D P Marrone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528893/publications.pdf

Version: 2024-02-01

8755 8630 22,922 228 75 146 h-index citations g-index papers 230 230 230 8680 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L1.	8.3	2,264
2	First M87 Event Horizon Telescope Results. VI. The Shadow and Mass of the Central Black Hole. Astrophysical Journal Letters, 2019, 875, L6.	8.3	897
3	First M87 Event Horizon Telescope Results. V. Physical Origin of the Asymmetric Ring. Astrophysical Journal Letters, 2019, 875, L5.	8.3	814
4	First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole. Astrophysical Journal Letters, 2019, 875, L4.	8.3	806
5	Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre. Nature, 2008, 455, 78-80.	27.8	699
6	First M87 Event Horizon Telescope Results. II. Array and Instrumentation. Astrophysical Journal Letters, 2019, 875, L2.	8.3	618
7	First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way. Astrophysical Journal Letters, 2022, 930, L12.	8.3	568
8	First M87 Event Horizon Telescope Results. III. Data Processing and Calibration. Astrophysical Journal Letters, 2019, 875, L3.	8.3	519
9	GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE 2500-SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, Supplement Series, 2015, 216, 27.	7.7	464
10	Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87. Science, 2012, 338, 355-358.	12.6	336
11	Magnetic Fields in the Formation of Sun-Like Stars. Science, 2006, 313, 812-814.	12.6	305
12	First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. Astrophysical Journal Letters, 2021, 910, L13.	8.3	297
13	GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-ZEL'DOVICH EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS. Astrophysical Journal, 2010, 722, 1180-1196.	4.5	285
14	Dusty starburst galaxies in the early Universe as revealed by gravitational lensing. Nature, 2013, 495, 344-347.	27.8	255
15	EXTRAGALACTIC MILLIMETER-WAVE SOURCES IN SOUTH POLE TELESCOPE SURVEY DATA: SOURCE COUNTS, CATALOG, AND STATISTICS FOR AN 87 SQUARE-DEGREE FIELD. Astrophysical Journal, 2010, 719, 763-783.	4.5	252
16	GALAXY CLUSTERS DISCOVERED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2013, 763, 127.	4.5	240
17	An Unambiguous Detection of Faraday Rotation in Sagittarius A*. Astrophysical Journal, 2007, 654, L57-L60.	4.5	235
18	ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 767, 88.	4.5	232

#	Article	IF	CITATIONS
19	DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81. Astrophysical Journal, 2016, 823, 37.	4.5	229
20	First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. Astrophysical Journal Letters, 2021, 910, L12.	8.3	215
21	First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric. Astrophysical Journal Letters, 2022, 930, L17.	8.3	215
22	A SUNYAEV-ZEL'DOVICH-SELECTED SAMPLE OF THE MOST MASSIVE GALAXY CLUSTERS IN THE 2500 deg ² SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2011, 738, 139.	4.5	213
23	Cluster Cosmology Constraints from the 2500 deg ² SPT-SZ Survey: Inclusion of Weak Gravitational Lensing Data from Magellan and the Hubble Space Telescope. Astrophysical Journal, 2019, 878, 55.	4.5	211
24	COSMOLOGICAL CONSTRAINTS FROM SUNYAEV–ZEL'DOVICH-SELECTED CLUSTERS WITH X-RAY OBSERVATIONS IN THE FIRST 178Âdeg⟨sup⟩2⟨/sup⟩ OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2013, 763, 147.	4.5	206
25	Gravitational Test beyond the First Post-Newtonian Order with the Shadow of the M87 Black Hole. Physical Review Letters, 2020, 125, 141104.	7.8	190
26	Cosmological constraints from Archeops. Astronomy and Astrophysics, 2003, 399, L25-L30.	5.1	188
27	First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole. Astrophysical Journal Letters, 2022, 930, L16.	8.3	187
28	COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY. Astrophysical Journal, 2016, 832, 95.	4.5	179
29	ALMA IMAGING AND GRAVITATIONAL LENS MODELS OF SOUTH POLE TELESCOPE—SELECTED DUSTY, STAR-FORMING GALAXIES AT HIGH REDSHIFTS. Astrophysical Journal, 2016, 826, 112.	4.5	178
30	TADPOL: A 1.3 mm SURVEY OF DUST POLARIZATION IN STAR-FORMING CORES AND REGIONS. Astrophysical Journal, Supplement Series, 2014, 213, 13.	7.7	177
