List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3526810/publications.pdf Version: 2024-02-01

ΗΛΙΛΝ ΕΠ

#	Article	IF	CITATIONS
1	Acquisition of taxane resistance by p53 inactivation in ovarian cancer cells. Acta Pharmacologica Sinica, 2022, , .	6.1	4
2	Systematic discovery of mutation-directed neo-protein-protein interactions in cancer. Cell, 2022, 185, 1974-1985.e12.	28.9	17
3	YAP1 Expression in SCLC Defines a Distinct Subtype With T-cell–Inflamed Phenotype. Journal of Thoracic Oncology, 2021, 16, 464-476.	1.1	93
4	Hypomorph mutation-directed small-molecule protein-protein interaction inducers to restore mutant SMAD4-suppressed TGF-β signaling. Cell Chemical Biology, 2021, 28, 636-647.e5.	5.2	18
5	Pharmacological inhibition of noncanonical EED-EZH2 signaling overcomes chemoresistance in prostate cancer. Theranostics, 2021, 11, 6873-6890.	10.0	21
6	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	28.9	135
7	Functional and molecular effects of TNF-α on human iPSC-derived cardiomyocytes. Stem Cell Research, 2021, 52, 102218.	0.7	20
8	Discovery of the first chemical tools to regulate MKK3-mediated MYC activation in cancer. Bioorganic and Medicinal Chemistry, 2021, 45, 116324.	3.0	8
9	A time-resolved fluorescence resonance energy transfer screening assay for discovery of protein-protein interaction modulators. STAR Protocols, 2021, 2, 100804.	1.2	4
10	A CRISPR/Cas9-Engineered <i>ARID1A</i> -Deficient Human Gastric Cancer Organoid Model Reveals Essential and Nonessential Modes of Oncogenic Transformation. Cancer Discovery, 2021, 11, 1562-1581.	9.4	75
11	Down-regulation of 14-3-3zeta reduces proliferation and increases apoptosis in human glioblastoma. Cancer Gene Therapy, 2020, 27, 399-411.	4.6	12
12	NSD3S stabilizes MYC through hindering its interaction with FBXW7. Journal of Molecular Cell Biology, 2020, 12, 438-447.	3.3	8
13	High expression of MKK3 is associated with worse clinical outcomes in African American breast cancer patients. Journal of Translational Medicine, 2020, 18, 334.	4.4	19
14	Melphalan induces cardiotoxicity through oxidative stress in cardiomyocytes derived from human induced pluripotent stem cells. Stem Cell Research and Therapy, 2020, 11, 470.	5.5	14
15	Human beige adipocytes for drug discovery and cell therapy in metabolic diseases. Nature Communications, 2020, 11, 2758.	12.8	40
16	14-3-3γ, a novel regulator of the large-conductance Ca ²⁺ -activated K ⁺ channel. American Journal of Physiology - Renal Physiology, 2020, 319, F52-F62.	2.7	3
17	Subpopulation targeting of pyruvate dehydrogenase and GLUT1 decouples metabolic heterogeneity during collective cancer cell invasion. Nature Communications, 2020, 11, 1533.	12.8	65
18	Online informatics resources to facilitate cancer target and chemical probe discovery. RSC Medicinal Chemistry, 2020, 11, 611-624.	3.9	3

#	Article	IF	CITATIONS
19	Development of a miniaturized 3D organoid culture platform for ultra-high-throughput screening. Journal of Molecular Cell Biology, 2020, 12, 630-643.	3.3	61
20	Acetylation regulates ribonucleotide reductase activity and cancer cell growth. Nature Communications, 2019, 10, 3213.	12.8	49
21	THER-17. BRAF-V600E DEGRADATION AS A THERAPEUTIC STRATEGY IN BRAF-V600E MUTANT GLIOMAS. Neuro-Oncology, 2019, 21, ii117-ii117.	1.2	0
