Carla F Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528815/publications.pdf

Version: 2024-02-01

109321 149698 6,504 54 35 56 citations h-index g-index papers 60 60 60 10783 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	<i>Smarca4</i> Inactivation Promotes Lineage-Specific Transformation and Early Metastatic Features in the Lung. Cancer Discovery, 2022, 12, 562-585.	9.4	48
2	Air-liquid interface culture promotes maturation and allows environmental exposure of pluripotent stem cell–derived alveolar epithelium. JCl Insight, 2022, 7, .	5.0	17
3	Comparison of Transplantation of Lung Organoid Cell Types: One Size Does Not Fit All. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 340-343.	2.9	O
4	Progenitor potential of lung epithelial organoid cells in a transplantation model. Cell Reports, 2022, 39, 110662.	6.4	26
5	Alveolar progenitor cells and the origin of lung cancer. Journal of Internal Medicine, 2021, 289, 629-635.	6.0	43
6	Adult mouse intralobar airway stem cells. , 2021, , 84-98.		4
7	The aging lung: Physiology, disease, and immunity. Cell, 2021, 184, 1990-2019.	28.9	175
8	SARS-CoV-2 infection of primary human lung epithelium for COVID-19 modeling and drug discovery. Cell Reports, 2021, 35, 109055.	6.4	186
9	National Heart, Lung, and Blood Institute and Building Respiratory Epithelium and Tissue for Health (BREATH) Consortium Workshop Report: Moving Forward in Lung Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 22-29.	2.9	2
10	Genomic and evolutionary classification of lung cancer in never smokers. Nature Genetics, 2021, 53, 1348-1359.	21.4	81
11	Lung Cancer Stem Cells and Their Clinical Implications. Cold Spring Harbor Perspectives in Medicine, 2021, , a041270.	6.2	5
12	Adult stem cells and regenerative medicineâ€"a symposium report. Annals of the New York Academy of Sciences, 2020, 1462, 27-36.	3.8	43
13	May the (Mechanical) Force Be with AT2. Cell, 2020, 180, 20-22.	28.9	52
14	Organoids Model Transcriptional Hallmarks of Oncogenic KRAS Activation in Lung Epithelial Progenitor Cells. Cell Stem Cell, 2020, 27, 663-678.e8.	11.1	86
15	BRG1 Loss Predisposes Lung Cancers to Replicative Stress and ATR Dependency. Cancer Research, 2020, 80, 3841-3854.	0.9	32
16	Prematurity negatively affects regenerative properties of human amniotic epithelial cells in the context of lung repair. Clinical Science, 2020, 134, 2665-2679.	4.3	7
17	Mesenchymal Stem Cells Increase Alveolar Differentiation in Lung Progenitor Organoid Cultures. Scientific Reports, 2019, 9, 6479.	3.3	74
18	An airway organoid is forever. EMBO Journal, 2019, 38, .	7.8	6

