
Alexander Schnegg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3526449/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Photoredox catalysis with aryl sulfonium salts enables site-selective late-stage fluorination. Nature Chemistry, 2020, 12, 56-62.	13.6	194
2	Cyanide Single-Molecule Magnets Exhibiting Solvent Dependent Reversible "On―and "Off―Exchange Bias Behavior. Journal of the American Chemical Society, 2015, 137, 14406-14422.	13.7	121
3	Water Oxidation Catalysis by Nanoparticulate Manganese Oxide Thin Films: Probing the Effect of the Manganese Precursors. Chemistry of Materials, 2013, 25, 1098-1108.	6.7	110
4	Magneto-Structural Correlations in Pseudotetrahedral Forms of the [Co(SPh) ₄] ^{2–} Complex Probed by Magnetometry, MCD Spectroscopy, Advanced EPR Techniques, and ab Initio Electronic Structure Calculations. Inorganic Chemistry, 2017, 56, 3102-3118.	4.0	74
5	Threeâ€Axis Anisotropic Exchange Coupling in the Singleâ€Molecule Magnets NEt ₄ [Mn ^{III} ₂ (5â€Brsalen) ₂ (MeOH) ₂ M ^{III< (M=Ru, Os). Chemistry - A European Journal, 2013, 19, 3693-3701.}	/s ɑp ∌(CN)	< sas b>6
6	Low-Spin Hexacoordinate Mn(III): Synthesis and Spectroscopic Investigation of Homoleptic Tris(pyrazolyl)borate and Tris(carbene)borate Complexes. Inorganic Chemistry, 2013, 52, 144-159.	4.0	55
7	Singleâ€Chain Magnet Based on Cobalt(II) Thiocyanate as XXZ Spin Chain. Chemistry - A European Journal, 2020, 26, 2837-2851.	3.3	54
8	g-Tensor of the Neutral Flavin Radical Cofactor of DNA Photolyase Revealed by 360-GHz Electron Paramagnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 8885-8890.	2.6	53
9	Frequency domain Fourier transform THz-EPR on single molecule magnets using coherent synchrotron radiation. Physical Chemistry Chemical Physics, 2009, 11, 6820.	2.8	53
10	Analysis of Magnetic Anisotropy and the Role of Magnetic Dilution in Triggering Singleâ€Molecule Magnet (SMM) Behavior in a Family of Co ^{II} Y ^{III} Dinuclear Complexes with Easyâ€Plane Anisotropy. Chemistry - A European Journal, 2017, 23, 11649-11661.	3.3	51
11	In situ electron paramagnetic resonance spectroscopy for catalysis. Nature Reviews Methods Primers, 2021, 1, .	21.2	51
12	A linear single-molecule magnet based on [RuIII(CN)6]3â^'. Chemical Communications, 2011, 47, 6918.	4.1	50
13	Frequencyâ€Domain Fourierâ€Transform Terahertz Spectroscopy of the Singleâ€Molecule Magnet (NEt ₄)[Mn ₂ (5â€Brsalen) ₂ (MeOH) ₂ Cr(CN) ₆]. Chemistry - A European Journal, 2011, 17, 7492-7498.	3.3	50
14	X-band rapid-scan EPR of samples with long electron spin relaxation times: a comparison of continuous wave, pulse and rapid-scan EPR. Molecular Physics, 2013, 111, 2664-2673.	1.7	47
15	Simulating Frequency-Domain Electron Paramagnetic Resonance: Bridging the Gap between Experiment and Magnetic Parameters for High-Spin Transition-Metal Ion Complexes. Journal of Physical Chemistry B, 2015, 119, 13816-13824.	2.6	47
16	Thermosensitive Cu ₂ O–PNIPAM core–shell nanoreactors with tunable photocatalytic activity. Journal of Materials Chemistry A, 2016, 4, 9677-9684.	10.3	46
17	Recent progress in synchrotron-based frequency-domain Fourier-transform THz-EPR. Journal of Magnetic Resonance, 2017, 280, 10-19.	2.1	44
18	Active Site Identification in FeNC Catalysts and Their Assignment to the Oxygen Reduction Reaction Pathway by In Situ ⁵⁷ Fe M¶ssbauer Spectroscopy. Advanced Energy and Sustainability Research, 2021, 2, 2000064.	5.8	40

#	Article	IF	CITATIONS
19	A Two-Coordinate Iron(II) Imido Complex with NHC Ligation: Synthesis, Characterization, and Its Diversified Reactivity of Nitrene Transfer and C–H Bond Activation. Inorganic Chemistry, 2019, 58, 7634-7644.	4.0	39