31	Resolved magnetic-field structure and variability near the event horizon of Sagittarius A*. Science, 2015, 350, 1242-1245.	12.6	176
32	The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project. Astrophysical Journal, Supplement Series, 2019, 243, 26.	7.7	175
33	The cosmic microwave background anisotropy power spectrum measured by Archeops. Astronomy and Astrophysics, 2003, 399, L19-L23.	5.1	170
34	1.3 mm WAVELENGTH VLBI OF SAGITTARIUS A*: DETECTION OF TIME-VARIABLE EMISSION ON EVENT HORIZON SCALES. Astrophysical Journal Letters, 2011, 727, L36.	8.3	169
35	Galaxy growth in a massive halo in the first billion years of cosmic history. Nature, 2018, 553, 51-54.	27.8	169
36	Interferometric Measurements of Variable 340 GHz Linear Polarization in Sagittarius A*. Astrophysical Journal, 2006, 640, 308-318.	4.5	165

#	Article	IF	Citations
37	The flare activity of SagittariusÂA*. Astronomy and Astrophysics, 2006, 450, 535-555.	5.1	163
38	First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole. Astrophysical Journal Letters, 2022, 930, L14.	8.3	163
39	An Xâ€Ray, Infrared, and Submillimeter Flare of Sagittarius A*. Astrophysical Journal, 2008, 682, 373-383.	4.5	158
40	A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature, 2012, 488, 349-352.	27.8	154
41	THE GROWTH OF COOL CORES AND EVOLUTION OF COOLING PROPERTIES IN A SAMPLE OF 83 GALAXY CLUSTERS AT 0.3 & t; <i>z</i> &t 1.2 SELECTED FROM THE SPT-SZ SURVEY. Astrophysical Journal, 2013, 774, 23.	4.5	144
42	First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration. Astrophysical Journal Letters, 2022, 930, L13.	8.3	142
43	X-RAY PROPERTIES OF THE FIRST SUNYAEV-ZEL'DOVICH EFFECT SELECTED GALAXY CLUSTER SAMPLE FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2011, 738, 48.	4.5	137
44	First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass. Astrophysical Journal Letters, 2022, 930, L15.	8.3	137
45	LoCuSS: A COMPARISON OF CLUSTER MASS MEASUREMENTS FROM (i>XMM-NEWTON (/i>AND SUBARU—TESTING DEVIATION FROM HYDROSTATIC EQUILIBRIUM AND NON-THERMAL PRESSURE SUPPORT. Astrophysical Journal, 2010, 711, 1033-1043.	4.5	128
46	A massive core for a cluster of galaxies at a redshift of 4.3. Nature, 2018, 556, 469-472.	27.8	127
47	MASS CALIBRATION AND COSMOLOGICAL ANALYSIS OF THE SPT-SZ GALAXY CLUSTER SAMPLE USING VELOCITY DISPERSION Ïf _{<i>y</i>yyyyyyy}	4.5	120
48	The nature of the [C ii] emission in dusty star-forming galaxies from the SPT survey. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2883-2900.	4.4	119
49	A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at <i>z</i> > 2. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4406-4420.	4.4	118
50	SUNYAEV–ZEL'DOVICH CLUSTER PROFILES MEASURED WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2010, 716, 1118-1135.	4.5	117
51	MEASUREMENTS OF SUB-DEGREE <i>B</i> -MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA. Astrophysical Journal, 2015, 807, 151.	4.5	117
52	THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES FROM THE SPT SURVEY. Astrophysical Journal, 2016, 822, 80.	4.5	117
53	EXTRAGALACTIC MILLIMETER-WAVE POINT-SOURCE CATALOG, NUMBER COUNTS AND STATISTICS FROM 771 deg ² OF THE SPT-SZ SURVEY. Astrophysical Journal, 2013, 779, 61.	4.5	115
54	ALMA OBSERVATIONS OF SPT-DISCOVERED, STRONGLY LENSED, DUSTY, STAR-FORMING GALAXIES. Astrophysical Journal, 2013, 767, 132.	4.5	109

#	Article	IF	Citations
55	ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at zÂâ^¼Â7. Astrophysical Journal Letters, 2017, 842, L15.	8.3	108
56	THE REST-FRAME SUBMILLIMETER SPECTRUM OF HIGH-REDSHIFT, DUSTY, STAR-FORMING GALAXIES. Astrophysical Journal, 2014, 785, 149.	4.5	105
57	A GENERAL RELATIVISTIC NULL HYPOTHESIS TEST WITH EVENT HORIZON TELESCOPE OBSERVATIONS OF THE BLACK HOLE SHADOW IN Sgr A*. Astrophysical Journal, 2015, 814, 115.	4.5	105
58	DISCOVERY AND COSMOLOGICAL IMPLICATIONS OF SPT-CL J2106-5844, THE MOST MASSIVE KNOWN CLUSTER AT z>1. Astrophysical Journal, 2011, 731, 86.	4.5	104
59	OPTICAL SPECTROSCOPY AND VELOCITY DISPERSIONS OF GALAXY CLUSTERS FROM THE SPT-SZ SURVEY. Astrophysical Journal, 2014, 792, 45.	4.5	103
60	SPTpol: an instrument for CMB polarization measurements with the South Pole Telescope. Proceedings of SPIE, 2012, , .	0.8	98
