physics, 1985, 56, 1411-1418.	1.7	113
11	Sphere Currents of Buckminsterfullerene. Angewandte Chemie - International Edition, 2005, 44, 1843-1846.	13.8	113
12	Interpretation of the electronic absorption spectrum of free-base porphin using time-dependent density-functional theory. Physical Chemistry Chemical Physics, 2000, 2, 2275-2281.	2.8	109
13	Calculation of spin-current densities using gauge-including atomic orbitals. Journal of Chemical Physics, 2011, 134, 054123.	3.0	109
14	Cyclo[18]carbon: Insight into Electronic Structure, Aromaticity, and Surface Coupling. Journal of Physical Chemistry Letters, 2019, 10, 6701-6705.	4.6	103
15	The aromatic pathways of porphins, chlorins and bacteriochlorins. Physical Chemistry Chemical Physics, 2000, 2, 2145-2151.	2.8	99
16	Properties of WAu12. Physical Chemistry Chemical Physics, 2004, 6, 11-22.	2.8	97
17	The Aromatic Character of Magnesium Porphyrins. Journal of Organic Chemistry, 2000, 65, 5233-5237.	3.2	83
18	Aromatic Pathways of Porphins, Chlorins, and Bacteriochlorins. Journal of Organic Chemistry, 2012, 77, 3408-3414.	3.2	80

#	Article	IF	CITATIONS
19	First-principles method for calculating the rate constants of internal-conversion and intersystem-crossing transitions. Physical Chemistry Chemical Physics, 2018, 20, 6121-6133.	2.8	79
20	Energetics and dynamics of a light-driven sodium-pumping rhodopsin. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7043-7048.	7.1	73
21	Benchmarking the Performance of Time-Dependent Density Functional Theory Methods on Biochromophores. Journal of Chemical Theory and Computation, 2020, 16, 587-600.	5. 3	69
22	Large multiconfiguration Hartree–Fock calculations on the hyperfine structure of B(2P) and the nuclear quadrupole moments of 10B and 11B. Journal of Chemical Physics, 1991, 94, 5051-5055.	3.0	65
23	Aromatic Pathways in Twisted Hexaphyrins. Journal of Physical Chemistry A, 2010, 114, 7153-7161.	2.5	65
24	Large multiconfigurational Hartree-Fock calculations on the hyperfine structure of Li(2S) and Li(2P). Physical Review A, 1990, 42, 2614-2621.	2.5	64
25	The aromaticity and antiaromaticity of dehydroannulenes. Physical Chemistry Chemical Physics, 2001, 3, 2433-2437.	2.8	61
26	Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings. Physical Chemistry Chemical Physics, 2016, 18, 15934-15942.	2.8	61
27	Effect of Fluorine Substitution on the Aromaticity of Polycyclic Hydrocarbons. Journal of Physical Chemistry A, 2012, 116, 10257-10268.	2.5	57
28	Proteinâ€Induced Color Shift of Carotenoids in βâ€Crustacyanin. Angewandte Chemie - International Edition, 2015, 54, 11564-11566.	13.8	57
29	Magnetically Induced Currents in [<i>n</i>]Cycloparaphenylenes, <i>n</i> = 6â^11. Journal of Organic Chemistry, 2010, 75, 5867-5874.	3.2	56
30	Computational studies of photophysical properties of porphin, tetraphenylporphyrin and tetrabenzoporphyrin. Physical Chemistry Chemical Physics, 2012, 14, 11508.	2.8	56
31	Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems. Journal of Chemical Physics, 2011, 134, 214114.	3.0	55
32	Calculation of absorption and emission spectra of [n]cycloparaphenylenes: the reason for the large Stokes shift. Physical Chemistry Chemical Physics, 2010, 12, 2751.	2.8	53
33	Finite element multiconfiguration Hartree–Fock determination of the nuclear quadrupole moments of chlorine, potassium, and calcium isotopes. Journal of Chemical Physics, 1993, 98, 7152-7158.	3.0	49
34	Polycyclic antiaromatic hydrocarbons. Physical Chemistry Chemical Physics, 2008, 10, 6630.	2.8	49