20	Variation of the Chain Geometry in Isomeric 1D Co(NCS) ₂ Coordination Polymers and Their Influence on the Magnetic Properties. Inorganic Chemistry, 2020, 59, 5325-5338.	4.0	38
21	Zero-field splittings in metHb and metMb with aquo and fluoro ligands: a FD-FT THz-EPR study. Molecular Physics, 2013, 111, 2696-2707.	1.7	36
22	G-Tensors of the Flavin Adenine Dinucleotide Radicals in Glucose Oxidase:  A Comparative Multifrequency Electron Paramagnetic Resonance and Electronâ^Nuclear Double Resonance Study. Journal of Physical Chemistry B, 2008, 112, 3568-3574.	2.6	35
23	Radical Câ^'N Borylation of Aromatic Amines Enabled by a Pyrylium Reagent. Chemistry - A European Journal, 2020, 26, 3738-3743.	3.3	32
24	Pulsed electrically detected magnetic resonance for thin film silicon and organic solar cells. Physical Chemistry Chemical Physics, 2012, 14, 14418.	2.8	31
25	Anaerobic Alcohol Conversion to Carbonyl Compounds over Nanoscaled Rh-Doped SrTiO ₃ under Visible Light. Journal of Physical Chemistry Letters, 2019, 10, 2075-2080.	4.6	30
26	A Combined Spectroscopic and Computational Study on the Mechanism of Iron-Catalyzed Aminofunctionalization of Olefins Using Hydroxylamine Derived N–O Reagent as the "Amino―Source and "Oxidant― Journal of the American Chemical Society, 2022, 144, 2637-2656.	13.7	29
27	General Magnetic Transition Dipole Moments for Electron Paramagnetic Resonance. Physical Review Letters, 2015, 114, 010801.	7.8	27
28	In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH. Catalysts, 2019, 9, 926.	3.5	27
29	Magnetic Properties of Reduced and Reoxidized Mn–Na ₂ WO ₄ /SiO ₂ : A Catalyst for Oxidative Coupling of Methane (OCM). Journal of Physical Chemistry C, 2018, 122, 22605-22614.	3.1	24
30	Advanced Paramagnetic Resonance Studies on Manganese and Iron Corroles with a Formal d ⁴ Electron Count. Inorganic Chemistry, 2020, 59, 1075-1090.	4.0	24
31	Influence of the Coligand onto the Magnetic Anisotropy and the Magnetic Behavior of One-Dimensional Coordination Polymers. Inorganic Chemistry, 2020, 59, 8971-8982.	4.0	24
32	The primary donor cation P+ in photosynthetic reaction centers of site-directed mutants of Rhodobacter sphaeroides: g-tensor shifts revealed by high-field EPR at 360 GHz/12.8 T. Chemical Physics, 2003, 294, 371-384.	1.9	23
33	Multifrequency EPR study of the mobility of nitroxides in solid-state calixarene nanocapsules. Physical Chemistry Chemical Physics, 2009, 11, 6700.	2.8	23
34	THz Electron Paramagnetic Resonance / THz Spectroscopy at BESSY II. Journal of Large-scale Research Facilities JLSRF, 0, 2, A51.	0.0	23
35	A Manganese(IV)-Hydroperoxo Intermediate Generated by Protonation of the Corresponding Manganese(III)-Superoxo Complex. Journal of the American Chemical Society, 2020, 142, 10255-10260.	13.7	22
36	Extending electron paramagnetic resonance to nanoliter volume protein single crystals using a self-resonant microhelix. Science Advances, 2019, 5, eaay1394.	10.3	21

#	Article	IF	CITATIONS
37	Applying Unconventional Spectroscopies to the Singleâ€Molecule Magnets, Co(PPh ₃) ₂ X ₂ (X=Cl, Br, I): Unveiling Magnetic Transitions and Spinâ€Phonon Coupling. Chemistry - A European Journal, 2021, 27, 11110-11125.	3.3	21
38	Structure and Mechanism Leading to Formation of the Cysteine Sulfinate Product Complex of a Biomimetic Cysteine Dioxygenase Model. Chemistry - A European Journal, 2015, 21, 7470-7479.	3.3	20
39	Inclusion of 4-methoxy-2,2,6,6-tetramethylpiperidine-N-oxyl in a calixarene nanocapsule in the solid state. Physical Chemistry Chemical Physics, 2008, 10, 5299.	2.8	19
