List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3527975/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary highâ€grade nonâ€anaplastic thyroid carcinoma: a retrospective study of 364 cases. Histopathology, 2022, 80, 322-337.	1.6	41
2	Genomic and Transcriptomic Correlates of Thyroid Carcinoma Evolution after BRAF Inhibitor Therapy. Molecular Cancer Research, 2022, 20, 45-55.	1.5	13
3	International Medullary Thyroid Carcinoma Grading System: A Validated Grading System for Medullary Thyroid Carcinoma. Journal of Clinical Oncology, 2022, 40, 96-104.	0.8	57
4	Targeting the mTOR Pathway in Hurthle Cell Carcinoma Results in Potent Antitumor Activity. Molecular Cancer Therapeutics, 2022, 21, 382-394.	1.9	6
5	Enhancing Radioiodine Incorporation in <i>BRAF</i> -Mutant, Radioiodine-Refractory Thyroid Cancers with Vemurafenib and the Anti-ErbB3 Monoclonal Antibody CDX-3379: Results of a Pilot Clinical Trial. Thyroid, 2022, 32, 273-282.	2.4	30
6	Age of Onset of Receptor Tyrosine Kinase Fusions Drives Distinct Biologic Outcomes in Thyroid Cancer. Journal of Clinical Oncology, 2022, 40, 1124-1126.	0.8	3
7	Prolonged survival of anaplastic thyroid carcinoma is associated with resectability, low tumor-infiltrating neutrophils/myeloid-derived suppressor cells, and low peripheral neutrophil-to-lymphocyte ratio. Endocrine, 2022, 76, 612-619.	1.1	10
8	BRAFV600E Induction in Thyrocytes Triggers Important Changes in the miRNAs Content and the Populations of Extracellular Vesicles Released in Thyroid Tumor Microenvironment. Biomedicines, 2022, 10, 755.	1.4	4
9	American Head and Neck Society Endocrine Surgery Section and International Thyroid Oncology Group consensus statement on mutational testing in thyroid cancer: Defining advanced thyroid cancer and its targeted treatment. Head and Neck, 2022, 44, 1277-1300.	0.9	41
10	The evolution of RET inhibitor resistance in RET-driven lung and thyroid cancers. Nature Communications, 2022, 13, 1450.	5.8	47
11	Characterization of Subtypes of <i>BRAF</i> -Mutant Papillary Thyroid Cancer Defined by Their Thyroid Differentiation Score. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 1030-1039.	1.8	21
12	Selumetinib Plus Adjuvant Radioactive Iodine in Patients With High-Risk Differentiated Thyroid Cancer: A Phase III, Randomized, Placebo-Controlled Trial (ASTRA). Journal of Clinical Oncology, 2022, 40, 1870-1878.	0.8	29
13	A Pilot Study of Durvalumab (MEDI4736) with Tremelimumab in Combination with Image-Guided Stereotactic Body Radiotherapy in the Treatment of Metastatic Anaplastic Thyroid Cancer. Thyroid, 2022, 32, 799-806.	2.4	4
14	Mitonuclear genotype remodels the metabolic and microenvironmental landscape of Hürthle cell carcinoma. Science Advances, 2022, 8, .	4.7	15
15	Selpercatinib-Induced Hypothyroidism Through Off-Target Inhibition of Type 2 lodothyronine Deiodinase. JCO Precision Oncology, 2022, , .	1.5	5
16	SWI/SNF Complex Mutations Promote Thyroid Tumor Progression and Insensitivity to Redifferentiation Therapies. Cancer Discovery, 2021, 11, 1158-1175.	7.7	57
17	Context-dependent modulation of aggressiveness of pediatric tumors by individual oncogenic RAS isoforms. Oncogene, 2021, 40, 4955-4966.	2.6	5
18	Co-inhibition of SMAD and MAPK signaling enhances 124I uptake in BRAF-mutant thyroid cancers. Endocrine-Related Cancer, 2021, 28, 391-402.	1.6	10