35	Electrostatic spectral tuning mechanism of the green fluorescent protein. Physical Chemistry Chemical Physics, 2013, 15, 4491.	2.8	47
36	Calculation of vibrationally resolved absorption spectra of acenes and pyrene. Physical Chemistry Chemical Physics, 2019, 21, 21094-21103.	2.8	47

#	Article	IF	Citations
37	Two-dimensional, fully numerical molecular calculations. Molecular Physics, 1987, 60, 597-604.	1.7	45
38	Coupled-cluster and density functional theory studies of the electronic excitation spectra of trans-1,3-butadiene and trans-2-propeniminium. Journal of Chemical Physics, 2009, 131, 024301.	3.0	44
39	Gauge-Origin Independent Calculations of the Anisotropy of the Magnetically Induced Current Densities. Journal of Physical Chemistry A, 2016, 120, 5658-5664.	2.5	44
40	The Effect of Protein Environment on Photoexcitation Properties of Retinal. Journal of Physical Chemistry B, 2012, 116, 2249-2258.	2.6	43
41	Spectral Tuning of Rhodopsin and Visual Cone Pigments. Journal of the American Chemical Society, 2014, 136, 2723-2726.	13.7	43
42	Calculations of current densities for neutral and doubly charged persubstituted benzenes using effective core potentials. Physical Chemistry Chemical Physics, 2017, 19, 7124-7131.	2.8	43
43	Benchmarking Magnetizabilities with Recent Density Functionals. Journal of Chemical Theory and Computation, 2021, 17, 1457-1468.	5.3	43
44	Aromatic pathways in mono- and bisphosphorous singly Möbius twisted [28] and [30]hexaphyrins. Physical Chemistry Chemical Physics, 2011, 13, 20659.	2.8	41
45	Computational Studies of Aromatic and Photophysical Properties of Expanded Porphyrins. Journal of Physical Chemistry A, 2018, 122, 4756-4767.	2.5	41
46	A density-functional-theory study of bacteriochlorophyll b. Physical Chemistry Chemical Physics, 2003, 5, 4265.	2.8	40
47	Benchmarking the Approximate Second-Order Coupled-Cluster Method on Biochromophores. Journal of Chemical Theory and Computation, 2011, 7, 2473-2484.	5.3	40
48	Closed-shell paramagnetic porphyrinoids. Chemical Communications, 2017, 53, 9866-9869.	4.1	40
49	The exactness of the extended Koopmans' theorem: A numerical study. Journal of Chemical Physics, 1993, 98, 3999-4002.	3.0	39
50	Current density and molecular magnetic properties. Chemical Communications, 2021, 57, 12362-12378.	4.1	39
51	A modified variation-perturbation approach to zero-point vibrational motion. Theoretical Chemistry Accounts, 2000, 103, 365-373.	1.4	38
52	Insights into Magnetically Induced Current Pathways and Optical Properties of Isophlorins. Journal of Physical Chemistry A, 2013, 117, 9062-9068.	2.5	38
53	Calculating rate constants for intersystem crossing and internal conversion in the Franck–Condon and Herzberg–Teller approximations. Physical Chemistry Chemical Physics, 2019, 21, 18495-18500.	2.8	38
54	Exploring the Stability of Golden Fullerenes. Journal of Physical Chemistry C, 2008, 112, 19311-19315.	3.1	37

#	Article	IF	CITATIONS
55	Relation Between Ring Currents and Hydrogenation Enthalpies for Assessing the Degree of Aromaticity. Journal of Physical Chemistry A, 2017, 121, 7282-7289.	2.5	37
56	Magnetically Induced Currents in Bianthraquinodimethane-Stabilized Möbius and Hückel [16]Annulenes. Journal of Organic Chemistry, 2009, 74, 6495-6502.	3.2	36
57	Hydrogen-bond strengths by magnetically induced currents. Physical Chemistry Chemical Physics, 2011, 13, 434-437.	2.8	35
58	Importance of Vibronic Effects in the UV–Vis Spectrum of the 7,7,8,8-Tetracyanoquinodimethane Anion. Journal of Chemical Theory and Computation, 2016, 12, 5058-5066.	5.3	35
