Francois Buscot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3527383/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	FungalTraits vs. FUNGuild: Comparison of Ecological Functional Assignments of Leaf- and Needle-Associated Fungi Across 12 Temperate Tree Species. Microbial Ecology, 2023, 85, 411-428.	2.8	18
2	Life in the Wheat Litter: Effects of Future Climate on Microbiome and Function During the Early Phase of Decomposition. Microbial Ecology, 2022, 84, 90-105.	2.8	5
3	Nitrogen fixing bacteria facilitate microbial biodegradation of a bio-based and biodegradable plastic in soils under ambient and future climatic conditions. Environmental Sciences: Processes and Impacts, 2022, 24, 233-241.	3.5	12
4	Priming effects in soils across Europe. Global Change Biology, 2022, 28, 2146-2157.	9.5	22
5	City life of mycorrhizal and wood-inhabiting macrofungi: Importance of urban areas for maintaining fungal biodiversity. Landscape and Urban Planning, 2022, 221, 104360.	7.5	3
6	Taxonomical and functional composition of strawberry microbiome is genotype-dependent. Journal of Advanced Research, 2022, 42, 189-204.	9.5	12
7	Interactions Between High Load of a Bio-based and Biodegradable Plastic and Nitrogen Fertilizer Affect Plant Biomass and Health: A Case Study with Fusarium solani and Mung Bean (Vigna radiata L.). Journal of Polymers and the Environment, 2022, 30, 3534-3544.	5.0	6
8	Disentangling the importance of space and host tree for the beta-diversity of beetles, fungi, and bacteria: Lessons from a large dead-wood experiment. Biological Conservation, 2022, 268, 109521.	4.1	5
9	Cross-kingdom interactions and functional patterns of active microbiota matter in governing deadwood decay. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20220130.	2.6	6
10	Biofilm forming rhizobacteria affect the physiological and biochemical responses of wheat to drought. AMB Express, 2022, 12, .	3.0	6
11	Links among Microbial Communities, Soil Properties and Functions: Are Fungi the Sole Players in Decomposition of Bio-Based and Biodegradable Plastic?. Polymers, 2022, 14, 2801.	4.5	6
12	Low root functional dispersion enhances functionality of plant growth by influencing bacterial activities in European forest soils. Environmental Microbiology, 2021, 23, 1889-1906.	3.8	16
13	Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Molecular Ecology, 2021, 30, 572-591.	3.9	31
14	Tree phylogenetic diversity structures multitrophic communities. Functional Ecology, 2021, 35, 521-534.	3.6	21
15	The multidimensionality of soil macroecology. Global Ecology and Biogeography, 2021, 30, 4-10.	5.8	16
16	Tracking, targeting, and conserving soil biodiversity. Science, 2021, 371, 239-241.	12.6	151
17	Soil Texture, Sampling Depth and Root Hairs Shape the Structure of ACC Deaminase Bacterial Community Composition in Maize Rhizosphere. Frontiers in Microbiology, 2021, 12, 616828.	3.5	23
18	Balance between geographic, soil, and host tree parameters to shape soil microbiomes associated to clonal oak varies across soil zones along a European North–South transect. Environmental Microbiology, 2021, 23, 2274-2292.	3.8	3

#	Article	IF	CITATIONS
19	Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning Link. Frontiers in Microbiology, 2021, 12, 629169.	3.5	18
20	Amplicon Sequencing-Based Bipartite Network Analysis Confirms a High Degree of Specialization and Modularity for Fungi and Prokaryotes in Deadwood. MSphere, 2021, 6, .	2.9	10
21	Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecology and Evolution, 2021, 11, 5424-5440.	1.9	22
22	Soil bacterial communities and their associated functions for forest restoration on a limestone mine in northern Thailand. PLoS ONE, 2021, 16, e0248806.	2.5	15
23	Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environmental Microbiology, 2021, 23, 6163-6176.	3.8	24
24	Interactions between soil properties, agricultural management and cultivar type drive structural and functional adaptations of the wheat rhizosphere microbiome to drought. Environmental Microbiology, 2021, 23, 5866-5882.	3.8	36
25	Contrasting responses of above- and belowground diversity to multiple components of land-use intensity. Nature Communications, 2021, 12, 3918.	12.8	81
26	Above- and belowground biodiversity jointly tighten the P cycle in agricultural grasslands. Nature Communications, 2021, 12, 4431.	12.8	40
27	Deciphering Trifolium pratense L. holobiont reveals a microbiome resilient to future climate changes. MicrobiologyOpen, 2021, 10, e1217.	3.0	6
28	First Evidence That Nematode Communities in Deadwood Are Related to Tree Species Identity and to Co-Occurring Fungi and Prokaryotes. Microorganisms, 2021, 9, 1454.	3.6	8
29	Among stand heterogeneity is key for biodiversity in managed beech forests but does not question the value of unmanaged forests: Response to Bruun and Heilmannâ€Clausen (2021). Journal of Applied Ecology, 2021, 58, 1817-1826.	4.0	8