#	Article	IF	CITATIONS
19	Ultrasound-Guided Percutaneous Laser Ablation of the Thyroid Gland in a Swine Model: Comparison of Ablation Parameters and Ablation Zone Dimensions CardioVascular and Interventional Radiology, 2021, 44, 1798-1806.	0.9	4
20	Intensityâ€modulated radiation therapy and doxorubicin in thyroid cancer: A prospective phase 2 trial. Cancer, 2021, 127, 4161-4170.	2.0	8
21	Dynamic contrastâ€enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers. NMR in Biomedicine, 2020, 33, e4166.	1.6	19
22	Targeting Novel Sodium Iodide Symporter Interactors ADP-Ribosylation Factor 4 and Valosin-Containing Protein Enhances Radioiodine Uptake. Cancer Research, 2020, 80, 102-115.	0.4	31
23	Therapeutic breakthroughs for metastatic thyroid cancer. Nature Reviews Endocrinology, 2020, 16, 77-78.	4.3	31
24	Cancer therapy shapes the fitness landscape of clonal hematopoiesis. Nature Genetics, 2020, 52, 1219-1226.	9.4	367
25	Dissecting Anaplastic Thyroid Carcinoma: A Comprehensive Clinical, Histologic, Immunophenotypic, and Molecular Study of 360 Cases. Thyroid, 2020, 30, 1505-1517.	2.4	143
26	Oncogene-induced DNA damage: cyclic AMP steps into the ring. Journal of Clinical Investigation, 2020, 130, 5668-5670.	3.9	4
27	Genomic and Transcriptomic Characterization of Papillary Microcarcinomas With Lateral Neck Lymph Node Metastases. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 4889-4899.	1.8	26
28	Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features. Endocrine, 2019, 64, 97-108.	1.1	35
29	Establishment and Characterization of Four Novel Thyroid Cancer Cell Lines and PDX Models Expressing the RET/PTC1 Rearrangement, BRAFV600E, or RASQ61R as Drivers. Molecular Cancer Research, 2019, 17, 1036-1048.	1.5	10
30	Comprehensive Genetic Characterization of Human Thyroid Cancer Cell Lines: A Validated Panel for Preclinical Studies. Clinical Cancer Research, 2019, 25, 3141-3151.	3.2	115
31	Genetics of Human Thyroid Cancer Cell Lines—Response. Clinical Cancer Research, 2019, 25, 6883-6884.	3.2	2
32	Lysyl Oxidase Is a Key Player in BRAF/MAPK Pathway-Driven Thyroid Cancer Aggressiveness. Thyroid, 2019, 29, 79-92.	2.4	18
33	Vemurafenib Redifferentiation of <i>BRAF</i> Mutant, RAI-Refractory Thyroid Cancers. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 1417-1428.	1.8	165
34	<i>EIF1AX</i> and <i>RAS</i> Mutations Cooperate to Drive Thyroid Tumorigenesis through ATF4 and c-MYC. Cancer Discovery, 2019, 9, 264-281.	7.7	57
35	Oncogene-induced senescence and its evasion in a mouse model of thyroid neoplasia. Molecular and Cellular Endocrinology, 2018, 460, 24-35.	1.6	13
36	Radioactive Iodine–Related Clonal Hematopoiesis in Thyroid Cancer Is Common and Associated With Decreased Survival. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4216-4223.	1.8	33

#	Article	IF	CITATIONS
37	Methodology, Criteria, and Characterization of Patient-Matched Thyroid Cell Lines and Patient-Derived Tumor Xenografts. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 3169-3182.	1.8	10
38	Tipifarnib Inhibits HRAS-Driven Dedifferentiated Thyroid Cancers. Cancer Research, 2018, 78, 4642-4657.	0.4	60
39	AHNS Series: Do you know your guidelines? AHNS Endocrine Section Consensus Statement: Stateâ€ofâ€theâ€art thyroid surgical recommendations in the era of noninvasive follicular thyroid neoplasm with papillaryâ€like nuclear features. Head and Neck, 2018, 40, 1881-1888.	0.9	41