59	Aromaticity of the doubly charged [8]circulenes. Physical Chemistry Chemical Physics, 2016, 18, 8980-8992.	2.8	34
60	Calculation of Magnetically Induced Currents in Hydrocarbon Nanorings. Journal of Physical Chemistry A, 2008, 112, 13584-13592.	2.5	33
61	C72: gaudiene, a hollow and aromatic all-carbon molecule. Physical Chemistry Chemical Physics, 2013, 15, 9025.	2.8	33
62	Exploring the Light-Capturing Properties of Photosynthetic Chlorophyll Clusters Using Large-Scale Correlated Calculations. Journal of Chemical Theory and Computation, 2016, 12, 2644-2651.	5.3	32
63	First-principles calculations of anharmonic and deuteration effects on the photophysical properties of polyacenes and porphyrinoids. Physical Chemistry Chemical Physics, 2020, 22, 22314-22323.	2.8	32
64	Tetraberyllium-Î- ⁴ -oxo-hexa(arylcarboxylates). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2001, 56, 979-989.	0.7	31
65	Computational studies of 13C NMR chemical shifts of saccharides. Physical Chemistry Chemical Physics, 2005, 7, 2561.	2.8	31
66	Coupled-Cluster Studies of Extensive Green Fluorescent Protein Models Using the Reduced Virtual Space Approach. Journal of Physical Chemistry B, 2015, 119, 2933-2945.	2.6	30
67	Aromaticity of Even-Number Cyclo[<i>n</i>]carbons (<i>n</i> = 6–100). Journal of Physical Chemistry A, 2020, 124, 10849-10855.	2.5	30
68	Aromatic pathways in thieno-bridged porphyrins: understanding the influence of the direction of the thiophene ring on the aromatic character. Molecular Physics, 2013, 111, 1364-1372.	1.7	29
69	Electronic and optical properties of metalloporphyrins of zinc on TiO ₂ cluster in dye-sensitized solar-cells (DSSC). A quantum chemistry study. RSC Advances, 2017, 7, 42677-42684.	3.6	29
70	Two-dimensional, fully numerical molecular calculations. Molecular Physics, 1985, 55, 627-635.	1.7	28
71	New insights into aromatic pathways of carbachlorins and carbaporphyrins based on calculations of magnetically induced current densities. Physical Chemistry Chemical Physics, 2016, 18, 11932-11941.	2.8	28
72	Theoretical studies as a tool for understanding the aromatic character of porphyrinoid compounds. Chemical Modelling, 0, , 1-42.	0.4	28

#	Article	IF	CITATIONS
73	Density functional studies of the luminescence of Si29H36. Physical Chemistry Chemical Physics, 2004, 6, 2044.	2.8	27
74	Parallel implementation of a direct method for calculating electrostatic potentials. Journal of Chemical Physics, 2007, 126, 094101.	3.0	27
75	Predicting the degree of aromaticity of novel carbaporphyrinoids. Physical Chemistry Chemical Physics, 2015, 17, 14215-14222.	2.8	27
76	Novel hollow all-carbon structures. Nanoscale, 2015, 7, 15886-15894.	5.6	27
77	Universal method for computation of electrostatic potentials. Journal of Chemical Physics, 2005, 122, 194107.	3.0	26
78	On the Aromaticity of the Planar Hydrogen-Bonded (HF)3Trimer. Journal of Chemical Theory and Computation, 2006, 2, 761-764.	5.3	26
79	The aromatic character of thienopyrrole-modified 20Ï€-electron porphyrinoids. Physical Chemistry Chemical Physics, 2014, 16, 11010.	2.8	26
80	[Hg 4 Te 8 (Te 2) 4] $8\hat{a}$: A Heavy Metal Porphyrinoid Embedded in a Lamellar Structure. Angewandte Chemie - International Edition, 2018, 57, 8770-8774.	13.8	26
81	The direct approach to gravitation and electrostatics method for periodic systems. Journal of Chemical Physics, 2010, 132, 024102.	3.0	24
82	A divide and conquer real-space approach for all-electron molecular electrostatic potentials and interaction energies. Journal of Chemical Physics, 2012, 136, 214104.	3.0	24