22	Identification of higenamine as a novel α ₁ â€adrenergic receptor antagonist. Phytotherapy Research, 2019, 33, 708-717.	5.8	12
23	HTiP: High-Throughput Immunomodulator Phenotypic Screening Platform to Reveal IAP Antagonists as Anti-cancer Immune Enhancers. Cell Chemical Biology, 2019, 26, 331-339.e3.	5.2	33
24	Development of a Time-Resolved Fluorescence Resonance Energy Transfer Ultrahigh-Throughput Screening Assay for Targeting the NSD3 and MYC Interaction. Assay and Drug Development Technologies, 2018, 16, 96-106.	1.2	12
25	The OncoPPi Portal: an integrative resource to explore and prioritize protein–protein interactions for cancer target discovery. Bioinformatics, 2018, 34, 1183-1191.	4.1	41
26	Trifunctional High-Throughput Screen Identifies Promising Scaffold To Inhibit Grp94 and Treat Myocilin-Associated Glaucoma. ACS Chemical Biology, 2018, 13, 933-941.	3.4	17
27	Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nature Biotechnology, 2018, 36, 170-178.	17.5	120
28	BAP1 induces cell death via interaction with 14-3-3 in neuroblastoma. Cell Death and Disease, 2018, 9, 458.	6.3	30
29	Polyethylene-glycol-coated gold nanoparticles improve cardiac function after myocardial infarction in mice. Canadian Journal of Physiology and Pharmacology, 2018, 96, 1318-1327.	1.4	23
30	Large tumor suppressor 2, LATS2, activates JNK in a kinase-independent mechanism through ASK1. Journal of Molecular Cell Biology, 2018, 10, 549-558.	3.3	9
31	Discovery of Mcl-1 inhibitors from integrated high throughput and virtual screening. Scientific Reports, 2018, 8, 10210.	3.3	13
32	In vivo screening identifies GATAD2B as a metastasis driver in KRAS-driven lung cancer. Nature Communications, 2018, 9, 2732.	12.8	33
33	Ophiopogonin B suppresses the metastasis and angiogenesis of A549 cells in2vitro and in2vivo by inhibiting the EphA2/Akt signaling pathway. Oncology Reports, 2018, 40, 1339-1347.	2.6	19
34	Repositioning Dopamine D2 Receptor Agonist Bromocriptine to Enhance Docetaxel Chemotherapy and Treat Bone Metastatic Prostate Cancer. Molecular Cancer Therapeutics, 2018, 17, 1859-1870.	4.1	19
35	AKT1, LKB1, and YAP1 Revealed as MYC Interactors with NanoLuc-Based Protein-Fragment Complementation Assay. Molecular Pharmacology, 2017, 91, 339-347.	2.3	27
36	The OncoPPi network of cancer-focused protein–protein interactions to inform biological insights and therapeutic strategies. Nature Communications, 2017, 8, 14356.	12.8	151

#	Article	lF	CITATIONS
37	OncoPPi-informed discovery of mitogen-activated protein kinase kinase 3 as a novel binding partner of c-Myc. Oncogene, 2017, 36, 5852-5860.	5.9	28
38	Co-amplification of phosphoinositide 3-kinase enhancer A and cyclin-dependent kinase 4 triggers glioblastoma progression. Oncogene, 2017, 36, 4562-4572.	5.9	20
39	Screening and Functional Profiling of Small-Molecule HIV-1 Entry and Fusion Inhibitors. Assay and Drug Development Technologies, 2017, 15, 53-63.	1.2	6
40	Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer's disease. Nature Communications, 2017, 8, 14740.	12.8	96
41	Regulation of ASK1 signaling by scaffold and adaptor proteins. Advances in Biological Regulation, 2017, 66, 23-30.	2.3	7
42	Study on Inhibitory Effect of MaiMenDong Decoction and WeiJing Decoction Combination with Cisplatin on NCI-A549 Xenograft in Nude Mice and Its Mechanism. Journal of Cancer, 2017, 8, 2449-2455.	2.5	10