30	Distinct effects of host and neighbour tree identity on arbuscular and ectomycorrhizal fungi along a tree diversity gradient. ISME Communications, 2021, 1, .	4.2	19
31	Largeâ€scale drivers of relationships between soil microbial properties and organic carbon across Europe. Global Ecology and Biogeography, 2021, 30, 2070-2083.	5.8	32
32	Can We Estimate Functionality of Soil Microbial Communities from Structure-Derived Predictions? A Reality Test in Agricultural Soils. Microbiology Spectrum, 2021, 9, e0027821.	3.0	11
33	Analysis of microbial populations in plastic–soil systems after exposure to high poly(butylene) Tj ETQq1 1 0.78 Europe, 2021, 33, .	4314 rgBT 5.5	Overlock 21
34	Back to the Future: Decomposability of a Biobased and Biodegradable Plastic in Field Soil Environments and Its Microbiome under Ambient and Future Climates. Environmental Science & Technology, 2021, 55, 12337-12351.	10.0	32
35	Temporal Changes and Alternating Host Tree Root and Shoot Growth Affect Soil Microbiomes. Proceedings (mdpi), 2021, 66, .	0.2	1
36	National Forest Inventories capture the multifunctionality of managed forests in Germany. Forest Ecosystems, 2021, 8, .	3.1	16

#	Article	IF	CITATIONS
37	Molecular Screening of Microorganisms Associated with Discolored Wood in Dead European Beech Trees Suffered from Extreme Drought Event Using Next Generation Sequencing. Plants, 2021, 10, 2092.	3.5	5
38	The iDiv Ecotron—A flexible research platform for multitrophic biodiversity research. Ecology and Evolution, 2021, 11, 15174-15190.	1.9	8
39	Ectomycorrhizal fungus supports endogenous rhythmic growth and corresponding resource allocation in oak during various below- and aboveground biotic interactions. Scientific Reports, 2021, 11, 23680.	3.3	5
40	Unraveling spatiotemporal variability of arbuscular mycorrhizal fungi in a temperate grassland plot. Environmental Microbiology, 2020, 22, 873-888.	3.8	27
41	Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28140-28149.	7.1	164
42	Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 2020, 11, 3870.	12.8	192
43	Tree Root Zone Microbiome: Exploring the Magnitude of Environmental Conditions and Host Tree Impact. Frontiers in Microbiology, 2020, 11, 749.	3.5	20
44	Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi. BMC Genomics, 2020, 21, 399.	2.8	14
45	Future Climate Significantly Alters Fungal Plant Pathogen Dynamics during the Early Phase of Wheat Litter Decomposition. Microorganisms, 2020, 8, 908.	3.6	18
46	Early Stage Root-Associated Fungi Show a High Temporal Turnover, but Are Independent of Beech Progeny. Microorganisms, 2020, 8, 210.	3.6	5
47	Resident and phytometer plants host comparable rhizosphere fungal communities in managed grassland ecosystems. Scientific Reports, 2020, 10, 919.	3.3	16
48	Diversity and geographic distribution of soil streptomycetes with antagonistic potential against actinomycetoma-causing Streptomyces sudanensis in Sudan and South Sudan. BMC Microbiology, 2020, 20, 33.	3.3	11
49	Distribution of Medically Relevant Antibiotic Resistance Genes and Mobile Genetic Elements in Soils of Temperate Forests and Grasslands Varying in Land Use. Genes, 2020, 11, 150.	2.4	9
50	Taxonomic and phylogenetic contributions to fungi associated with the invasive weed Chromolaena odorata (Siam weed). Fungal Diversity, 2020, 101, 1-175.	12.3	82
51	Can multiâ€ŧaxa diversity in European beech forest landscapes be increased by combining different management systems?. Journal of Applied Ecology, 2020, 57, 1363-1375.	4.0	38
52	Future Climate Alters Pathogens-Microbiome Co-occurrence Networks in Wheat Straw Residues during Decomposition. Proceedings (mdpi), 2020, 66, 22.	0.2	2
53	A multitrophic perspective on biodiversity–ecosystem functioning research. Advances in Ecological Research, 2019, 61, 1-54.	2.7	95
54	DNA- and RNA- Derived Fungal Communities in Subsurface Aquifers Only Partly Overlap but React Similarly to Environmental Factors. Microorganisms, 2019, 7, 341.	3.6	15

#	Article	IF	CITATIONS
55	Potential links between woodâ€inhabiting and soil fungal communities: Evidence from highâ€throughput sequencing. MicrobiologyOpen, 2019, 8, e00856.	3.0	18
56	Investigating the consequences of climate change under different landâ€use regimes: a novel experimental infrastructure. Ecosphere, 2019, 10, e02635.	2.2	85
57	Collembola interact with mycorrhizal fungi in modifying oak morphology, C and N incorporation and transcriptomics. Royal Society Open Science, 2019, 6, 181869.	2.4	15
58	Molecular fungal community and its decomposition activity in sapwood and heartwood of 13 temperate European tree species. PLoS ONE, 2019, 14, e0212120.	2.5	55
59	Home-Field Advantage in Wood Decomposition Is Mainly Mediated by Fungal Community Shifts at "Home―Versus "Away― Microbial Ecology, 2019, 78, 725-736.	2.8	24
60	Tree Response to Herbivory Is Affected by Endogenous Rhythmic Growth and Attenuated by Cotreatment With a Mycorrhizal Fungus. Molecular Plant-Microbe Interactions, 2019, 32, 770-781.	2.6	5