83	Aromatic Pathways in Carbathiaporphyrins. Journal of Physical Chemistry A, 2015, 119, 1201-1207.	2.5	23
84	Antiaromatic Character of 16 π Electron Octaethylporphyrins: Magnetically Induced Ring Currents from DFT-GIMIC Calculations. Journal of Physical Chemistry A, 2015, 119, 2344-2350.	2.5	23
85	Non-intersecting ring currents in [12]infinitene. Physical Chemistry Chemical Physics, 2022, 24, 6404-6409.	2.8	23
86	Calculation of ring-current susceptibilities for potentially homoaromatic hydrocarbons. Computational and Theoretical Chemistry, 2003, 633, 123-136.	1.5	21
87	Bicycloaromaticity and Baird-type bicycloaromaticity of dithienothiophene-bridged [34]octaphyrins. Physical Chemistry Chemical Physics, 2018, 20, 17705-17713.	2.8	21
88	Ab Initio Studies of Triplet-State Properties for Organic Semiconductor Molecules. Journal of Physical Chemistry C, 2012, 116, 15203-15217.	3.1	20
89	Magnetically Induced Current Densities in Toroidal Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 15354-15365.	3.1	20
90	Aromatic pathways in conjugated rings connected by single bonds. International Journal of Quantum Chemistry, 2011, 111, 848-857.	2.0	19

#	Article	IF	CITATIONS
91	Double Photoinduced Jahn–Teller Distortion of Tetrahedral Au ^I Sn ^{II} Complexes. ChemPlusChem, 2014, 79, 67-76.	2.8	19
92	Optical and magnetic properties of antiaromatic porphyrinoids. Physical Chemistry Chemical Physics, 2017, 19, 25979-25988.	2.8	19
93	Magnetically Induced Ring-Current Strengths in Möbius Twisted Annulenes. Journal of Physical Chemistry Letters, 2018, 9, 1627-1632.	4.6	19
94	Fully numerical electronic structure calculations on diatomic molecules in weak to strong magnetic fields. Molecular Physics, 2020, 118 , .	1.7	19
95	Calculations of current densities and aromatic pathways in cyclic porphyrin and isoporphyrin arrays. Physical Chemistry Chemical Physics, 2017, 19, 12794-12803.	2.8	18
96	Aromatic and Antiaromatic Pathways in Triphyrin(2.1.1) Annelated with Benzo[<i>b</i>]heterocycles. Chemistry - A European Journal, 2019, 25, 15477-15482.	3.3	18
97	When are Antiaromatic Molecules Paramagnetic?. Journal of Physical Chemistry C, 2020, 124, 21027-21035.	3.1	18
98	Atoms and molecules in soft confinement potentials. Molecular Physics, 2020, 118, e1730989.	1.7	18
99	Tuning the Proteinâ€Induced Absorption Shifts of Retinal in Engineered Rhodopsin Mimics. Chemistry - A European Journal, 2016, 22, 8254-8261.	3.3	17
100	Interplay of Aromaticity and Antiaromaticity in N-Doped Nanographenes. Journal of Physical Chemistry A, 2020, 124, 695-703.	2.5	17
101	Spatial Contributions to Nuclear Magnetic Shieldings. Journal of Physical Chemistry A, 2021, 125, 1778-1786.	2.5	17
102	Magnetically Induced Ring-Current Strengths of Planar and Nonplanar Molecules: New Insights from the Pseudo-I€ Model. Journal of Physical Chemistry A, 2021, 125, 5753-5764.	2.5	17
103	Full configuration interaction studies of phonon and photon transition rates in semiconductor quantum dots. Molecular Physics, 2002, 100, 911-918.	1.7	16
104	Relations between the aromaticity and magnetic dipole transitions in the electronic spectra of hetero[8]circulenes. Physical Chemistry Chemical Physics, 2018, 20, 30239-30246.	2.8	16
105	Absorption shifts of diastereotopically ligated chlorophyll dimers of photosystem I. Physical Chemistry Chemical Physics, 2019, 21, 6851-6858.	2.8	16
106	Fast estimation of the internal conversion rate constant in photophysical applications. Physical Chemistry Chemical Physics, 2021, 23, 6344-6348.	2.8	16