43	PRAS40 promotes NF-lºB transcriptional activity through association with p65. Oncogenesis, 2017, 6, e381-e381.	4.9	21
44	Targeting adhesion signaling in KRAS, LKB1 mutant lung adenocarcinoma. JCI Insight, 2017, 2, e90487.	5.0	36
45	Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling. Oncotarget, 2017, 8, 28359-28372.	1.8	20
46	LKB1 kinase-dependent and -independent defects disrupt polarity and adhesion signaling to drive collagen remodeling during invasion. Molecular Biology of the Cell, 2016, 27, 1069-1084.	2.1	26
47	Ophiopogonin B induces apoptosis, mitotic catastrophe and autophagy in A549 cells. International Journal of Oncology, 2016, 49, 316-324.	3.3	35
48	Discovery of Dual Inhibitors of MDM2 and XIAP for Cancer Treatment. Cancer Cell, 2016, 30, 623-636.	16.8	68
49	Structural Basis for KDM5A Histone Lysine Demethylase Inhibition by Diverse Compounds. Cell Chemical Biology, 2016, 23, 769-781.	5.2	80
50	BRET: NanoLuc-Based Bioluminescence Resonance Energy Transfer Platform to Monitor Protein-Protein Interactions in Live Cells. Methods in Molecular Biology, 2016, 1439, 263-271.	0.9	21
51	Enabling systematic interrogation of protein–protein interactions in live cells with a versatile ultra-high-throughput biosensor platform. Journal of Molecular Cell Biology, 2016, 8, 271-281.	3.3	27
52	Characterization of a Linked Jumonji Domain of the KDM5/JARID1 Family of Histone H3 Lysine 4 Demethylases. Journal of Biological Chemistry, 2016, 291, 2631-2646.	3.4	95
53	2-Deoxyglucose Suppresses ERK Phosphorylation in LKB1 and Ras Wild-Type Non-Small Cell Lung Cancer Cells. PLoS ONE, 2016, 11, e0168793.	2.5	24
54	LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions. Oncotarget, 2016, 7, 2519-2531.	1.8	7

#	Article	IF	CITATIONS
55	Glycyrrhetinic acid induces G1-phase cell cycle arrest in human non-small cell lung cancer cells through endoplasmic reticulum stress pathway. International Journal of Oncology, 2015, 46, 981-988.	3.3	64
56	Platycodin-D Induced Autophagy in Non-Small Cell Lung Cancer Cells via PI3K/Akt/mTOR and MAPK Signaling Pathways. Journal of Cancer, 2015, 6, 623-631.	2.5	107
57	A Translational, Pharmacodynamic, and Pharmacokinetic Phase IB Clinical Study of Everolimus in Resectable Non–Small Cell Lung Cancer. Clinical Cancer Research, 2015, 21, 1859-1868.	7.0	22
58	Stress Induces p38 MAPK-Mediated Phosphorylation and Inhibition of Drosha-Dependent Cell Survival. Molecular Cell, 2015, 57, 721-734.	9.7	72
59	Downregulation of urea transporter UT-A1 activity by 14-3-3 protein. American Journal of Physiology - Renal Physiology, 2015, 309, F71-F78.	2.7	12
60	Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway. Oncogene, 2015, 34, 1487-1498.	5.9	49
61	Cables1 Complex Couples Survival Signaling to the Cell Death Machinery. Cancer Research, 2015, 75, 147-158.	0.9	35
62	Cables1 controls p21/Cip1 protein stability by antagonizing proteasome subunit alpha type 3. Oncogene, 2015, 34, 2538-2545.	5.9	42
63	Combination of heat shock protein 90 and focal adhesion kinase inhibitors synergistically inhibits the growth of non-small cell lung cancer cells. Oncoscience, 2015, 2, 765-776.	2.2	12
64	Connecting Cell Death and Survival Pathways via the ASK1/IKKβ Interaction. FASEB Journal, 2015, 29, 934.5.	0.5	0