#	Article	IF	CITATIONS
19	E-Cadherin Loss Accelerates Tumor Progression and Metastasis in a Mouse Model of Lung Adenocarcinoma. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 237-245.	2.9	13
20	Amnion Epithelial Cell-Derived Exosomes Restrict Lung Injury and Enhance Endogenous Lung Repair. Stem Cells Translational Medicine, 2018, 7, 180-196.	3.3	150
21	H3K9 methyltransferases and demethylases control lung tumor-propagating cells and lung cancer progression. Nature Communications, 2018, 9, 4559.	12.8	69
22	A New "Ageâ€r for Lung Research Arrives: Genetic Targeting of Alveolar Type 1 Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 661-662.	2.9	1
23	Don't Stop Re-healin'! Cancer as an Ongoing Stem Cell Affair. Cell, 2017, 169, 563-565.	28.9	6
24	Lkb1 inactivation drives lung cancer lineage switching governed by Polycomb Repressive Complex 2. Nature Communications, 2017, 8, 14922.	12.8	80
25	Anatomically and Functionally Distinct Lung Mesenchymal Populations Marked by Lgr5 and Lgr6. Cell, 2017, 170, 1149-1163.e12.	28.9	304
26	Intersections of lung progenitor cells, lung disease and lung cancer. European Respiratory Review, 2017, 26, 170054.	7.1	9
27	Human amnion cells reverse acute and chronic pulmonary damage in experimental neonatal lung injury. Stem Cell Research and Therapy, 2017, 8, 257.	5. 5	41
28	Oncogenic Deregulation of EZH2 as an Opportunity for Targeted Therapy in Lung Cancer. Cancer Discovery, 2016, 6, 1006-1021.	9.4	108
29	EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to Topoll inhibitors. Nature, 2015, 520, 239-242.	27.8	223
30	Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO Journal, 2014, 33, 468-481.	7.8	181
31	Diverse cells at the origin of lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4745-4746.	7.1	36
32	Bone Marrow-Derived Multipotent Stromal Cells Attenuate Inflammation in Obliterative Airway Disease in Mouse Tracheal Allografts. Stem Cells International, 2014, 2014, 1-11.	2.5	12
33	Lung Stem Cell Differentiation in Mice Directed by Endothelial Cells via a BMP4-NFATc1-Thrombospondin-1 Axis. Cell, 2014, 156, 440-455.	28.9	417
34	A genetic screen identifies an LKB1–MARK signalling axis controlling the Hippo–YAP pathway. Nature Cell Biology, 2014, 16, 108-117.	10.3	252
35	Lung Stem and Progenitor Cells in Tissue Homeostasis and Disease. Current Topics in Developmental Biology, 2014, 107, 207-233.	2.2	68
36	Mesenchymal progenitor panoply. Science, 2014, 346, 810-811.	12.6	2

#	Article	IF	Citations
37	Non-small-cell lung cancers: a heterogeneous set of diseases. Nature Reviews Cancer, 2014, 14, 535-546.	28.4	1,375
38	Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10299-10304.	7.1	77
39	Loss of Lkb1 and Pten Leads to Lung Squamous Cell Carcinoma with Elevated PD-L1 Expression. Cancer Cell, 2014, 25, 590-604.	16.8	332
40	Surfactant Protein–C Chromatin-Bound Green Fluorescence Protein Reporter Mice Reveal Heterogeneity of Surfactant Protein C–Expressing Lung Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 288-298.	2.9	54
41	Stem Cells and Regenerative Medicine in Lung Biology and Diseases. Molecular Therapy, 2012, 20, 1116-1130.	8.2	74
42	Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L829-L837.	2.9	209
43	Airway Epithelial Progenitors Are Region Specific and Show Differential Responses to Bleomycin-Induced Lung Injury. Stem Cells, 2012, 30, 1948-1960.	3.2	171
44	Lung Stem Cell Self-Renewal Relies on BMI1-Dependent Control of Expression at Imprinted Loci. Cell Stem Cell, 2011, 9, 272-281.	11.1	119
45	Characterization of the cell of origin for small cell lung cancer. Cell Cycle, 2011, 10, 2806-2815.	2.6	183
46	Integrative Genomic and Proteomic Analyses Identify Targets for Lkb1-Deficient Metastatic Lung Tumors. Cancer Cell, 2010, 17, 547-559.	16.8	215
47	Matrix modulation of compensatory lung regrowth and progenitor cell proliferation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L158-L168.	2.9	47
48	Primary Tumor Genotype Is an Important Determinant in Identification of Lung Cancer Propagating Cells. Cell Stem Cell, 2010, 7, 127-133.	11.1	130
49	Commentary: Sca-1 and Cells of the Lung: A matter of Different Sorts. Stem Cells, 2009, 27, 606-611.	3.2	31
50	Bmi1 is critical for lung tumorigenesis and bronchioalveolar stem cell expansion. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11857-11862.	7.1	163
51	Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 294, L1158-L1165.	2.9	100
52	Stem Cell Biology in the Lung and Lung Cancers: Using Pulmonary Context and Classic Approaches. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 479-490.	1.1	10
53	Phosphatidylinositol 3-Kinase Mediates Bronchioalveolar Stem Cell Expansion in Mouse Models of Oncogenic K-ras-Induced Lung Cancer. PLoS ONE, 2008, 3, e2220.	2.5	73
54	Paving the road for lung stem cell biology: bronchioalveolar stem cells and other putative distal lung stem cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L1092-L1098.	2.9	69