107	Coupled-cluster calculations of the lowest O–O bands of the electronic excitation spectrum of naphthalene. Physical Chemistry Chemical Physics, 2014, 16, 9859.	2.8	15
108	Evaluating Shieldingâ€Based Ringâ€Current Models by Using the Gaugeâ€Including Magnetically Induced Current Method. Journal of the Chinese Chemical Society, 2016, 63, 93-100.	1.4	15

#	Article	IF	Citations
109	The influence of heteroatoms on the aromatic character and the current pathways of B ₂ N ₂ -dibenzo[a,e]pentalenes. Physical Chemistry Chemical Physics, 2017, 19, 20213-20223.	2.8	15
110	Perhalophenyl Three-Coordinate Gold(I) Complexes as TADF Emitters: A Photophysical Study from Experimental and Computational Viewpoints. Inorganic Chemistry, 2020, 59, 14236-14244.	4.0	15
111	Integration of global ring currents using the Ampà re†Maxwell law. Physical Chemistry Chemical Physics, 2022, 24, 624-628.	2.8	15
112	Coupled-cluster and density functional theory studies of the electronic 0â€"0 transitions of the DNA bases. Physical Chemistry Chemical Physics, 2014, 16, 6931-6941.	2.8	14
113	Magnetic response properties of gaudiene – a cavernous and aromatic carbocage. Physical Chemistry Chemical Physics, 2016, 18, 18880-18886.	2.8	14
114	The aromatic character of [10]annulenes and dicupra [10]annulenes from current density calculations. Physical Chemistry Chemical Physics, 2018, 20, 1337-1346.	2.8	14
115	Response to ††Comment on †The exactness of the extended Koopmans†theorem: A numerical study†Chem. Phys. 99, 6221 (1993)]. Journal of Chemical Physics, 1993, 99, 6222-6223.	™â€™ [J. 3.0	13
116	The Quest for Beryllium Peroxides. Inorganic Chemistry, 2001, 40, 2270-2274.	4.0	13
117	Full Configuration Interaction Calculations of Electron-Hole Correlation Effects in Strain-Induced Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 775-779.	1.5	13
118	The grid-based fast multipole method – a massively parallel numerical scheme for calculating two-electron interaction energies. Physical Chemistry Chemical Physics, 2015, 17, 31480-31490.	2.8	13
119	Insights into Molecular Structures and Optical Properties of Stacked [Au ₃ (RN╀R′) ₃] _{<i>n</i>/i>} Complexes. Inorganic Chemistry, 2018, 57, 718-730.	4.0	13
120	On the Mechanism of the Reactivity of 1,3â€Dialkylimidazolium Salts under Basic to Acidic Conditions: A Combined Kinetic and Computational Study. Angewandte Chemie - International Edition, 2018, 57, 11613-11617.	13.8	13
121	Calculation of vibrationally resolved absorption and fluorescence spectra of the rylenes. Physical Chemistry Chemical Physics, 2020, 22, 2379-2385.	2.8	13
122	Core-electron contributions to the molecular magnetic response. Physical Chemistry Chemical Physics, 2022, 24, 12158-12166.	2.8	13
123	Nuclear Magnetic Shieldings of Stacked Aromatic and Antiaromatic Molecules. Journal of Chemical Theory and Computation, 2017, 13, 1952-1962.	5.3	12
124	An Ab Initio Study of Structure and Energetics of Free-Base Bonellin-Dimethylester Isomers and Transition States. Chemistry - A European Journal, 1999, 5, 267-273.	3.3	11
125	Theoretical investigation of photoelectron spectra and magnetically induced current densities in ring-shaped transition-metal oxides. Theoretical Chemistry Accounts, 2011, 129, 701-713.	1.4	11
126	Construction of the Fock Matrix on a Grid-Based Molecular Orbital Basis Using GPGPUs. Journal of Chemical Theory and Computation, 2015, 11, 2053-2062.	5. 3	11

#	Article	IF	CITATIONS
127	Carrier-Carrier Correlations in Strain-Induced Quantum Dots. Physica Status Solidi (B): Basic Research, 2000, 221, 37-41.	1.5	10