61	230 GHz VLBI OBSERVATIONS OF M87: EVENTâ€HORIZONâ€SCALE STRUCTURE DURING AN ENHANCED VERYâ€HIGHâ€ENERGY \$gamma \$â€RAY STATE IN 2012. Astrophysical Journal, 2015, 807, 150.	4.5	98
62	IRAS 16293: A "MAGNETIC―TALE OF TWO CORES. Astrophysical Journal, 2009, 707, 921-935.	4.5	95
63	SIMULTANEOUS MULTI-WAVELENGTH OBSERVATIONS OF Sgr A* DURING 2007 APRIL 1-11. Astrophysical Journal, 2009, 706, 348-375.	4.5	94
64	SPT-CL J0546-5345: A MASSIVE $\langle i \rangle z \langle j \rangle \> 1$ GALAXY CLUSTER SELECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2010, 721, 90-97.	4.5	94
65	ALMA observations of atomic carbon in <i>z</i> Åâ^1/4Â4 dusty star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 466, 2825-2841.	4.4	94
66	Scaling Relations from Sunyaevâ€Zel'dovich Effect and <i>Chandra</i> Xâ€Ray Measurements of Highâ€Redshift Galaxy Clusters. Astrophysical Journal, 2008, 675, 106-114.	4.5	93
67	LoCuSS: Testing hydrostatic equilibrium in galaxy clusters. Monthly Notices of the Royal Astronomical Society: Letters, 2015, 456, L74-L78.	3.3	93
68	First detection of polarization of the submillimetre diffuse galactic dust emission by Archeops. Astronomy and Astrophysics, 2004, 424, 571-582.	5.1	93
69	THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS. Astrophysical Journal, 2014, 794, 67.	4.5	90
70	REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2012, 761, 22.	4.5	89
71	The shape of the black hole photon ring: A precise test of strong-field general relativity. Physical Review D, 2020, 102, .	4.7	85
72	The Size, Shape, and Scattering of Sagittarius A* at 86 GHz: First VLBI with ALMA. Astrophysical Journal, 2019, 871, 30.	4.5	81

#	Article	IF	CITATIONS
73	LoCuSS: THE SUNYAEV–ZEL'DOVICH EFFECT AND WEAK-LENSING MASS SCALING RELATION. Astrophysical Journal, 2012, 754, 119.	4.5	79
74	COPSS II: THE MOLECULAR GAS CONTENT OF TEN MILLION CUBIC MEGAPARSECS AT REDSHIFT z $\hat{a}^{1}/4\hat{A}3$. Astrophysical Journal, 2016, 830, 34.	4.5	79
75	Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster. Astrophysical Journal, 2017, 836, 130.	4.5	79
76	A MEASUREMENT OF THE CORRELATION OF GALAXY SURVEYS WITH CMB LENSING CONVERGENCE MAPS FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal Letters, 2012, 753, L9.	8.3	76
77	A COSMIC MICROWAVE BACKGROUND LENSING MASS MAP AND ITS CORRELATION WITH THE COSMIC INFRARED BACKGROUND. Astrophysical Journal Letters, 2013, 771, L16.	8.3	76
78	DETECTION OF A MAGNETIZED DISK AROUND A VERY YOUNG PROTOSTAR. Astrophysical Journal Letters, 2014, 780, L6.	8.3	73
79	APPLICATION OF A SELF-SIMILAR PRESSURE PROFILE TO SUNYAEV-ZEL'DOVICH EFFECT DATA FROM GALAXY CLUSTERS. Astrophysical Journal, 2009, 694, 1034-1044.	4.5	72
80	DISK AND ENVELOPE STRUCTURE IN CLASS 0 PROTOSTARS. II. HIGH-RESOLUTION MILLIMETER MAPPING OF THE SERPENS SAMPLE. Astrophysical Journal, Supplement Series, 2011, 195, 21.	7.7	72
81	An 8Âh characteristic time-scale in submillimetre light curves of Sagittarius A*. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2797-2808.	4.4	72
82	Planets in Stellar Clusters Extensive Search. III. A Search for Transiting Planets in the Metal-rich Open Cluster NGC 6791. Astronomical Journal, 2005, 129, 2856-2868.	4.7	71
83	STAR-FORMING BRIGHTEST CLUSTER GALAXIES AT 0.25Â<ÂzÂ<Â1.25: A TRANSITIONING FUEL SUPPLY. Astrophysical Journal, 2016, 817, 86.	4.5	70
84	SUBMILLIMETER OBSERVATIONS OF MILLIMETER BRIGHT GALAXIES DISCOVERED BY THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2012, 756, 101.	4.5	67
85	Detection of Intrinsic Source Structure at â^1/43 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A*. Astrophysical Journal, 2018, 859, 60.	4.5	67
86	Polarimetric Properties of Event Horizon Telescope Targets from ALMA. Astrophysical Journal Letters, 2021, 910, L14.	8.3	67
87	A MEASUREMENT OF GRAVITATIONAL LENSING OF THE COSMIC MICROWAVE BACKGROUND BY GALAXY CLUSTERS USING DATA FROM THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2015, 806, 247.	4.5	66
88	The Complete Redshift Distribution of Dusty Star-forming Galaxies from the SPT-SZ Survey. Astrophysical Journal, 2020, 902, 78.	4.5	66