61	Linking Soil Fungal Generality to Tree Richness in Young Subtropical Chinese Forests. Microorganisms, 2019, 7, 547.	3.6	10
62	First Insights into the Microbiome of a Mangrove Tree Reveal Significant Differences in Taxonomic and Functional Composition among Plant and Soil Compartments. Microorganisms, 2019, 7, 585.	3.6	18
63	Wood decomposition is more strongly controlled by temperature than by tree species and decomposer diversity in highly species rich subtropical forests. Oikos, 2019, 128, 701-715.	2.7	36
64	Specialisation and diversity of multiple trophic groups are promoted by different forest features. Ecology Letters, 2019, 22, 170-180.	6.4	92
65	Application of nextâ€generation sequencing technologies to conservation of woodâ€inhabiting fungi. Conservation Biology, 2019, 33, 716-724.	4.7	13
66	Shifts Between and Among Populations of Wheat Rhizosphere Pseudomonas, Streptomyces and Phyllobacterium Suggest Consistent Phosphate Mobilization at Different Wheat Growth Stages Under Abiotic Stress. Frontiers in Microbiology, 2019, 10, 3109.	3.5	25
67	Increasing N deposition impacts neither diversity nor functions of deadwoodâ€inhabiting fungal communities, but adaptation and functional redundancy ensure ecosystem function. Environmental Microbiology, 2018, 20, 1693-1710.	3.8	26
68	Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME Journal, 2018, 12, 289-295.	9.8	90
69	Dynamics of Soil Bacterial Communities Over a Vegetation Season Relate to Both Soil Nutrient Status and Plant Growth Phenology. Microbial Ecology, 2018, 75, 216-227.	2.8	42
70	Labile water soluble components govern the short-term microbial decay of hydrochar from sewage sludge. Archives of Agronomy and Soil Science, 2018, 64, 873-880.	2.6	4
71	Multiâ€ŧrophic guilds respond differently to changing elevation in a subtropical forest. Ecography, 2018, 41, 1013-1023	4.5	17
72	The impact of evenâ€aged and unevenâ€aged forest management on regional biodiversity of multiple taxa in European beech forests. Journal of Applied Ecology, 2018, 55, 267-278.	4.0	188

#	Article	IF	CITATIONS
73	Multiple forest attributes underpin the supply of multiple ecosystem services. Nature Communications, 2018, 9, 4839.	12.8	182
74	Host Phylogeny Is a Major Determinant of Fagaceae-Associated Ectomycorrhizal Fungal Community Assembly at a Regional Scale. Frontiers in Microbiology, 2018, 9, 2409.	3.5	36
75	Land-Use Intensity Rather Than Plant Functional Identity Shapes Bacterial and Fungal Rhizosphere Communities. Frontiers in Microbiology, 2018, 9, 2711.	3.5	62
76	Growing Research Networks on Mycorrhizae for Mutual Benefits. Trends in Plant Science, 2018, 23, 975-984.	8.8	51
77	Determinants of Deadwood-Inhabiting Fungal Communities in Temperate Forests: Molecular Evidence From a Large Scale Deadwood Decomposition Experiment. Frontiers in Microbiology, 2018, 9, 2120.	3.5	43
78	Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science, 2018, 362, 80-83.	12.6	433
79	Tree species richness and fungi in freshly fallen leaf litter: Unique patterns of fungal species composition and their implications for enzymatic decomposition. Soil Biology and Biochemistry, 2018, 127, 120-126.	8.8	33
80	The Dark Side of Animal Phenology. Trends in Ecology and Evolution, 2018, 33, 898-901.	8.7	33
81	Experimental Evidence of Functional Group-Dependent Effects of Tree Diversity on Soil Fungi in Subtropical Forests. Frontiers in Microbiology, 2018, 9, 2312.	3.5	28
82	Biodiversity across trophic levels drives multifunctionality in highly diverse forests. Nature Communications, 2018, 9, 2989.	12.8	169
83	First insights into the living groundwater mycobiome of the terrestrial biogeosphere. Water Research, 2018, 145, 50-61.	11.3	26
84	Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere, 2018, 9, e02226.	2.2	49
85	Bacteria inhabiting deadwood of 13 tree species are heterogeneously distributed between sapwood and heartwood. Environmental Microbiology, 2018, 20, 3744-3756.	3.8	44
86	Effects of plant-symbiotic relationships on the living soil microbial community and microbial necromass in a long-term agro-ecosystem. Science of the Total Environment, 2017, 581-582, 756-765.	8.0	21
87	Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. Forest Ecology and Management, 2017, 391, 86-95.	3.2	151
88	On the combined effect of soil fertility and topography on tree growth in subtropical forest ecosystems—a study from SE China. Journal of Plant Ecology, 2017, 10, 111-127.	2.3	102
89	Contrasting effects of grassland management modes on species-abundance distributions of multiple groups. Agriculture, Ecosystems and Environment, 2017, 237, 143-153.	5.3	26
90	Leaf litter diversity alters microbial activity, microbial abundances, and nutrient cycling in a subtropical forest ecosystem. Biogeochemistry, 2017, 134, 163-181.	3.5	36

#	Article	IF	CITATIONS
91	Toward a methodical framework for comprehensively assessing forest multifunctionality. Ecology and Evolution, 2017, 7, 10652-10674.	1.9	41