128	Aromaticity Indices from Magnetic Shieldings. , 2004, , 395-407.		10
129	Calculation of magnetic response properties of tetrazines. RSC Advances, 2020, 10, 18124-18130.	3.6	10
130	Computational methods for studies of multiexciton complexes. Physica Status Solidi (B): Basic Research, 2006, 243, 4035-4045.	1.5	9
131	Thiolate-protected golden fullerenes. A 32-ve core involving a hollow Au ₃₂ cage. RSC Advances, 2016, 6, 21332-21336.	3.6	9
132	A Generalized Grid-Based Fast Multipole Method for Integrating Helmholtz Kernels. Journal of Chemical Theory and Computation, 2017, 13, 654-665.	5. 3	9
133	[Hg 4 Te 8 (Te 2) 4] 8â^' : ein Schwermetallâ€Porphyrinoid in einer lamellaren Struktur. Angewandte Chemie, 2018, 130, 8906-8910.	2.0	9
134	Magnetically induced ring currents in metallocenothiaporphyrins. Physical Chemistry Chemical Physics, 2022, 24, 1666-1674.	2.8	9
135	Calculations of the light absorption spectra of porphyrinoid chromophores for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2016, 18, 27877-27884.	2.8	8
136	Aromaticity introduced by antiferromagnetic ligand mediated metal–metal interactions. Insights from the induced magnetic response in [Cu ₆ (dmPz) ₆ (OH) ₆]. Inorganic Chemistry Frontiers, 2017, 4, 986-993.	6.0	8
137	Computational methods for studies of semiconductor quantum dots and rings. Annual Reports on the Progress of Chemistry Section C, 2012, 108, 96.	4.4	7
138	Computational studies of the corrosionâ€inhibition efficiency of iron by triazole surfactants. International Journal of Quantum Chemistry, 2013, 113, 1365-1371.	2.0	7
139	Solvation chemical shifts of perylenic antenna molecules from molecular dynamics simulations. Physical Chemistry Chemical Physics, 2014, 16, 22309-22320.	2.8	7
140	Optimization of numerical orbitals using the Helmholtz kernel. Journal of Chemical Physics, 2017, 146, 084102.	3.0	7
141	Divergent Carbocatalytic Routes in Oxidative Coupling of Benzofused Heteroaryl Dimers: A Mechanistic Update. Chemistry - A European Journal, 2021, 27, 5283-5291.	3.3	7
142	Influence of perhalophenyl groups in the TADF mechanism of diphosphino gold(<scp>i</scp>) complexes. Journal of Materials Chemistry C, 2022, 10, 4894-4904.	5 . 5	7
143	Magnetically Induced Current Densities in Zinc Porphyrin Nanoshells. Journal of Physical Chemistry A, 2022, 126, 1936-1945.	2.5	7
144	Odd-Number Cyclo[<i>n</i>]Carbons Sustaining Alternating Aromaticity. Journal of Physical Chemistry A, 2022, 126, 2445-2452.	2.5	7

#	Article	IF	Citations
145	Sphere Currents of Buckminsterfullerene. Angewandte Chemie, 2005, 117, 1877-1880.	2.0	6
146	Double Jahn–Teller Distortion in AuGe Complexes Leading to a Dual Blue–Orange Emission. ChemPlusChem, 2016, 81, 176-186.	2.8	6
147	The Excitation Spectra of Naphthalene Dimers: Frenkel and Chargeâ€transfer Excitons. Journal of the Chinese Chemical Society, 2016, 63, 20-32.	1.4	6
148	Relation between molecular electronic structure and nuclear spin-induced circular dichroism. Scientific Reports, 2017, 7, 46617.	3.3	6
149	Density Functional Theory under the Bubbles and Cube Numerical Framework. Journal of Chemical Theory and Computation, 2018, 14, 4237-4245.	5.3	6
150	Deacetylation of per-acetatylated glycopyranosides: An overall pattern for acidic catalyzis. Chemical Physics Letters, 2019, 723, 123-127.	2.6	6
151	Spatial Contributions to 1H NMR Chemical Shifts of Free-Base Porphyrinoids. Chemistry, 2021, 3, 1005-1021.	2.2	6