89	SIZE BIAS AND DIFFERENTIAL LENSING OF STRONGLY LENSED, DUSTY GALAXIES IDENTIFIED IN WIDE-FIELD SURVEYS. Astrophysical Journal, 2012, 761, 20.	4.5	65
90	FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING. Astrophysical Journal, 2015, 812, 103.	4.5	65

#	Article	IF	CITATIONS
91	PERSISTENT ASYMMETRIC STRUCTURE OF SAGITTARIUS A* ON EVENT HORIZON SCALES. Astrophysical Journal, 2016, 820, 90.	4.5	65
92	Event Horizon Telescope observations of the jet launching and collimation in Centaurus A. Nature Astronomy, 2021, 5, 1017-1028.	10.1	65
93	Comparison of pressure profiles of massive relaxed galaxy clusters using the Sunyaev–Zel'dovich and x-ray data. New Journal of Physics, 2012, 14, 025010.	2.9	64
94	LoCuSS: hydrostatic mass measurements of the high-LX cluster sample – cross-calibration of Chandra and XMM–Newton. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2342-2360.	4.4	60
95	Sunyaev–Zel'dovich effect and X-ray scaling relations from weak lensing mass calibration of 32 South Pole Telescope selected galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2871-2906.	4.4	60
96	Subarcsecond Submillimeter Continuum Observations of Orion KL. Astrophysical Journal, 2004, 616, L31-L34.	4.5	59
97	OPTICAL REDSHIFT AND RICHNESS ESTIMATES FOR GALAXY CLUSTERS SELECTED WITH THE SUNYAEV-Zel'dovich EFFECT FROM 2008 SOUTH POLE TELESCOPE OBSERVATIONS. Astrophysical Journal, 2010, 723, 1736-1747.	4.5	59
98	Fast molecular outflow from a dusty star-forming galaxy in the early Universe. Science, 2018, 361, 1016-1019.	12.6	59
99	ALMA Polarimetry of Sgr A*: Probing the Accretion Flow from the Event Horizon to the Bondi Radius. Astrophysical Journal, 2018, 868, 101.	4.5	57
100	Archeops: a high resolution, large sky coverage balloon experiment for mapping cosmic microwave background anisotropies. Astroparticle Physics, 2002, 17, 101-124.	4.3	56
101	Radio Sources toward Galaxy Clusters at 30 GHz. Astronomical Journal, 2007, 134, 897-905.	4.7	56
102	Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2021, 911, L11.	8.3	56
103	IDCS J1426.5+3508: SUNYAEV-ZEL'DOVICH MEASUREMENT OF A MASSIVE INFRARED-SELECTED CLUSTER AT <i>z</i> = 1.75. Astrophysical Journal, 2012, 753, 162.	4.5	55
104	SPT-CL J0205–5829: A <i>>z</i> = 1.32 EVOLVED MASSIVE GALAXY CLUSTER IN THE SOUTH POLE TELESCOPE SUNYAEV-ZEL'DOVICH EFFECT SURVEY. Astrophysical Journal, 2013, 763, 93.	4.5	54
105	Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution. Astronomy and Astrophysics, 2020, 640, A69.	5.1	54
106	SUB-KILOPARSEC IMAGING OF COOL MOLECULAR GAS IN TWO STRONGLY LENSED DUSTY, STAR-FORMING GALAXIES. Astrophysical Journal, 2015, 811, 124.	4.5	53
107	A Comparison of Cosmological Parameters Determined from CMB Temperature Power Spectra from the South Pole Telescope and the Planck Satellite. Astrophysical Journal, 2017, 850, 101.	4.5	53
108	The Submillimeter Polarization of Sgr A*. Journal of Physics: Conference Series, 2006, 54, 354-362.	0.4	52

#	Article	IF	CITATIONS
109	A DIRECT MEASUREMENT OF THE LINEAR BIAS OF MID-INFRARED-SELECTED QUASARS AT <i>z</i> according to a strong	8.3	52
110	Constraints on the CMB temperature evolution using multiband measurements of the Sunyaevâ \in "Zel'dovich effect with the South Pole Telescope. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2610-2615.	4.4	51
111	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	4.5	51
112	The Massive and Distant Clusters of $\langle i\rangle$ WISE $\langle i\rangle$ Survey. I. Survey Overview and a Catalog of >2000 Galaxy Clusters at $\langle i\rangle$ z $\langle i\rangle$ â‰ f 1. Astrophysical Journal, Supplement Series, 2019, 240, 33.	7.7	50
113	THE HIGH-DENSITY IONIZED GAS IN THE CENTRAL PARSEC OF THE GALAXY. Astrophysical Journal, 2010, 723, 1097-1109.	4.5	49
114	A 2500 deg ² CMB Lensing Map from Combined South Pole Telescope and Planck Data. Astrophysical Journal, 2017, 849, 124.	4.5	49
115	Modeling mm- to X-ray flare emission from Sagittarius A*. Astronomy and Astrophysics, 2009, 500, 935-946.	5.1	47
116	AN OBSERVED LACK OF SUBSTRUCTURE IN STARLESS CORES. Astrophysical Journal, 2010, 718, 306-313.	4.5	46
117	STRINGENT LIMITS ON THE POLARIZED SUBMILLIMETER EMISSION FROM PROTOPLANETARY DISKS. Astrophysical Journal, 2009, 704, 1204-1217.	4.5	44