92	Biodiversity effects on ecosystem functioning in a 15-year grassland experiment: Patterns, mechanisms, and open questions. Basic and Applied Ecology, 2017, 23, 1-73.	2.7	307
93	Preservation of nucleic acids by freeze-drying for next generation sequencing analyses of soil microbial communities. Journal of Plant Ecology, 2017, 10, 81-90.	2.3	36
94	Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Scientific Reports, 2017, 7, 4222.	3.3	38
95	Characterization of Unexplored Deadwood Mycobiome in Highly Diverse Subtropical Forests Using Culture-independent Molecular Technique. Frontiers in Microbiology, 2017, 8, 574.	3.5	35
96	Archaeal Diversity and CO ₂ Fixers in Carbonate-/Siliciclastic-Rock Groundwater Ecosystems. Archaea, 2017, 2017, 1-13.	2.3	28
97	Inferring interactions in complex microbial communities from nucleotide sequence data and environmental parameters. PLoS ONE, 2017, 12, e0173765.	2.5	15
98	Superimposed Pristine Limestone Aquifers with Marked Hydrochemical Differences Exhibit Distinct Fungal Communities. Frontiers in Microbiology, 2016, 7, 666.	3.5	24
99	Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Frontiers in Microbiology, 2016, 7, 1446.	3.5	462
100	Resource Partitioning between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil. Frontiers in Microbiology, 2016, 7, 1524.	3.5	143
101	Fine Spatial Scale Variation of Soil Microbial Communities under European Beech and Norway Spruce. Frontiers in Microbiology, 2016, 7, 2067.	3.5	74
102	Land-use intensification causes multitrophic homogenization of grassland communities. Nature, 2016, 540, 266-269.	27.8	404
103	Transcriptome analysis in oak uncovers a strong impact of endogenous rhythmic growth on the interaction with plant-parasitic nematodes. BMC Genomics, 2016, 17, 627.	2.8	24
104	Locally rare species influence grassland ecosystem multifunctionality. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150269.	4.0	117
105	Reinoculation elucidates mechanisms of bacterial community assembly in soil and reveals undetected microbes. Biology and Fertility of Soils, 2016, 52, 1073-1083.	4.3	13
106	Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 2016, 536, 456-459.	27.8	526
107	Life in leaf litter: novel insights into community dynamics of bacteria and fungi during litter decomposition. Molecular Ecology, 2016, 25, 4059-4074.	3.9	297
108	Tree species, tree genotypes and tree genotypic diversity levels affect microbe-mediated soil ecosystem functions in a subtropical forest. Scientific Reports, 2016, 6, 36672.	3.3	27

#	Article	IF	CITATIONS
109	Divergent habitat filtering of root and soil fungal communities in temperate beech forests. Scientific Reports, 2016, 6, 31439.	3.3	84
110	Correlations between the composition of modular fungal communities and litter decomposition-associated ecosystem functions. Fungal Ecology, 2016, 22, 106-114.	1.6	46
111	Are correlations between deadwood fungal community structure, wood physico-chemical properties and lignin-modifying enzymes stable across different geographical regions?. Fungal Ecology, 2016, 22, 98-105.	1.6	47
112	Endogenous rhythmic growth, a trait suitable for the study of interplays between multitrophic interactions and tree development. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 19, 40-48.	2.7	20
113	Soil and tree species traits both shape soil microbial communities during early growth of Chinese subtropical forests. Soil Biology and Biochemistry, 2016, 96, 180-190.	8.8	80
114	Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths. Science of the Total Environment, 2016, 545-546, 30-39.	8.0	16
115	Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Diversity, 2016, 77, 367-379.	12.3	140
116	Spatial Distribution of Fungal Communities in an Arable Soil. PLoS ONE, 2016, 11, e0148130.	2.5	63
117	A pyrosequencing insight into sprawling bacterial diversity and community dynamics in decaying deadwood logs of Fagus sylvatica and Picea abies. Scientific Reports, 2015, 5, 9456.	3.3	101
118	Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium. BMC Genomics, 2015, 16, 658.	2.8	28
119	Forest Management Type Influences Diversity and Community Composition of Soil Fungi across Temperate Forest Ecosystems. Frontiers in Microbiology, 2015, 6, 1300.	3.5	136
120	Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. Journal of Experimental Botany, 2015, 66, 7113-7127.	4.8	27
121	Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales. Nature Communications, 2015, 6, 10169.	12.8	37
122	Effects of Forest Management Practices in Temperate Beech Forests on Bacterial and Fungal Communities Involved in Leaf Litter Degradation. Microbial Ecology, 2015, 69, 905-913.	2.8	56
123	Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology, 2015, 96, 1492-1501.	3.2	75
124	Resource Type and Availability Regulate Fungal Communities Along Arable Soil Profiles. Microbial Ecology, 2015, 70, 390-399.	2.8	32