40	Integrated Genomic Analysis of Hürthle Cell Cancer Reveals Oncogenic Drivers, Recurrent Mitochondrial Mutations, and Unique Chromosomal Landscapes. Cancer Cell, 2018, 34, 256-270.e5.	7.7	195
41	Intensity-Modulated Radiation Therapy With or Without Concurrent Chemotherapy in Nonanaplastic Thyroid Cancer with Unresectable or Gross Residual Disease. Thyroid, 2018, 28, 1180-1189.	2.4	23
42	Hgf/Met activation mediates resistance to BRAF inhibition in murine anaplastic thyroid cancers. Journal of Clinical Investigation, 2018, 128, 4086-4097.	3.9	49
43	Genomic Alterations in Fatal Forms of Non-Anaplastic Thyroid Cancer: Identification of <i>MED12</i> and <i>RBM10</i> as Novel Thyroid Cancer Genes Associated with Tumor Virulence. Clinical Cancer Research, 2017, 23, 5970-5980.	3.2	89
44	Transposon mutagenesis identifies chromatin modifiers cooperating with <i>Ras</i> in thyroid tumorigenesis and detects <i>ATXN7</i> as a cancer gene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4951-E4960.	3.3	17
45	Natural History and Tumor Volume Kinetics of Papillary Thyroid Cancers During Active Surveillance. JAMA Otolaryngology - Head and Neck Surgery, 2017, 143, 1015.	1.2	359
46	Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodineâ€refractory thyroid cancer. Cancer, 2017, 123, 4114-4121.	2.0	59
47	Comparison of Empiric Versus Whole-Body/-Blood Clearance Dosimetry–Based Approach to Radioactive Iodine Treatment in Patients with Metastases from Differentiated Thyroid Cancer. Journal of Nuclear Medicine, 2017, 58, 717-722.	2.8	81
48	NADPH Oxidase NOX4 Is a Critical Mediator of BRAF ^{V600E} -Induced Downregulation of the Sodium/Iodide Symporter in Papillary Thyroid Carcinomas. Antioxidants and Redox Signaling, 2017, 26, 864-877.	2.5	63
49	Biologic and Clinical Perspectives on Thyroid Cancer. New England Journal of Medicine, 2016, 375, 2306-2307.	13.9	98
50	An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell, 2016, 30, 485-498.	7.7	130
51	Biologic and Clinical Perspectives on Thyroid Cancer. New England Journal of Medicine, 2016, 375, 1054-1067.	13.9	660
52	Mammary analog secretory carcinoma of the thyroid gland: A primary thyroid adenocarcinoma harboring ETV6–NTRK3 fusion. Modern Pathology, 2016, 29, 985-995.	2.9	74
53	Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. Journal of Clinical Investigation, 2016, 126, 1052-1066.	3.9	874
54	Sustained ERK inhibition maximizes responses of BrafV600E thyroid cancers to radioiodine. Journal of Clinical Investigation, 2016, 126, 4119-4124.	3.9	102

#	Article	IF	CITATIONS
55	Lenvatinib and radioiodine-refractory thyroid cancers. Nature Reviews Endocrinology, 2015, 11, 325-327.	4.3	9
56	Alternative transcription initiation leads to expression of a novel ALK isoform in cancer. Nature, 2015, 526, 453-457.	13.7	191
57	Response to: Letter to the Editor Regarding the Article "Thyrotropin Suppression Increases the Risk of Osteoporosis Without Decreasing Recurrence in ATA Low- and Intermediate-Risk Patients with Differentiated Thyroid Carcinoma― Thyroid, 2015, 25, 1269-1270.	2.4	0
58	<i>NF2</i> Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition. Cancer Discovery, 2015, 5, 1178-1193.	7.7	107
59	Thyrotropin Suppression Increases the Risk of Osteoporosis Without Decreasing Recurrence in ATA Low- and Intermediate-Risk Patients with Differentiated Thyroid Carcinoma. Thyroid, 2015, 25, 300-307.	2.4	121