118	LoCuSS: A COMPARISON OF SUNYAEV-ZEL'DOVICH EFFECT AND GRAVITATIONAL-LENSING MEASUREMENTS OF GALAXY CLUSTERS. Astrophysical Journal, 2009, 701, L114-L118.	4.5	44
119	Verification of Radiative Transfer Schemes for the EHT. Astrophysical Journal, 2020, 897, 148.	4.5	44
120	MASSES OF NEARBY SUPERMASSIVE BLACK HOLES WITH VERY LONG BASELINE INTERFEROMETRY. Astrophysical Journal, 2012, 758, 30.	4.5	43
121	The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. Astrophysical Journal, 2021, 912, 35.	4.5	43
122	Millimeter Light Curves of Sagittarius A* Observed during the 2017 Event Horizon Telescope Campaign. Astrophysical Journal Letters, 2022, 930, L19.	8.3	43
123	WEAK-LENSING MASS MEASUREMENTS OF FIVE GALAXY CLUSTERS IN THE SOUTH POLE TELESCOPE SURVEY USING MAGELLAN/MEGACAM. Astrophysical Journal, 2012, 758, 68.	4.5	42
124	SPT-CL J2040–4451: AN SZ-SELECTED GALAXY CLUSTER AT <i>>z</i> = 1.478 WITH SIGNIFICANT ONGOING STAR FORMATION. Astrophysical Journal, 2014, 794, 12.	4.5	42
125	LOW GAS FRACTIONS CONNECT COMPACT STAR-FORMING GALAXIES TO THEIR zÂâ^1/4Â2 QUIESCENT DESCENDANTS. Astrophysical Journal, 2016, 832, 19.	4.5	42
126	THE CIRCULAR POLARIZATION OF SAGITTARIUS A* AT SUBMILLIMETER WAVELENGTHS. Astrophysical Journal, 2012, 745, 115.	4.5	41

#	Article	IF	CITATIONS
127	THE <i>SPITZER</i> SOUTH POLE TELESCOPE DEEP FIELD: SURVEY DESIGN AND INFRARED ARRAY CAMERA CATALOGS. Astrophysical Journal, Supplement Series, 2013, 209, 22.	7.7	41
128	A measurement of CMB cluster lensing with SPT and DES year 1 data. Monthly Notices of the Royal Astronomical Society, 2018, 476, 2674-2688.	4.4	41
129	PROBING THE PARSEC-SCALE ACCRETION FLOW OF 3C 84 WITH MILLIMETER WAVELENGTH POLARIMETRY. Astrophysical Journal, 2014, 797, 66.	4.5	40
130	ALMA Observations of the Terahertz Spectrum of Sagittarius A*. Astrophysical Journal Letters, 2019, 881, L2.	8.3	40
131	Millimeter-wave Point Sources from the 2500 Square Degree SPT-SZ Survey: Catalog and Population Statistics. Astrophysical Journal, 2020, 900, 55.	4.5	40
132	An Intensity Mapping Detection of Aggregate CO Line Emission at 3 mm. Astrophysical Journal, 2020, 901, 141.	4.5	39
133	Detection of anti-correlation of hot and cold baryons in galaxy clusters. Nature Communications, 2019, 10, 2504.	12.8	38
134	Megaparsec-scale structure around the protocluster core SPT2349–56 at <i>z</i> = 4.3. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3124-3159.	4.4	38
135	THE STATE OF THE WARM AND COLD GAS IN THE EXTREME STARBURST AT THE CORE OF THE PHOENIX GALAXY CLUSTER (SPT-CLJ2344-4243). Astrophysical Journal, 2014, 784, 18.	4.5	37
136	Spatially Resolved [C ii] Emission in SPT0346-52: A Hyper-starburst Galaxy Merger at zÂâ^¼Â5.7. Astrophysical Journal, 2019, 870, 80.	4.5	37
137	SPT 0538–50: PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM OF A STRONGLY LENSED DUSTY STAR-FORMING GALAXY AT <i>>z</i> = 2.8. Astrophysical Journal, 2013, 779, 67.	4.5	37
138	SUNYAEV-ZEL'DOVICH EFFECT OBSERVATIONS OF STRONG LENSING GALAXY CLUSTERS: PROBING THE OVERCONCENTRATION PROBLEM. Astrophysical Journal, 2011, 737, 74.	4.5	36
139	FIRST RESULTS FROM COPSS: THE CO POWER SPECTRUM SURVEY. Astrophysical Journal, 2015, 814, 140.	4.5	36
140	SPT-GMOS: A GEMINI/GMOS-SOUTH SPECTROSCOPIC SURVEY OF GALAXY CLUSTERS IN THE SPT-SZ SURVEY. Astrophysical Journal, Supplement Series, 2016, 227, 3.	7.7	36
141	Infall and Outflow of Molecular Gas in Sgr B2. Astrophysical Journal, 2008, 677, 353-372.	4.5	35
142	THE XXL SURVEY. V. DETECTION OF THE SUNYAEV-ZEL'DOVICH EFFECT OF THE REDSHIFT 1.9 GALAXY CLUSTER XLSSU J021744.1–034536 WITH CARMA. Astrophysical Journal, 2014, 794, 157.	4.5	35
143	The XXL Survey. Astronomy and Astrophysics, 2018, 620, A2.	5.1	34
144	Large gas reservoirs and free–free emission in two lensed star-forming galaxies at zÂ= 2.7. Monthly Notices of the Royal Astronomical Society, 2013, 433, 498-505.	4.4	33

#	Article	IF	Citations
145	<i>Herschel</i> -ATLAS and ALMA. Astronomy and Astrophysics, 2014, 568, A92.	5.1	33
146	THE MASSIVE AND DISTANT CLUSTERS OF <i>WISE</i> SURVEY. III. SUNYAEV–ZEL'DOVICH MASSES OF GAL CLUSTERS AT <i>z</i> àâ¹¼ 1. Astrophysical Journal, 2015, 806, 26.	AXY 4.5	33
