
Panu M Jaakkola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3528116/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prognostic Factors for Localized Clear Cell Renal Cell Carcinoma and Their Application in Adjuvant Therapy. Cancers, 2022, 14, 239.	3.7	12
2	Promising clinical benefit rates in advanced cancers alongside potential biomarker correlation in a phase I/II trial investigating bexmarilimab, a novel macrophage-guided immunotherapy Journal of Clinical Oncology, 2022, 40, 2645-2645.	1.6	2
3	A three-feature prediction model for metastasis-free survival after surgery of localized clear cell renal cell carcinoma. Scientific Reports, 2021, 11, 8650.	3.3	10
4	Systemic Blockade of Clever-1 Elicits Lymphocyte Activation Alongside Checkpoint Molecule Downregulation in Patients with Solid Tumors: Results from a Phase I/II Clinical Trial. Clinical Cancer Research, 2021, 27, 4205-4220.	7.0	29
5	Hypoxia-inducible factor (HIF)-prolyl hydroxylase 3 (PHD3) maintains high HIF2A mRNA levels in clear cell renal cell carcinoma. Journal of Biological Chemistry, 2019, 294, 3760-3771.	3.4	26
6	Overall Survival and Metastasis Resections in Patients with Metastatic Colorectal Cancer Using Electronic Medical Records. Journal of Gastrointestinal Cancer, 2018, 49, 245-251.	1.3	7
7	Transportable system enabling multiple irradiation studies under simultaneous hypoxia in vitro. Radiation Oncology, 2018, 13, 220.	2.7	13
8	HIF prolyl hydroxylase PHD3 regulates translational machinery and glucose metabolism in clear cell renal cell carcinoma. Cancer & Metabolism, 2017, 5, 5.	5.0	24
9	ROTS: reproducible RNA-seq biomarker detector—prognostic markers for clear cell renal cell cancer. Nucleic Acids Research, 2016, 44, e1-e1.	14.5	43
10	Hypoxia inducible prolyl hydroxylase PHD3 maintains carcinoma cell growth by decreasing the stability of p27. Molecular Cancer, 2015, 14, 143.	19.2	22
11	Uptake of [18F] EF5 as a Tracer for Hypoxic and Aggressive Phenotype in Experimental Head and Neck Squamous Cell Carcinoma. Translational Oncology, 2014, 7, 323-330.	3.7	7
12	p62/SQSTM1 regulates cellular oxygen sensing by attenuating PHD3 activity through aggregate sequestration and enhanced degradation. Journal of Cell Science, 2013, 126, 1144-1154.	2.0	22
13	The regulation, localization, and functions of oxygen-sensing prolyl hydroxylase PHD3. Biological Chemistry, 2013, 394, 449-457.	2.5	36
14	Continuous Hypoxic Culturing of Human Embryonic Stem Cells Enhances SSEA-3 and MYC Levels. PLoS ONE, 2013, 8, e78847.	2.5	34
15	Interaction with ErbB4 Promotes Hypoxia-inducible Factor- $1\hat{l}$ ± Signaling. Journal of Biological Chemistry, 2012, 287, 9659-9671.	3.4	40
16	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
17	Prolyl Hydroxylase PHD3 Enhances the Hypoxic Survival and G1 to S Transition of Carcinoma Cells. PLoS ONE, 2011, 6, e27112.	2.5	35
18	Retention of prolyl hydroxylase PHD2 in the cytoplasm prevents PHD2-induced anchorage-independent carcinoma cell growth. Experimental Cell Research, 2010, 316, 1169-1178.	2.6	12

Panu M Jaakkola

#	Article	IF	CITATIONS
19	The role of HIF prolyl hydroxylases in tumour growth. Journal of Cellular and Molecular Medicine, 2010, 14, 758-770.	3.6	83
20	Hypoxic Conversion of SMAD7 Function from an Inhibitor into a Promoter of Cell Invasion. Cancer Research, 2010, 70, 5984-5993.	0.9	32
21	Hypoxia-activated Smad3-specific Dephosphorylation by PP2A. Journal of Biological Chemistry, 2010, 285, 3740-3749.	3.4	49
22	p62 degradation by autophagy: Another way for cancer cells to survive under hypoxia. Autophagy, 2009, 5, 410-412.	9.1	43
23	Expression of the cellular oxygen sensor PHD2 (EGLN-1) predicts radiation sensitivity in squamous cell cancer of the head and neck. International Journal of Radiation Biology, 2009, 85, 900-908.	1.8	9
24	Expression of the cellular oxygen sensor PHD2 (EGLN-1) predicts radiation sensitivity in squamous cell cancer of the head and neck. International Journal of Radiation Biology, 2009, 85, 900-908.	1.8	14
25	Prolyl Hydroxylase PHD3 Activates Oxygen-dependent Protein Aggregation. Molecular Biology of the Cell, 2008, 19, 2231-2240.	2.1	53
26	Intra- and extracellular signaling by endothelial neuregulin-1. Experimental Cell Research, 2007, 313, 2896-2909.	2.6	42
27	Overexpression and nuclear translocation of hypoxia-inducible factor prolyl hydroxylase PHD2 in head and neck squamous cell carcinoma is associated with tumor aggressiveness Clinical Cancer Research, 2006, 12, 1080-1087.	7.0	83
28	Hypoxia-inducible factor-1 (HIF-1) promotes its degradation by induction of HIF-α-prolyl-4-hydroxylases. Biochemical Journal, 2004, 381, 761-767.	3.7	311
29	C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation. Cell, 2001, 107, 43-54.	28.9	3,293
30	Proximal promoter of the murine syndecan-1 gene is not sufficient for the developmental pattern of syndecan expression in B lineage cells. American Journal of Hematology, 2001, 67, 20-26.	4.1	5
31	Hypoxia Inducible Factor-α Binding and Ubiquitylation by the von Hippel-Lindau Tumor Suppressor Protein. Journal of Biological Chemistry, 2000, 275, 25733-25741.	3.4	945
32	Proximal Promoter-Independent Activation of the Far-Upstream FGF-Inducible Response Element of Syndecan-1 Gene. Biochemical and Biophysical Research Communications, 2000, 278, 432-439.	2.1	6
33	Extracellular Matrix-dependent Activation of Syndecan-1 Expression in Keratinocyte Growth Factor-treated Keratinocytes. Journal of Biological Chemistry, 1999, 274, 9891-9898.	3.4	17
34	Transcriptional Regulation of Syndecan-1 Expression by Growth Factors. Progress in Molecular Biology and Translational Science, 1999, 63, 109-138.	1.9	24
35	The activation and composition of FiRE (an FGF-inducible response element) differ in a cell type- and growth factor-specific manner. Oncogene, 1998, 17, 1279-1286.	5.9	35
36	Wound reepithelialization activates a growth factorâ€responsive enhancer in migrating keratinocytes. FASEB Journal, 1998, 12, 959-969.	0.5	46

#	Article	IF	CITATIONS
37	Functional Characterization of Mouse Syndecan-1 Promoter. Journal of Biological Chemistry, 1996, 271, 12532-12541.	3.4	38