60	Switch in Signaling Control of mTORC1 Activity After Oncoprotein Expression in Thyroid Cancer Cell Lines. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E1976-E1987.	1.8	22
61	Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation. Human Molecular Genetics, 2014, 23, 682-692.	1.4	36
62	Endocrine-related adverse events following ipilimumab in patients with advanced melanoma: a comprehensive retrospective review from a single institution. Endocrine-Related Cancer, 2014, 21, 371-381.	1.6	370
63	Association Between BRAF V600E Mutation and Mortality in Patients With Papillary Thyroid Cancer. JAMA - Journal of the American Medical Association, 2013, 309, 1493.	3.8	775
64	Selumetinib-Enhanced Radioiodine Uptake in Advanced Thyroid Cancer. New England Journal of Medicine, 2013, 368, 623-632.	13.9	692
65	Exomic Sequencing of Medullary Thyroid Cancer Reveals Dominant and Mutually Exclusive Oncogenic Mutations in RET and RAS. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E364-E369.	1.8	213
66	Genomic Dissection of Hurthle Cell Carcinoma Reveals a Unique Class of Thyroid Malignancy. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E962-E972.	1.8	169
67	Immunohistochemical Detection of Mutated BRAF V600E Supports the Clonal Origin of BRAF-Induced Thyroid Cancers Along the Spectrum of Disease Progression. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1414-E1421.	1.8	76
68	Frequent Somatic TERT Promoter Mutations in Thyroid Cancer: Higher Prevalence in Advanced Forms of the Disease. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1562-E1566.	1.8	378
69	Targeting mTOR in RET mutant medullary and differentiated thyroid cancer cells. Endocrine-Related Cancer, 2013, 20, 659-667.	1.6	53
70	Relief of Feedback Inhibition of <i>HER3</i> Transcription by RAF and MEK Inhibitors Attenuates Their Antitumor Effects in <i>BRAF</i> -Mutant Thyroid Carcinomas. Cancer Discovery, 2013, 3, 520-533.	7.7	328
71	Genetic and Pharmacological Targeting of CSF-1/CSF-1R Inhibits Tumor-Associated Macrophages and Impairs BRAF-Induced Thyroid Cancer Progression. PLoS ONE, 2013, 8, e54302.	1.1	119
72	Identification of kinase fusion oncogenes in post-Chernobyl radiation-induced thyroid cancers. Journal of Clinical Investigation, 2013, 123, 4935-4944.	3.9	197

#	Article	IF	CITATIONS
73	Reply to JF. Chatal et al. Journal of Clinical Oncology, 2012, 30, 2166-2167.	0.8	ο
74	Papillary Thyroid Carcinomas with Cervical Lymph Node Metastases Can Be Stratified into Clinically Relevant Prognostic Categories Using Oncogenic <i>BRAF</i> , the Number of Nodal Metastases, and Extra-Nodal Extension. Thyroid, 2012, 22, 575-584.	2.4	108
75	STAT3 negatively regulates thyroid tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2361-70.	3.3	110
76	Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas. Cancer Cell, 2012, 22, 668-682.	7.7	469
77	Absence of common activating mutations of the epidermal growth factor receptor gene in thyroid cancers from American and Japanese patients. International Journal of Cancer, 2012, 130, 2215-2217.	2.3	7
78	Ultrasonographically Detected Small Thyroid Bed Nodules Identified After Total Thyroidectomy for Differentiated Thyroid Cancer Seldom Show Clinically Significant Structural Progression. Thyroid, 2011, 21, 845-853.	2.4	113
79	Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. Journal of Clinical Investigation, 2011, 121, 4700-4711.	3.9	305
80	Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1615-1620.	3.3	183