147	LoCuSS: scaling relations between galaxy cluster mass, gas, and stellar content. Monthly Notices of the Royal Astronomical Society, 2019, 484, 60-80.	4.4	33
148	Ubiquitous Molecular Outflows in zÂ>Â4 Massive, Dusty Galaxies. II. Momentum-driven Winds Powered by Star Formation in the Early Universe. Astrophysical Journal, 2020, 905, 86.	4.5	33
149	Ubiquitous Molecular Outflows in zÂ>Â4 Massive, Dusty Galaxies. I. Sample Overview and Clumpy Structure in Molecular Outflows on 500 pc Scales. Astrophysical Journal, 2020, 905, 85.	4.5	31
150	FINE-SCALE STRUCTURE OF THE QUASAR 3C 279 MEASURED WITH 1.3 mm VERY LONG BASELINE INTERFEROMETRY. Astrophysical Journal, 2013, 772, 13.	4.5	30
151	STELLAR MASSES AND STAR FORMATION RATES OF LENSED, DUSTY, STAR-FORMING GALAXIES FROM THE SPT SURVEY. Astrophysical Journal, 2015, 812, 88.	4.5	30
152	HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY. Astrophysical Journal, 2012, 761, 183.	4.5	29
153	The submillimeter array polarimeter. Proceedings of SPIE, 2008, , .	0.8	28
154	SOUTH POLE TELESCOPE DETECTIONS OF THE PREVIOUSLY UNCONFIRMED <i>PLANCK</i> SUNYAEV-ZEL'DOVICH CLUSTERS IN THE SOUTHERN HEMISPHERE. Astrophysical Journal Letters, 2011, 735, L36.	8.3	28
155	CARMA MEASUREMENTS OF THE SUNYAEV-ZEL'DOVICH EFFECT IN RX J1347.5–1145. Astrophysical Journal, 2013, 770, 112.	4.5	28
156	THE MASSIVE AND DISTANT CLUSTERS OF <i>WISE</i> SURVEY: MOO J1142+1527, A 10 ¹⁵ <i>M</i> _⊙ GALAXY CLUSTER AT <i>z</i> = 1.19. Astrophysical Journal Letters, 2015, 812, L40.	8.3	28
157	An ALMA view of the interstellar medium of the $\langle i \rangle z \langle j \rangle = 4.77$ lensed starburst SPT-S J213242-5802.9. Astronomy and Astrophysics, 2016, 586, L7.	5.1	28
158	Maps of the Southern Millimeter-wave Sky from Combined 2500 deg ² SPT-SZ and <i>Planck</i> Temperature Data. Astrophysical Journal, Supplement Series, 2018, 239, 10.	7.7	28
159	Constraints on the Thermal Contents of the X-Ray Cavities of Cluster MS 0735.6+7421 with Sunyaev–Zel'dovich Effect Observations. Astrophysical Journal, 2019, 871, 195.	4.5	28
160	Imaging the molecular interstellar medium in a gravitationally lensed star-forming galaxy at $\langle i \rangle z \langle i \rangle = 5.7$. Astronomy and Astrophysics, 2019, 628, A23.	5.1	28
161	ATMOSPHERIC PHASE CORRECTION USING CARMA-PACS: HIGH ANGULAR RESOLUTION OBSERVATIONS OF THE FU ORIONIS STAR PP 13S*. Astrophysical Journal, 2010, 724, 493-501.	4.5	27
162	SPT0346-52: NEGLIGIBLE AGN ACTIVITY IN A COMPACT, HYPER-STARBURST GALAXY AT $z=5.7$. Astrophysical Journal, 2016, 832, 114.	4.5	27

#	Article	IF	Citations
163	Probing Cosmic Reionization and Molecular Gas Growth with TIME. Astrophysical Journal, 2021, 915, 33.	4.5	27
164	BAYESIAN TECHNIQUES FOR COMPARING TIME-DEPENDENT GRMHD SIMULATIONS TO VARIABLE EVENT HORIZON TELESCOPE OBSERVATIONS. Astrophysical Journal, 2016, 832, 156.	4.5	26
165	Archeops in-flight performance, data processing, and map making. Astronomy and Astrophysics, 2007, 467, 1313-1344.	5.1	24
166	An Overview of the SPTpol Experiment. Journal of Low Temperature Physics, 2012, 167, 859-864.	1.4	24
167	RELATIVE ASTROMETRY OF COMPACT FLARING STRUCTURES IN Sgr A* WITH POLARIMETRIC VERY LONG BASELINE INTERFEROMETRY. Astrophysical Journal, 2014, 794, 150.	4.5	24
168	A MEASUREMENT OF ARCMINUTE ANISOTROPY IN THE COSMIC MICROWAVE BACKGROUND WITH THE SUNYAEV-ZEL'DOVICH ARRAY. Astrophysical Journal, 2010, 713, 82-89.	4.5	23
169	Variability in GRMHD Simulations of Sgr: Implications for EHT Closure Phase Observations. Astrophysical Journal, 2017, 844, 35.	4.5	23
170	A METHOD FOR INDIVIDUAL SOURCE BRIGHTNESS ESTIMATION IN SINGLE- AND MULTI-BAND DATA. Astrophysical Journal, 2010, 718, 513-521.	4.5	22
171	CMB/kSZ and Compton-y Maps from 2500 deg ² of SPT-SZ and Planck Survey Data. Astrophysical Journal, Supplement Series, 2022, 258, 36.	7.7	22
172	A Map of OMCâ€l in COJ= 9→8. Astrophysical Journal, 2004, 612, 940-945.	4.5	21
173	GALAXY CLUSTERS AT <i>z</i> ⩾ 1: GAS CONSTRAINTS FROM THE SUNYAEV–ZEL'DOVICH ARRAY. Astrophysical Journal Letters, 2010, 723, L78-L83.	8.3	21
174	Selective Dynamical Imaging of Interferometric Data. Astrophysical Journal Letters, 2022, 930, L18.	8.3	21