125	Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics, 2015, 47, 410-415.	21.4	870
126	The oak gene expression atlas: insights into Fagaceae genome evolution and the discovery of genes regulated during bud dormancy release. BMC Genomics, 2015, 16, 112.	2.8	49

#	Article	IF	CITATIONS
127	Carbon input and crop-related changes in microbial biomarker levels strongly affect the turnover and composition of soil organic carbon. Soil Biology and Biochemistry, 2015, 85, 39-50.	8.8	37
128	pH as a Driver for Ammonia-Oxidizing Archaea in Forest Soils. Microbial Ecology, 2015, 69, 879-883.	2.8	95
129	Community assembly of ectomycorrhizal fungi along a subtropical secondary forest succession. New Phytologist, 2015, 205, 771-785.	7.3	107
130	Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. Journal of Plant Physiology, 2015, 172, 55-61.	3.5	46
131	Influence of Commonly Used Primer Systems on Automated Ribosomal Intergenic Spacer Analysis of Bacterial Communities in Environmental Samples. PLoS ONE, 2015, 10, e0118967.	2.5	18
132	Network Analysis Reveals Ecological Links between N-Fixing Bacteria and Wood-Decaying Fungi. PLoS ONE, 2014, 9, e88141.	2.5	129
133	Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical <scp>C</scp> hina. Methods in Ecology and Evolution, 2014, 5, 74-89.	5.2	232
134	Interannual variation in land-use intensity enhances grassland multidiversity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 308-313.	7.1	243
135	Insights into organohalide respiration and the versatile catabolism of <scp><i>S</i></scp> <i>ulfurospirillum multivorans</i> gained from comparative genomics and physiological studies. Environmental Microbiology, 2014, 16, 3562-3580.	3.8	76
136	Comparing fungal richness and community composition in coarse woody debris in Central European beech forests under three types of management. Mycological Progress, 2014, 13, 959-964.	1.4	31
137	Changes within a single land-use category alter microbial diversity and community structure: Molecular evidence from wood-inhabiting fungi in forest ecosystems. Journal of Environmental Management, 2014, 139, 109-119.	7.8	61
138	Short-term bioavailability of carbon in soil organic matter fractions of different particle sizes and densities in grassland ecosystems. Science of the Total Environment, 2014, 497-498, 29-37.	8.0	53
139	Sweets for the foe – effects of nonstructural carbohydrates on the susceptibility of Quercus robur against Phytophthora quercina. New Phytologist, 2014, 203, 1282-1290.	7.3	19
140	Drivers for ammonia-oxidation along a land-use gradient in grassland soils. Soil Biology and Biochemistry, 2014, 69, 179-186.	8.8	12
141	Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecology and Evolution, 2014, 4, 3514-3524.	1.9	697
142	Effects of longâ€ŧerm differential fertilization on eukaryotic microbial communities in an arable soil: a multiple barcoding approach. Molecular Ecology, 2014, 23, 3341-3355.	3.9	163
143	Host plant richness explains diversity of ectomycorrhizal fungi: Response to the comment of Tedersoo <i>etÂal</i> . (2014). Molecular Ecology, 2014, 23, 996-999.	3.9	6
144	<i>Streptomyces</i> -Induced Resistance Against Oak Powdery Mildew Involves Host Plant Responses in Defense, Photosynthesis, and Secondary Metabolism Pathways. Molecular Plant-Microbe Interactions, 2014, 27, 891-900.	2.6	101

#	Article	IF	CITATIONS
145	Uncoupling of microbial community structure and function in decomposing litter across beech forest ecosystems in Central Europe. Scientific Reports, 2014, 4, 7014.	3.3	65
146	Influence of Different Forest System Management Practices on Leaf Litter Decomposition Rates, Nutrient Dynamics and the Activity of Ligninolytic Enzymes: A Case Study from Central European Forests. PLoS ONE, 2014, 9, e93700.	2.5	65
147	Host plant genusâ€level diversity is the best predictor of ectomycorrhizal fungal diversity in a Chinese subtropical forest. Molecular Ecology, 2013, 22, 3403-3414.	3.9	133
148	High plant species richness indicates management-related disturbances rather than the conservation status of forests. Basic and Applied Ecology, 2013, 14, 496-505.	2.7	102
149	Functionally and phylogenetically diverse plant communities key to soil biota. Ecology, 2013, 94, 1878-1885.	3.2	80
150	Land use and host neighbor identity effects on arbuscular mycorrhizal fungal community composition in focal plant rhizosphere. Biodiversity and Conservation, 2013, 22, 2193-2205.	2.6	37
151	Genome sequences of two dehalogenation specialists <i>- Dehalococcoides mccartyi</i> strains BTF08 and DCMB5 enriched from the highly polluted Bitterfeld region. FEMS Microbiology Letters, 2013, 343, 101-104.	1.8	73
152	Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiology, 2013, 13, 205.	3.3	39
153	OakContig <scp>DF</scp> 159.1, a reference library for studying differential gene expression in <i>Quercus robur</i> during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytologist, 2013, 199, 529-540.	7.3	97