81	To remain current, and to do so briefly…. Endocrine-Related Cancer, 2010, 17, E1.	1.6	0
82	The tyrosine kinase inhibitor ZD6474 blocks proliferation of RET mutant medullary thyroid carcinoma cells. Endocrine-Related Cancer, 2010, 18, 1-11.	1.6	58
83	Harvesting the Low-Hanging Fruit: Kinase Inhibitors for Therapy of Advanced Medullary and Nonmedullary Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 2621-2624.	1.8	21
84	Estimating Risk of Recurrence in Differentiated Thyroid Cancer After Total Thyroidectomy and Radioactive Iodine Remnant Ablation: Using Response to Therapy Variables to Modify the Initial Risk Estimates Predicted by the New American Thyroid Association Staging System. Thyroid, 2010, 20, 1341-1349.	2.4	785
85	Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Modern Pathology, 2010, 23, 1191-1200.	2.9	325
86	Encapsulated thyroid tumors of follicular cell origin with high grade features (high mitotic) Tj ETQq0 0 0 rgBT /0)verlock 10 1.1) Tf 50 222 Td
87	Genomic and Biological Characterization of Exon 4 KRAS Mutations in Human Cancer. Cancer Research, 2010, 70, 5901-5911.	0.4	245
88	Molecular, Morphologic, and Outcome Analysis of Thyroid Carcinomas According to Degree of Extrathyroid Extension. Thyroid, 2010, 20, 1085-1093.	2.4	80
89	The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9435-9440.	3.3	246
90	Molecular Testing for Mutations in Improving the Fine-Needle Aspiration Diagnosis of Thyroid Nodules. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 2092-2098.	1.8	674

#	Article	IF	CITATIONS
91	Endogenous expression of Hras ^{G12V} induces developmental defects and neoplasms with copy number imbalances of the oncogene. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 7979-7984.	3.3	114
92	Mutational Profile of Advanced Primary and Metastatic Radioactive Iodine-Refractory Thyroid Cancers Reveals Distinct Pathogenetic Roles for <i>BRAF, PIK3CA</i> , and <i>AKT1</i> . Cancer Research, 2009, 69, 4885-4893.	0.4	488
93	Role of MAPK pathway oncoproteins in thyroid cancer pathogenesis and as drug targets. Current Opinion in Cell Biology, 2009, 21, 296-303.	2.6	107
94	Deoxyribonucleic Acid Profiling Analysis of 40 Human Thyroid Cancer Cell Lines Reveals Cross-Contamination Resulting in Cell Line Redundancy and Misidentification. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 4331-4341.	1.8	520
95	Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Practice and Research in Clinical Endocrinology and Metabolism, 2008, 22, 955-969.	2.2	138
96	RET/PTC-Induced Cell Growth Is Mediated in Part by Epidermal Growth Factor Receptor (EGFR) Activation: Evidence for Molecular and Functional Interactions between RET and EGFR. Cancer Research, 2008, 68, 4183-4191.	0.4	84
97	BRAFV600E Mutation Is Associated with Preferential Sensitivity to Mitogen-Activated Protein Kinase Kinase Inhibition in Thyroid Cancer Cell Lines. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 2194-2201.	1.8	112
98	Refractory Thyroid Cancer: A Paradigm Shift in Treatment Is Not Far Off. Journal of Clinical Oncology, 2008, 26, 4701-4704.	0.8	56
99	Increased density of tumor-associated macrophages is associated with decreased survival in advanced thyroid cancer. Endocrine-Related Cancer, 2008, 15, 1069-1074.	1.6	351
100	The RET Kinase Inhibitor NVP-AST487 Blocks Growth and Calcitonin Gene Expression through Distinct Mechanisms in Medullary Thyroid Cancer Cells. Cancer Research, 2007, 67, 6956-6964.	0.4	110