175	FAR INFRARED VARIABILITY OF SAGITTARIUS A*: 25.5 hr OF MONITORING WITH HERSCHEL*. Astrophysical Journal, 2016, 825, 32.	4.5	20
176	Multiwavelength Light Curves of Two Remarkable Sagittarius A* Flares. Astrophysical Journal, 2018, 864, 58.	4.5	20
177	Fractional polarization of extragalactic sources in the 500 deg2 SPTpol survey. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5712-5721.	4.4	20
178	Molecular Line Observations in Two Dusty Star-forming Galaxies at $z=6.9$. Astrophysical Journal, 2021, 921, 97.	4.5	20
179	Characterizing and Mitigating Intraday Variability: Reconstructing Source Structure in Accreting Black Holes with mm-VLBI. Astrophysical Journal Letters, 2022, 930, L21.	8.3	20
180	A Universal Power-law Prescription for Variability from Synthetic Images of Black Hole Accretion Flows. Astrophysical Journal Letters, 2022, 930, L20.	8.3	20

#	Article	IF	CITATIONS
181	A MULTI-WAVELENGTH MASS ANALYSIS OF RCS2 J232727.6-020437, A â^1/43 × 10 ¹⁵ <i>M</i> _⊙ GALAXY CLUSTER AT <i>z</i> = 0.7. Astrophysical Journal, 2015, 814, 21.	4.5	19
182	Persistent Non-Gaussian Structure in the Image of Sagittarius A* at 86 GHz. Astrophysical Journal, 2021, 915, 99.	4.5	19
183	Comparison of designs of off-axis Gregorian telescopes for millimeter-wave large focal-plane arrays. Applied Optics, 2002, 41, 4666.	2.1	18
184	RADIO SOURCES FROM A 31 GHz SKY SURVEY WITH THE SUNYAEV-ZEL'DOVICH ARRAY. Astrophysical Journal, 2010, 716, 521-529.	4.5	18
185	RESOLVING THE INNER JET STRUCTURE OF 1924-292 WITH THE EVENT HORIZON TELESCOPE. Astrophysical Journal Letters, 2012, 757, L14.	8.3	18
186	THE IONIZED CIRCUMSTELLAR ENVELOPES OF ORION SOURCE I AND THE BECKLIN-NEUGEBAUER OBJECT. Astrophysical Journal, 2013, 765, 40.	4.5	18
187	A Comparison of Maps and Power Spectra Determined from South Pole Telescope and Planck Data. Astrophysical Journal, 2018, 853, 3.	4.5	18
188	SYMBA: An end-to-end VLBI synthetic data generation pipeline. Astronomy and Astrophysics, 2020, 636, A5.	5.1	18
189	Feedhorn-coupled TES polarimeter camera modules at $150\mathrm{GHz}$ for CMB polarization measurements with SPTpol. Proceedings of SPIE, $2012,\ldots$	0.8	17
190	LoCuSS: the near-infrared luminosity and weak-lensing mass scaling relation of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2014, 443, 3309-3317.	4.4	17
191	Optical and Sunyaev–Zel'dovich observations of a new sample of distant rich galaxy clusters in the ROSAT All Sky. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4248-4276.	4.4	17
192	Performance and on-sky optical characterization of the SPTpol instrument. Proceedings of SPIE, 2012, ,	0.8	16
193	GRMHD Simulations of Visibility Amplitude Variability for Event Horizon Telescope Images of Sgr A*. Astrophysical Journal, 2018, 856, 163.	4.5	16
194	Cosmological lensing ratios with DES Y1, SPT, and Planck. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1363-1379.	4.4	16
195	ALMA Observations of the Sub-kpc Structure of the Host Galaxy of a $z = 6.5$ Lensed Quasar: A Rotationally Supported Hyper-Starburst System at the Epoch of Reionization. Astrophysical Journal, 2021, 917, 99.	4.5	16
196	Detection of Galactic and Extragalactic Millimeter-wavelength Transient Sources with SPT-3G. Astrophysical Journal, 2021, 916, 98.	4.5	16
197	First 230 GHz VLBI fringes on 3C 279 using the APEX Telescope. Astronomy and Astrophysics, 2015, 581, A32.	5.1	15
198	Probing star formation in the dense environments of z $\hat{a}^{1}/4$ 1 lensing haloes aligned with dusty star-forming galaxies detected with the South Pole Telescope. Monthly Notices of the Royal Astronomical Society, 2016, 455, 1629-1646.	4.4	15

#	Article	IF	Citations
199	Overdensities of submillimetre-bright sources around candidate protocluster cores selected from the South Pole Telescope survey. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3754-3770.	4.4	15
200	Optical and near-infrared observations of the SPT2349-56 proto-cluster core at $\langle i \rangle z \langle i \rangle = 4.3$. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1797-1815.	4.4	14
201	Dense-gas tracers and carbon isotopes in five 2.5 < <i>z</i> < 4 lensed dusty star-forming galaxies from the SPT SMG sample. Astronomy and Astrophysics, 2018, 620, A115.	5.1	14