154	Interacting effects of fertilization, mowing and grazing on plant species diversity of 1500 grasslands in Germany differ between regions. Basic and Applied Ecology, 2013, 14, 126-136.	2.7	177
155	Actinobacteria may influence white truffle (Tuber magnatum Pico) nutrition, ascocarp degradation and interactions with other soil fungi. Fungal Ecology, 2013, 6, 527-538.	1.6	27
156	Septoglomus fuscum and S. furcatum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia, 2013, 105, 670-680.	1.9	27
157	Recovery of soil unicellular eukaryotes: An efficiency and activity analysis on the single cell level. Journal of Microbiological Methods, 2013, 95, 463-469.	1.6	16
158	Forest Age and Plant Species Composition Determine the Soil Fungal Community Composition in a Chinese Subtropical Forest. PLoS ONE, 2013, 8, e66829.	2.5	53
159	Effect of raw humus under two adult Scots pine stands on ectomycorrhization, nutritional status, nitrogen uptake, phosphorus uptake and growth of Pinus sylvestris seedlings. Tree Physiology, 2012, 32, 36-48.	3.1	3
160	Soil organisms shape the competition between grassland plant species. Oecologia, 2012, 170, 1021-1032.	2.0	21
161	The arbuscular mycorrhizal <i>Paraglomus majewskii</i> sp. nov. represents a distinct basal lineage in Glomeromycota. Mycologia, 2012, 104, 148-156.	1.9	50
162	General Relationships between Abiotic Soil Properties and Soil Biota across Spatial Scales and Different Land-Use Types. PLoS ONE, 2012, 7, e43292.	2.5	142

#	Article	IF	CITATIONS
163	Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genetics and Molecular Biology, 2012, 35, 466-473.	1.3	9
164	Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium. ISME Journal, 2012, 6, 2291-2301.	9.8	109
165	Relationships Between Soil Microorganisms, Plant Communities, and Soil Characteristics in Chinese Subtropical Forests. Ecosystems, 2012, 15, 624-636.	3.4	42
166	A quantitative index of land-use intensity in grasslands: Integrating mowing, grazing and fertilization. Basic and Applied Ecology, 2012, 13, 207-220.	2.7	325
167	Effects of resource availability and quality on the structure of the micro-food web of an arable soil across depth. Soil Biology and Biochemistry, 2012, 50, 1-11.	8.8	60
168	Impact of the plant community composition on labile soil organic carbon, soil microbial activity and community structure in semi-natural grassland ecosystems of different productivity. Plant and Soil, 2012, 352, 253-265.	3.7	74
169	Differences in Soil Fungal Communities between European Beech (Fagus sylvatica L.) Dominated Forests Are Related to Soil and Understory Vegetation. PLoS ONE, 2012, 7, e47500.	2.5	93
170	Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81, 25-41.	5.4	222
171	Fungal communities in bulk soil and stone compartments of different forest and soil types as revealed by a barcoding ITS rDNA and a functional laccase encoding gene marker. Soil Biology and Biochemistry, 2011, 43, 1292-1299.	8.8	22
172	Arbuscular mycorrhizas in phosphate-polluted soil: interrelations between root colonization and nitrogen. Plant and Soil, 2011, 343, 379-392.	3.7	31
173	Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biology and Fertility of Soils, 2010, 46, 215-225.	4.3	87
174	Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environmental Pollution, 2010, 158, 2757-2765.	7.5	152
175	Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic and Applied Ecology, 2010, 11, 473-485.	2.7	649
176	Response of recalcitrant soil substances to reduced N deposition in a spruce forest soil: integrating laccase-encoding genes and lignin decomposition. FEMS Microbiology Ecology, 2010, 73, no-no.	2.7	18
177	Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 2010, 468, 553-556.	27.8	786
178	Diversity Promotes Temporal Stability across Levels of Ecosystem Organization in Experimental Grasslands. PLoS ONE, 2010, 5, e13382.	2.5	95
179	Horizon-Specific Bacterial Community Composition of German Grassland Soils, as Revealed by Pyrosequencing-Based Analysis of 16S rRNA Genes. Applied and Environmental Microbiology, 2010, 76, 6751-6759.	3.1	312
180	TaqMan Real-Time PCR Assays To Assess Arbuscular Mycorrhizal Responses to Field Manipulation of Grassland Biodiversity: Effects of Soil Characteristics, Plant Species Richness, and Functional Traits. Applied and Environmental Microbiology, 2010, 76, 3765-3775.	3.1	72

#	Article	IF	CITATIONS
181	Glomus africanumandG. iranicum, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycologia, 2010, 102, 1450-1462.	1.9	31
182	<i>Glomus indicum,</i> a new arbuscular mycorrhizal fungus. Botany, 2010, 88, 132-143.	1.0	26
183	Impacts of earthworms and arbuscular mycorrhizal fungi (Glomus intraradices) on plant performance are not interrelated. Soil Biology and Biochemistry, 2009, 41, 561-567.	8.8	74
184	Temporal changes in diversity and expression patterns of fungal laccase genes within the organic horizon of a brown forest soil. Soil Biology and Biochemistry, 2009, 41, 1380-1389.	8.8	51