101	The Jeremiah Metzger Lecture: intelligent design of cancer therapy: trials and tribulations. Transactions of the American Clinical and Climatological Association, 2007, 118, 253-61.	0.9	5
102	BRAF Mediates RET/PTC-Induced Mitogen-Activated Protein Kinase Activation in Thyroid Cells: Functional Support for Requirement of the RET/PTC-RAS-BRAF Pathway in Papillary Thyroid Carcinogenesis. Endocrinology, 2006, 147, 1014-1019.	1.4	111
103	Significance of BRAF mutations in papillary thyroid carcinoma: prognostic and therapeutic implications. Nature Clinical Practice Endocrinology and Metabolism, 2006, 2, 180-181.	2.9	26
104	Conditional Activation of RET/PTC3 and BRAFV600E in Thyroid Cells Is Associated with Gene Expression Profiles that Predict a Preferential Role of BRAF in Extracellular Matrix Remodeling. Cancer Research, 2006, 66, 6521-6529.	0.4	129
105	Welcome from the new Editor-in-Chief. Endocrine-Related Cancer, 2006, 13, 1.	1.6	3
106	Inhibitors of Raf Kinase Activity Block Growth of Thyroid Cancer Cells with RET/PTC or BRAF Mutations In vitro and In vivo. Clinical Cancer Research, 2006, 12, 1785-1793.	3.2	131
107	Oncogenic RAS Induces Accelerated Transition through G2/M and Promotes Defects in the G2 DNA Damage and Mitotic Spindle Checkpoints. Journal of Biological Chemistry, 2006, 281, 3800-3809.	1.6	84
108	Conditional BRAFV600E Expression Induces DNA Synthesis, Apoptosis, Dedifferentiation, and Chromosomal Instability in Thyroid PCCL3 Cells. Cancer Research, 2005, 65, 2465-2473.	0.4	198

#	Article	IF	CITATIONS
109	Targeted Expression of BRAFV600E in Thyroid Cells of Transgenic Mice Results in Papillary Thyroid Cancers that Undergo Dedifferentiation. Cancer Research, 2005, 65, 4238-4245.	0.4	376
110	BRAF Kinase Activation via Chromosomal Rearrangement in Radiation-Induced and Sporadic Thyroid Cancer. Cell Cycle, 2005, 4, 547-548.	1.3	19
111	Why Thyroid Cancer?. Thyroid, 2005, 15, 303-304.	2.4	11
112	Oncogenic AKAP9-BRAF fusion is a novel mechanism of MAPK pathway activation in thyroid cancer. Journal of Clinical Investigation, 2005, 115, 94-101.	3.9	371
113	Genetics of papillary thyroid cancer initiation: implications for therapy. Transactions of the American Clinical and Climatological Association, 2005, 116, 259-69; discussion 269-71.	0.9	37
114	Analysis of BRAF Point Mutation and RET/PTC Rearrangement Refines the Fine-Needle Aspiration Diagnosis of Papillary Thyroid Carcinoma. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5175-5180.	1.8	252
115	Challenging Dogma in Thyroid Cancer Molecular Genetics—Role ofRET/PTCandBRAFin Tumor Initiation. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4264-4266.	1.8	83
116	Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to sporadic papillary carcinomas. Cancer Letters, 2004, 209, 1-6.	3.2	152
117	Ras-mediated apoptosis of PC CL 3 rat thyroid cells induced by RET/PTC oncogenes. Oncogene, 2003, 22, 246-255.	2.6	46
118	RET/PTC-induced dedifferentiation of thyroid cells is mediated through Y1062 signaling through SHC-RAS-MAP kinase. Oncogene, 2003, 22, 4406-4412.	2.6	164
119	Acute expression of RET/PTC induces isozyme-specific activation and subsequent downregulation of PKCÉ› in PCCL3 thyroid cells. Oncogene, 2003, 22, 6830-6838.	2.6	21
120	BRAF Mutations in Thyroid Tumors Are Restricted to Papillary Carcinomas and Anaplastic or Poorly Differentiated Carcinomas Arising from Papillary Carcinomas. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 5399-5404.	1.8	950