65	Transcriptional Regulation of YWHAZ, the Gene Encoding 14-3-3ζ. PLoS ONE, 2014, 9, e93480.	2.5	17
66	Autophagy and Apoptosis in Hepatocellular Carcinoma Induced by EF25-(GSH)2: A Novel Curcumin Analog. PLoS ONE, 2014, 9, e107876.	2.5	43
67	The Emory Chemical Biology Discovery Center: Leveraging Academic Innovation to Advance Novel Targets through HTS and Beyond. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 290-296.	1.1	4
68	A Time-Resolved Fluorescence Resonance Energy Transfer Assay for High-Throughput Screening of 14-3-3 Protein–Protein Interaction Inhibitors. Assay and Drug Development Technologies, 2013, 11, 367-381.	1.2	27
69	Targeting protein–protein interactions as an anticancer strategy. Trends in Pharmacological Sciences, 2013, 34, 393-400.	8.7	307
70	Screening of novel small molecule inhibitors of NFâ€₽̂B activation in lung cancer. FASEB Journal, 2013, 27, lb581.	0.5	0
71	Reply to Röglin et al.: Synchrotron radiation-induced covalent modification of 14-3-3ζ by diazene compounds containing pyridoxal phosphate. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, .	7.1	2
72	A phase I and pharmacokinetic study of multiple schedules of ganetespib (STA-9090), a heat shock protein 90 inhibitor, in combination with docetaxel for subjects with advanced solid tumor malignancies Journal of Clinical Oncology, 2012, 30, 3094-3094.	1.6	7

#	Article	IF	CITATIONS
73	A Dual-Readout F ² Assay That Combines Fluorescence Resonance Energy Transfer and Fluorescence Polarization for Monitoring Bimolecular Interactions. Assay and Drug Development Technologies, 2011, 9, 382-393.	1.2	17
74	Monitoring GTPCHâ€1 Interaction with GFRP Using Timeâ€Resolved Fluorescence Resonance Energy Transfer. FASEB Journal, 2010, 24, 871.3.	0.5	0
75	How Does Arrestin Assemble MAPKs into a Signaling Complex?. Journal of Biological Chemistry, 2009, 284, 685-695.	3.4	148
76	Identification of the 14â€3â€3/HIPâ€55 protein complex as a negative regulator of HPK1 in the Akt signaling. FASEB Journal, 2009, 23, 581.3.	0.5	0
77	Genomic Stability: A Novel Function of NF-Kb in Lymphomas Blood, 2009, 114, 3240-3240.	1.4	0
78	Down-regulation of 14-3-3ζ suppresses anchorage-independent growth of lung cancer cells through anoikis activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 162-167.	7.1	137
79	The recurring AGCT motif in S region DNA specifically recruits 14â€3â€3 adaptor proteins that are critical for the unfolding of CSR. FASEB Journal, 2008, 22, 849.9.	0.5	0
80	14-3-3 Protein Interacts with Huntingtin-associated Protein 1 and Regulates Its Trafficking. Journal of Biological Chemistry, 2007, 282, 4748-4756.	3.4	37
81	14-3-3 Integrates Pro-Survival Signals in Hematopoietic Cells Transformed by Diverse Leukemogenic Tyrosine Kinases, and Represents a Common Target Blood, 2006, 108, 1138-1138.	1.4	0
82	Prosurvival Function of 14-3-3 Proteins. Biochemical Society Transactions, 2002, 30, A62-A62.	3.4	0
83	14-3-3 Proteins: Structure, Function, and Regulation. Annual Review of Pharmacology and Toxicology, 2000, 40, 617-647.	9.4	1,427
84	Interaction of 14-3-3 with a Nonphosphorylated Protein Ligand, Exoenzyme S of Pseudomonas aeruginosa. Biochemistry, 1999, 38, 5216-5221.	2.5	143
85	Isolation of High-Affinity Peptide Antagonists of 14-3-3 Proteins by Phage Displayâ€. Biochemistry, 1999, 38, 12499-12504.	2.5	279