185	Interactive effects of mycorrhizae and a root hemiparasite on plant community productivity and diversity. Oecologia, 2009, 159, 191-205.	2.0	33
186	Specific bottom–up effects of arbuscular mycorrhizal fungi across a plant–herbivore–parasitoid system. Oecologia, 2009, 160, 267-277.	2.0	86
187	Extracellular laccase activity and transcript levels of putative laccase genes during removal of the xenoestrogen technical nonylphenol by the aquatic hyphomycete <i>Clavariopsis aquatica</i> . FEMS Microbiology Letters, 2008, 288, 47-54.	1.8	18
188	Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biology and Biochemistry, 2008, 40, 638-648.	8.8	104
189	Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. Journal of Microbiological Methods, 2008, 75, 19-24.	1.6	77
190	Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution, 2008, 156, 1277-1283.	7.5	89
191	Arbuscular mycorrhizal abundance in contaminated soils around a zinc and lead deposit. European Journal of Soil Biology, 2008, 44, 381-391.	3.2	51
192	Soil arbon preservation through habitat constraints and biological limitations on decomposer activity. Journal of Plant Nutrition and Soil Science, 2008, 171, 27-35.	1.9	156
193	Why and How Using Micropropagated Trees rather than Germinations for Controlled Synthesis of Ectomycorrhizal Associations?. , 2008, , 439-465.		6
194	Interactions of Microbes with Genetically Modified Plants. , 2008, , 179-196.		0
195	Paraglomus laccatum comb. nov a new member of Paraglomeraceae (Glomeromycota). Nova Hedwigia, 2007, 84, 395-407.	0.4	10
196	Detection, quantification and identification of fungal extracellular laccases using polyclonal antibody and mass spectrometry. Enzyme and Microbial Technology, 2007, 41, 694-701.	3.2	17
197	Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environmental Microbiology, 2007, 9, 1930-1938.	3.8	218
198	Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiology Ecology, 2007, 61, 153-163.	2.7	65

#	Article	IF	CITATIONS
199	Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environmental and Experimental Botany, 2007, 61, 117-123.	4.2	52
200	Cross talks at the morphogenetic, physiological and gene regulation levels between the mycobiont Piloderma croceum and oak microcuttings (Quercus robur) during formation of ectomycorrhizas. Phytochemistry, 2007, 68, 52-67.	2.9	29
201	Differential expression of two class III chitinases in two types of roots of Quercus robur during pre-mycorrhizal interactions with Piloderma croceum. Mycorrhiza, 2006, 16, 219-223.	2.8	21
202	Rationalizing molecular analysis of field-collected roots for assessing diversity of arbuscular mycorrhizal fungi: to pool, or not to pool, that is the question. Mycorrhiza, 2006, 16, 525-531.	2.8	46
203	Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. Planta, 2006, 225, 331-340.	3.2	28
204	Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity. Biology and Fertility of Soils, 2006, 42, 286-298.	4.3	72
205	A molecular phylogeny of Hebeloma species from Europe. Mycological Research, 2006, 110, 369-380.	2.5	26
206	Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycological Research, 2006, 110, 555-566.	2.5	31
207	Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphateâ€polluted field site. New Phytologist, 2005, 166, 981-992.	7.3	117
208	Oribatid Mites as Potential Vectors for Soil Microfungi: Study of Mite-Associated Fungal Species. Microbial Ecology, 2005, 50, 518-528.	2.8	74
209	Patchiness and Spatial Distribution of Laccase Genes of Ectomycorrhizal, Saprotrophic, and Unknown Basidiomycetes in the Upper Horizons of a Mixed Forest Cambisol. Microbial Ecology, 2005, 50, 570-579.	2.8	94
210	Diversity of the ectomycorrhiza community at a uranium mining heap. Biology and Fertility of Soils, 2005, 41, 439-446.	4.3	28
211	Tracing the Behaviour of Plants in Ecosystems: How Can Molecular Ecology Help?. , 2005, , 392-408.		Ο
212	What Are Soils?. , 2005, , 3-17.		31
213	A molecular method to evaluate basidiomycete laccase gene expression in forest soils. Geoderma, 2005, 128, 18-27.	5.1	71
214	Diversity of arbuscular mycorrhizal fungi in grassland spontaneously developed on area polluted by a fertilizer plant. Environmental Pollution, 2005, 135, 255-266.	7.5	57
215	Species diversity within the group (Ascomycota: Morchellaceae) in Germany and France. Organisms Diversity and Evolution, 2005, 5, 101-107.	1.6	24
216	Identification of premycorrhizaâ€related plant genes in the association between Quercus robur and Piloderma croceum. New Phytologist, 2004, 163, 149-157.	7.3	31

#	Article	IF	CITATIONS
217	Diversity of laccase genes from basidiomycetes in a forest soil. Soil Biology and Biochemistry, 2004, 36, 1025-1036.	8.8	136
218	Characterization and spatial distribution of ectomycorrhizas colonizing aspen clones released in an experimental field. Mycorrhiza, 2004, 14, 295-306.	2.8	64