121	Conditional Expression of RET/PTC Induces a Weak Oncogenic Drive in Thyroid PCCL3 Cells and Inhibits Thyrotropin Action at Multiple Levels. Molecular Endocrinology, 2003, 17, 1425-1436.	3.7	73
122	Microsomal Prostaglandin E2 Synthase-1 Is Induced by Conditional Expression of RET/PTC in Thyroid PCCL3 Cells through the Activation of the MEK-ERK Pathway. Journal of Biological Chemistry, 2003, 278, 52131-52138.	1.6	26
123	High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Research, 2003, 63, 1454-7.	0.4	1,132
124	Targeted Expression of a Protease-resistant IGFBP-4 Mutant in Smooth Muscle of Transgenic Mice Results in IGFBP-4 Stabilization and Smooth Muscle Hypotrophy. Journal of Biological Chemistry, 2002, 277, 21285-21290.	1.6	44
125	Perspective: Lessons Learned from Molecular Genetic Studies of Thyroid Cancer—Insights into Pathogenesis and Tumor-Specific Therapeutic Targets. Endocrinology, 2002, 143, 2025-2028.	1.4	53
126	Minireview: Branded from the Start—Distinct Oncogenic Initiating Events May Determine Tumor Fate in the Thyroid. Molecular Endocrinology, 2002, 16, 903-911.	3.7	115

#	Article	IF	CITATIONS
127	Isozyme-Specific Abnormalities of PKC in Thyroid Cancer: Evidence for Post-Transcriptional Changes in PKC Epsilon. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2150-2159.	1.8	37
128	Mechanisms of aneuploidy in thyroid cancer cell lines and tissues: evidence for mitotic checkpoint dysfunction without mutations in BUB1 and BUBR1. Clinical Endocrinology, 2002, 56, 341-350.	1.2	58
129	Isozyme-Specific Abnormalities of PKC in Thyroid Cancer: Evidence for Post-Transcriptional Changes in PKC Epsilon. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 2150-2159.	1.8	13
130	Spontaneous occurrence of an inhibitor of protein kinase C localization in a thyroid cancer cell line: role in thyroid tumorigenesis. Advances in Enzyme Regulation, 2001, 41, 87-97.	2.9	4
131	GENETIC MARKERS IN THYROID NEOPLASIA. Endocrinology and Metabolism Clinics of North America, 2001, 30, 493-513.	1.2	22
132	The RAS oncogene induces genomic instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene, 2000, 19, 3948-3954.	2.6	168
133	Conditional Apoptosis Induced by Oncogenic Ras in Thyroid Cells. Molecular Endocrinology, 2000, 14, 1725-1738.	3.7	52
134	Proximity of Chromosomal Loci That Participate in Radiation-Induced Rearrangements in Human Cells. Science, 2000, 290, 138-141.	6.0	450
135	Targeted Overexpression of Insulin-Like Growth Factor I to Osteoblasts of Transgenic Mice: Increased Trabecular Bone Volume without Increased Osteoblast Proliferation. Endocrinology, 2000, 141, 2674-2682.	1.4	91
136	Involvement of Protein Kinase CÎμ (PKCÎμ) in Thyroid Cell Death. Journal of Biological Chemistry, 1999, 274, 23414-23425.	1.6	70
137	Frequent loss of heterozygosity at chromosome 3p14.2-3p21 in human pancreatic islet cell tumours. Clinical Endocrinology, 1999, 51, 27-33.	1.2	33
138	Prevalence of minisatellite and microsatellite instability in radiation-induced post-Chernobyl pediatric thyroid carcinomas. Oncogene, 1998, 17, 1983-1988.	2.6	32
139	Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas. Cancer, 1998, 83, 2185-2193.	2.0	64
140	<i>ret</i> Rearrangements in Japanese Pediatric and Adult Papillary Thyroid Cancers. Thyroid, 1998, 8, 485-489.	2.4	73