202	An Intensity Mapping Constraint on the CO-galaxy Cross-power Spectrum at Redshift $\hat{a}^{1}/43$. Astrophysical Journal, 2022, 927, 161.	4.5	14
203	The effect of helium sedimentation on galaxy cluster masses and scaling relations. Astronomy and Astrophysics, 2011, 533, A6.	5.1	13
204	Design and characterization of 90 GHz feedhorn-coupled TES polarimeter pixels in the SPTPol camera. Proceedings of SPIE, 2012, , .	0.8	13
205	The [CÂ <scp>ii</scp>]/[NÂ <scp>ii</scp>] ratio in 3 & amp;lt; <i>z</i> & amp;lt; 6 sub-millimetre galaxies from the South Pole Telescope survey. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4090-4097.	4.4	13
206	Biases and Cosmic Variance in Molecular Gas Abundance Measurements at High Redshift. Astrophysical Journal, 2020, 904, 127.	4.5	12
207	IDCS J1426.5+3508: WEAK LENSING ANALYSIS OF A MASSIVE GALAXY CLUSTER AT z =Â1.75. Astrophysical Journal Letters, 2016, 818, L25.	8.3	11
208	Source Structure and Molecular Gas Properties from High-resolution CO Imaging of SPT-selected Dusty Star-forming Galaxies. Astrophysical Journal, 2019, 873, 50.	4.5	11
209	Optical and Thermal Properties of ANL/KICP Polarization Sensitive Bolometers for SPTpol. Journal of Low Temperature Physics, 2012, 167, 865-871.	1.4	10
210	MAPS OF THE MAGELLANIC CLOUDS FROM COMBINED SOUTH POLE TELESCOPE AND PLANCK DATA. Astrophysical Journal, Supplement Series, 2016, 227, 23.	7.7	10
211	The Massive and Distant Clusters of WISE Survey. VI. Stellar Mass Fractions of a Sample of High-redshift Infrared-selected Clusters. Astrophysical Journal, 2019, 878, 72.	4. 5	10
212	SPT-SLIM: A Line Intensity Mapping Pathfinder for the South Pole Telescope. Journal of Low Temperature Physics, 2022, 209, 758-765.	1.4	10
213	COSMOLOGICAL CONSTRAINTS FROM A 31 GHz SKY SURVEY WITH THE SUNYAEV-ZEL'DOVICH ARRAY. Astrophysical Journal, 2011, 732, 28.	4.5	9
214	Design and Fabrication of 90 GHz TES Polarimeter Detectors for the South Pole Telescope. IEEE Transactions on Applied Superconductivity, 2013, 23, 2100605-2100605.	1.7	9
215	Measurements of the Cross-spectra of the Cosmic Infrared and Microwave Backgrounds from 95 to 1200 GHz. Astrophysical Journal, 2019, 881, 96.	4.5	8
216	MEASUREMENT OF GALAXY CLUSTER INTEGRATED COMPTONIZATION AND MASS SCALING RELATIONS WITH THE SOUTH POLE TELESCOPE. Astrophysical Journal, 2015, 799, 137.	4.5	7

#	Article	IF	CITATIONS
217	Hafnium Films and Magnetic Shielding for TIME, A mm-Wavelength Spectrometer Array. Journal of Low Temperature Physics, 2018, 193, 893-900.	1.4	7
218	JOINT ANALYSIS OF X-RAY AND SUNYAEV–ZEL'DOVICH OBSERVATIONS OF GALAXY CLUSTERS USING AN ANALYTIC MODEL OF THE INTRACLUSTER MEDIUM. Astrophysical Journal, 2012, 748, 113.	4.5	7
219	SMA observations of the magnetic fields around a low-mass protostellar system. Astrophysics and Space Science, 2008, 313, 87-90.	1.4	6
220	The 1.4Âmm Core of Centaurus A: First VLBI Results with the South Pole Telescope. Astrophysical Journal, 2018, 861, 129.	4.5	6
221	A VLBI receiving system for the South Pole Telescope. , 2018, , .		6
222	The Variability of the Black Hole Image in M87 at the Dynamical Timescale. Astrophysical Journal, 2022, 925, 13.	4.5	6
223	Chaotic and Clumpy Galaxy Formation in an Extremely Massive Reionization-era Halo. Astrophysical Journal Letters, 2022, 929, L3.	8.3	6
224	Rapid build-up of the stellar content in the protocluster core SPT2349 \hat{a}^3 56 at z = 4.3. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4352-4377.	4.4	5
225	THE CARMA PAIRED ANTENNA CALIBRATION SYSTEM: ATMOSPHERIC PHASE CORRECTION FOR MILLIMETER WAVE INTERFEROMETRY AND ITS APPLICATION TO MAPPING THE ULTRALUMINOUS GALAXY ARP 193. Astronomical Journal, 2016, 151, 18.	4.7	4
226	Multiphase ISM in the z = 5.7 Hyperluminous Starburst SPT 0346–52. Astrophysical Journal, 2022, 928, 179.	4.5	4
227	Utilizing freeform optics in dynamic optical configuration designs. Journal of Astronomical Telescopes, Instruments, and Systems, 2019, 5, 1.	1.8	2
228	Submillimeter Array Observations of Magnetic Fields in Star Forming Regions. Proceedings of the International Astronomical Union, 2010, 6, 103-106.	0.0	0