219	Diversity of and yeasts (Basidiomycota) inhabiting arbuscular mycorrhizal roots or spores. FEMS Yeast Research, 2004, 4, 597-603.	2.3	60
220	Manipulation of the onset of ectomycorrhiza formation by indole-3-acetic acid, activated charcoal or relative humidity in the association between oak microcuttings and Piloderma croceum: influence on plant development and photosynthesis. Journal of Plant Physiology, 2004, 161, 509-517.	3.5	61
221	Soil nematodes associated with the mammal pathogenic fungal genus Malassezia (Basidiomycota:) Tj ETQq1 1 0	.784314 r 4.3	gBJ_/Overlo
222	Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field. Mycorrhiza, 2003, 13, 191-198.	2.8	86
223	Mycorrhizal colonization of transgenic aspen in a field trial. Planta, 2002, 214, 653-660.	3.2	61
224	Shifts in physiological capabilities of the microbiota during the decomposition of leaf litter in a black alder (Alnus glutinosa (Gaertn.) L.) forest. Soil Biology and Biochemistry, 2001, 33, 921-930.	8.8	80
225	Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiology Reviews, 2000, 24, 601-614.	8.6	98
226	Identification and differentiation of mycorrhizal isolates of black alder by sequence analysis of the ITS region. Mycorrhiza, 2000, 10, 87-93.	2.8	21
227	Characteristics and energetic strategies of the rhizosphere in ecosystems of the Bornhöved Lake district. Applied Soil Ecology, 2000, 15, 201-210.	4.3	27
228	Diversity of the internal transcribed spacer of rDNA in morels. Canadian Journal of Microbiology, 1999, 45, 769-778.	1.7	19
229	Microbial Processes and Features of the Microbiota in Histosols From a Black Alder (Alnus glutinosa) Tj ETQq1 1	0.784314 2.0	rg&T /Over
230	A gnotobiotic culture system with oak microcuttings to study specific effects of mycobionts on plant morphology before, and in the early phase of, ectomycorrhiza formation by Paxillus involutus and Piloderma croceum. New Phytologist, 1998, 138, 203-212.	7.3	52
231	Morphological and anatomical characterisation of black alder Alnus glutinosa (L.) Gaertn. ectomycorrhizas. Mycorrhiza, 1997, 7, 201-216.	2.8	43
232	Initiation of [36 Cl]hexachlorobenzene dechlorination in three different soils under artificially induced anaerobic conditions. Applied Microbiology and Biotechnology, 1997, 48, 115-120.	3.6	14
233	Enhancing the mineralization of [U- 14 C]dibenzo- p -dioxin in three different soils by addition of organic substrate or inoculation with white-rot fungi. Applied Microbiology and Biotechnology, 1997, 48, 665-670.	3.6	18
234	Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS). New Phytologist, 1997, 137, 357-369.	7.3	82

#	Article	IF	CITATIONS
235	DNA polymorphism in morels: PCR/RFLP analysis of the ribosomal DNA spacers and microsatellite-primed PCR. Mycological Research, 1996, 100, 63-71.	2.5	72
236	Polymorphism in morels: isozyme electrophoretic analysis. Canadian Journal of Microbiology, 1996, 42, 819-827.	1.7	9
237	Ectomycorrhizal types and endobacteria associated with ectomycorrhizas of Morchella elata (Fr.) Boudier with Picea abies (L.) Karst. Mycorrhiza, 1994, 4, 223-232.	2.8	27
238	Mycelial differentiation of Morchella esculenta in pure culture. Mycological Research, 1993, 97, 136-140.	2.5	20
239	Synthesis of two types of association between Morchella esculenta and Picea abies under controlled culture conditions. Journal of Plant Physiology, 1993, 141, 12-17.	3.5	26
240	Mycosporins and related compounds in field and cultured mycelial structures of Morchella esculenta. Mycological Research, 1991, 95, 752-754.	2.5	15
241	The association of Morchella rotunda (Pers.) Boudier with roots of Picea abies (L.) Karst. New Phytologist, 1990, 116, 425-430.	7.3	33
242	Field observations on relations between living roots and Morchella Rotunda (Pers.) Boudier. Agriculture, Ecosystems and Environment, 1990, 28, 47-48.	5.3	1
243	Field observations on growth and development of <i>Morchella rotunda</i> and <i>Mitrophora semilibera</i> in relation to forest soil temperature. Canadian Journal of Botany, 1989, 67, 589-593.	1.1	20
244	Association between living roots and ascocarps of Morchella rotunda. Transactions of the British Mycological Society, 1987, 89, 249-252.	0.6	32
245	Biotic interactions, community assembly, and eco-evolutionary dynamics as drivers of long-term biodiversity–ecosystem functioning relationships. Research Ideas and Outcomes, 0, 5, .	1.0	23
246	Microbial diversity-ecosystem function relationships across environmental gradients. Research Ideas and Outcomes, 0, 6, .	1.0	8
247	Biotic Interactions as Mediators of Context-Dependent Biodiversity-Ecosystem Functioning Relationships. Research Ideas and Outcomes, 0, 8, .	1.0	10
248	Water Deficit History Selects Plant Beneficial Soil Bacteria Differently Under Conventional and Organic Farming. Frontiers in Microbiology, 0, 13, .	3.5	6
249	Effects of Tree Composition and Soil Depth on Structure and Functionality of Belowground Microbial Communities in Temperate European Forests. Frontiers in Microbiology, 0, 13, .	3.5	11