141	Genetic and epigenetic alterations of the cyclinâ€dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas. Cancer, 1998, 83, 2185-2193.	2.0	3
142	Aortic Smooth Muscle Cells Interact with Tenascin-C through Its Fibrinogen-like Domain. Journal of Biological Chemistry, 1997, 272, 32798-32803.	1.6	39
143	Risk Factors for Thyroid Cancer. Trends in Endocrinology and Metabolism, 1997, 8, 20-25.	3.1	16
144	Prevalence, Significance, and Biological Behavior of ret/PTC Associated Papillary Thyroid Carcinoma— Author's Response 1, Journal of Clinical Endocrinology and Metabolism, 1997, 82, 2016-2017	1.8	4

#	Article	IF	CITATIONS
145	Regulated Expression of the Ets-1 Transcription Factor in Vascular Smooth Muscle Cells In Vivo and In Vitro. Circulation Research, 1996, 78, 589-595.	2.0	78
146	Characteristics of follicular tumors and nonneoplastic thyroid lesions in children and adolescents exposed to radiation as a result of the chernobyl disaster. Cancer, 1995, 76, 900-909.	2.0	51
147	Tumor suppressor genes in human thyroid neoplasms: p53 mutations are associated undifferentiated thyroid cancers. Journal of Endocrinological Investigation, 1995, 18, 140-142.	1.8	33
148	Molecular pathogenesis of pituitary tumours. Bailliere's Clinical Endocrinology and Metabolism, 1995, 9, 203-223.	1.0	18
149	MOLECULAR GENETICS OF HUMAN THYROID NEOPLASMS. Annual Review of Medicine, 1994, 45, 45-52.	5.0	53
150	Stimulation of rat vascular smooth muscle cell glycosaminoglycan production by angiotensin II. Atherosclerosis, 1994, 111, 55-64.	0.4	19
151	Effects of hypophysectomy on vascular insulin-like growth factor-I gene expression after balloon denudation in rats. Atherosclerosis, 1992, 93, 115-122.	0.4	32
152	Growth factors, cytokines, and vascular injury. Trends in Cardiovascular Medicine, 1992, 2, 90-94.	2.3	17
153	A paradigm for restenosis based on cell biology: Clues for the development of new preventive therapies. Journal of the American College of Cardiology, 1991, 17, 758-769.	1.2	560
154	Allelotype of Human Thyroid Tumors: Loss of Chromosome 11q13 Sequences in Follicular Neoplasms. Molecular Endocrinology, 1991, 5, 1873-1879.	3.7	93
155	Solitary Polyclonal Autonomous Thyroid Nodule: A Rare Cause of Childhood Hyperthyroidism*. Journal of Clinical Endocrinology and Metabolism, 1991, 72, 1108-1112.	1.8	21
156	Transforming DNA Sequences Present in Human Prolactin-Secreting Pituitary Tumors. Molecular Endocrinology, 1991, 5, 1687-1695.	3.7	71
157	Clonal Origin of Pituitary Adenomas*. Journal of Clinical Endocrinology and Metabolism, 1990, 71, 1427-1433.	1.8	550
158	Point Mutations of Ras Oncogenes are an Early Event in Thyroid Tumorigenesis. Molecular Endocrinology, 1990, 4, 1474-1479.	3.7	338
159	H-Ras Protooncogene Mutations in Human Thyroid Neoplasms*. Journal of Clinical Endocrinology and Metabolism, 1990, 71, 223-229.	1.8	109
160	Isolation and characterization of rat-mouse somatic cell hybrids secreting growth hormone and prolactin. Experimental Cell Research, 1986, 162, 475-485.	1.2	1
161	Bromocriptine inhibits incorporation of [3H]thymidine into rat pituitary tumor cells. Brain Research, 1986, 369, 83-90.	1.1	6
162	Expression of the myc Cellular Proto-Oncogene in Human Thyroid Tissue*. Journal of Clinical Endocrinology and Metabolism, 1986, 63, 1170-1173.	1.8	47

#	Article	IF	CITATIONS
163	Oncogenic events and therapeutic targets in thyroid cancer. , 0, , 704-711.		0