152	Construction of the two-electron contribution to the Fock matrix by numerical integration. Molecular Physics, 2012, 110, 2569-2578.	1.7	5
153	Computational and experimental studies of the electronic excitation spectra of EDTA and DTPA substituted tetraphenylporphyrins and their Lu complexes. Journal of Molecular Modeling, 2013, 19, 4631-4637.	1.8	5
154	The aromaticity of verdazyl radicals and their closed-shell charged species. New Journal of Chemistry, 2018, 42, 19987-19994.	2.8	5
155	A method for designing a novel class of gold-containing molecules. Chemical Communications, 2020, 56, 5433-5436.	4.1	5
156	An efficient algorithm to calculate three-electron integrals for Gaussian-type orbitals using numerical integration. Molecular Physics, 2013, 111, 2536-2543.	1.7	4
157	Computational Studies of a Paramagnetic Planar Dibenzotetraaza [14] annulene Ni(II) Complex. Journal of Physical Chemistry A, 2015, 119, 5189-5196.	2.5	4
158	On the Mechanism of the Reactivity of 1,3â€Dialkylimidazolium Salts under Basic to Acidic Conditions: A Combined Kinetic and Computational Study. Angewandte Chemie, 2018, 130, 11787-11791.	2.0	4
159	The effect of anion complexation on the aromatic properties of aromatic and antiaromatic porphyrinoids. New Journal of Chemistry, 2020, 44, 20643-20650.	2.8	4
160	Current density, current-density pathways, and molecular aromaticity., 2021,, 155-194.		4
161	Diagnosing Ring Current(s) in Figure-Eight Skeletons: A 3D Through-Space Conjugation in the Two-Loops Crossing. Organic Letters, 2022, 24, 4876-4880.	4.6	4
162	Tensor decompositions for the bubbles and cube numerical framework. Computer Physics Communications, 2018, 232, 98-103.	7.5	3

#	Article	IF	CITATIONS
163	Photophysical properties of the triangular [Au(HNî€COH)] < sub>3 < /sub> complex and its dimer. Physical Chemistry Chemical Physics, 2020, 22, 10314-10321.	2.8	3
164	Two Fully Numerical Methods in Quantum Chemistry. International Journal of Modern Physics C, 1991, 02, 455-457.	1.7	2
165	Relativistic multiconfiguration Hartree-SFock by means of direct perturbation theory. International Journal of Quantum Chemistry, 1997, 65, 151-158.	2.0	2
166	The argon nuclear quadrupole moments. Molecular Physics, 2018, 116, 1682-1686.	1.7	2
167	Ab Initio Study of Phosphorescence of Hetero[8]Circulenes. Russian Physics Journal, 2019, 62, 406-410.	0.4	2
168	Magnetically induced ring currents in naphthalene-fused heteroporphyrinoids. Physical Chemistry Chemical Physics, 2021, 23, 16629-16634.	2.8	2
169	Aromatic Pathways in Porphycene Derivatives Based on Current-Density Calculations. Journal of Physical Chemistry A, 2019, 123, 284-292.	2.5	1
170	Aromatic Pathways in Porphyrinoids by Magnetically Induced Ring Currents. Handbook of Porphyrin Science, 2022, , 1-39.	0.8	1
171	Perturbation energy expansions based on two-component relativistic Hamiltonians. Theoretical Chemistry Accounts, 2003, 110, 144-152.	1.4	0
172	On energetic prerequisites of attracting electrons. Journal of Chemical Physics, 2014, 140, 234111.	3.0	0
173	A comment to â€ [~] Catalyst Induced Hydrino Transition (CIHT) electrochemical cellâ€ [™] . International Journal of Energy Research, 2014, 38, 1766-1766.	4.5	0
174	Double Jahn-Teller Distortion in AuGe Complexes Leading to a Dual Blue-Orange Emission. ChemPlusChem, 2016, 81, 156-156.	2.8	0
175	Cover Image, Volume 6, Issue 6. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2016, 6, i.	14.6	0
176	Predicting Stable Molecular Structures for (RNC) ₂ Au ^I X Complexes. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1127-1134.	1.2	0