40	Reduced formation of peroxide and radical species stabilises iron-based hybrid catalysts in polymer electrolyte membrane fuel cells. Journal of Energy Chemistry, 2022, 65, 433-438.	12.9	18
41	Solutionâ€Processed Crystalline Silicon Thinâ€Film Solar Cells. Advanced Materials Interfaces, 2014, 1, 1300046.	3.7	17
42	Observability of Paramagnetic NMR Signals at over 10 000 ppm Chemical Shifts. Angewandte Chemie - International Edition, 2021, 60, 22856-22864.	13.8	17
43	A Synergy and Struggle of EPR, Magnetometry and NMR: A Case Study of Magnetic Interaction Parameters in a Six-Coordinate Cobalt(II) Complex. Inorganic Chemistry, 2020, 59, 10746-10755.	4.0	16
44	Electronic structure of positive and negative polarons in functionalized dithienylthiazolo[5,4-d]thiazoles: a combined EPR and DFT study. Physical Chemistry Chemical Physics, 2014, 16, 10032.	2.8	15
45	Experimental and Theoretical Evidence for an Unusual Almost Triply Degenerate Electronic Ground State of Ferrous Tetraphenylporphyrin. Inorganic Chemistry, 2021, 60, 4966-4985.	4.0	14
46	Highly Efficient and Selective Aerobic Oxidation of Cinnamyl Alcohol under Visible Light over Pt-Loaded NaNbO ₃ Enriched with Oxygen Vacancies by Ni Doping. ACS Sustainable Chemistry and Engineering, 2021, 9, 5422-5429.	6.7	14
47	Spectroscopic Investigation of a Metal–Metal-Bonded Fe ₆ Single-Molecule Magnet with an Isolated <i>S</i> = ¹⁹ / ₂ Giant-Spin Ground State. Inorganic Chemistry, 2021, 60, 4610-4622.	4.0	13
48	Determination of Large Zero-Field Splitting in High-Spin Co(I) Clathrochelates. Inorganic Chemistry, 2018, 57, 15330-15340.	4.0	12
49	Liquidâ€Phase Cyclohexene Oxidation with O ₂ over Sprayâ€Flameâ€Synthesized La _{1â^'<i>x</i>} Sr _{<i>x</i>} CoO ₃ Perovskite Nanoparticles. Chemistry - A European Journal, 2021, 27, 16912-16923.	3.3	10
50	Singleâ€Ion Magnetic Behaviour in an Iron(III) Porphyrin Complex: A Dichotomy Between High Spin and 5/2–3/2 Spin Admixture. Chemistry - A European Journal, 2020, 26, 14242-14251.	3.3	9
51	Easy-plane to easy-axis anisotropy switching in a Co(<scp>ii</scp>) single-ion magnet triggered by the diamagnetic lattice. Journal of Materials Chemistry C, 2021, 9, 9446-9452.	5.5	8
52	Immobilization of "Capping Arene―Cobalt(II) Complexes on Ordered Mesoporous Carbon for Electrocatalytic Water Oxidation. ACS Catalysis, 2021, 11, 15068-15082.	11.2	8
53	Rapid-scan electron paramagnetic resonance using an EPR-on-a-Chip sensor. Magnetic Resonance, 2021, 2, 673-687.	1.9	6
54	Persistent spin coherence and bipolarons. Nature Nanotechnology, 2013, 8, 884-885.	31.5	5

#	Article	IF	CITATIONS
55	Probing the Fate of Mn Complexes in Nafion: A Combined Multifrequency EPR and XAS Study. Journal of Physical Chemistry C, 2016, 120, 853-861.	3.1	4
56	Examination of the Magneto-Structural Effects of Hangman Groups on Ferric Porphyrins by EPR. Inorganic Chemistry, 2019, 58, 14228-14237.	4.0	3
57	Antisymmetric Spin Exchange in a μ-1,2-Peroxodicopper(II) Complex with an Orthogonal Cu–O–O–Cu Arrangement and <i>S</i> = 1 Spin Ground State Characterized by THz-EPR. Jacs Au, 2022, 2, 1134-1143.	7.9	3
58	Selective electron spin resonance measurements of micrometer-scale thin samples on a substrate. Measurement Science and Technology, 2013, 24, 115009.	2.6	2
59	Milliwatt three- and four-pulse double electron electron resonance for protein structure determination. Physical Chemistry Chemical Physics, 2022, 24, 12528-12540.	2.8	2
60	Correlation between structural and opto-electronic characteristics of crystalline Si microhole arrays for photonic light management. Journal of Applied Physics, 2013, 114, 173513.	2.5	1
61	Observability of paramagnetic NMR signals at over 10 000 ppm chemical shifts. Angewandte Chemie, 2021, 133, 23038.	2.0	1