
Kevin G Rice

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352643/publications.pdf Version: 2024-02-01

KEVIN C. RICE

#	Article	IF	CITATIONS
1	Fluorescent labeling of plasmid DNA for gene delivery: Implications of dye hydrophobicity on labeling efficiencies and nanoparticle size. Analytical Biochemistry, 2022, 644, 113895.	2.4	2
2	The reducedâ€charge melittin analogue MelP5 improves the transfection of nonâ€viral DNA nanoparticles. Journal of Peptide Science, 2022, 28, e3404.	1.4	0
3	Heat-shrinking DNA nanoparticles for in vivo gene delivery. Gene Therapy, 2020, 27, 196-208.	4.5	9
4	Gene transfection of primary mouse hepatocytes in 384-well plates. Analytical Biochemistry, 2020, , 113911.	2.4	0
5	MACROMOLECULAR CONJUGATES FOR NON-VIRAL NUCLEIC ACID DELIVERY. , 2019, , 223-235.		1
6	Metabolically stabilized double-stranded mRNA polyplexes. Gene Therapy, 2018, 25, 473-484.	4.5	8
7	PEG-Peptide Inhibition of Scavenger Receptor Uptake of Nanoparticles by the Liver. Molecular Pharmaceutics, 2018, 15, 3881-3891.	4.6	12
8	Structure–Activity Relationship of PEGylated Polylysine Peptides as Scavenger Receptor Inhibitors for Non-Viral Gene Delivery. Molecular Pharmaceutics, 2015, 12, 4321-4328.	4.6	19
9	"Evolving nanoparticle gene delivery vectors for the liver: What has been learned in 30 years― Journal of Controlled Release, 2015, 219, 457-470.	9.9	8
10	Miniaturization of gene transfection assays in 384- and 1536-well microplates. Analytical Biochemistry, 2015, 470, 14-21.	2.4	14
11	Nanoparticle Ligand Presentation for Targeting Solid Tumors. AAPS PharmSciTech, 2014, 15, 1345-1354.	3.3	24
12	13: MACROMOLECULAR CONJUGATES FOR NON-VIRAL NUCLEIC ACID DELIVERY. ICP Textbooks in Biomolecular Sciences, 2014, , 207-219.	0.1	4
13	A convergent synthesis of homogeneous reducible polypeptides. Tetrahedron Letters, 2013, 54, 4746-4748.	1.4	4
14	Iterative reducible ligation to form homogeneous penicillamine cross-linked polypeptides. Tetrahedron Letters, 2013, 54, 3440-3443.	1.4	3
15	PEG length and chemical linkage controls polyacridine peptide DNA polyplex pharmacokinetics, biodistribution, metabolic stability and in vivo gene expression. Journal of Controlled Release, 2013, 170, 325-333.	9.9	35
16	Synthesis of homogenous disulfide crossâ€linked polypeptides by iterative reducible ligation. Biopolymers, 2012, 98, 510-517.	2.4	4
17	Synthesis and In Vitro Testing of New Potent Polyacridineâ~'Melittin Gene Delivery Peptides. Bioconjugate Chemistry, 2010, 21, 74-83.	3.6	40
18	Non-viral gene delivery: from the needle to the nucleus. Expert Opinion on Biological Therapy, 2007, 7, 799-808.	3.1	39

KEVIN G RICE

#	Article	IF	CITATIONS
19	Synthetic PEGylated Glycoproteins and Their Utility in Gene Delivery. Bioconjugate Chemistry, 2007, 18, 371-378.	3.6	33
20	Peptide-guided gene delivery. AAPS Journal, 2007, 9, E18-E29.	4.4	294
21	Gene Transfer with Poly-Melittin Peptides. Bioconjugate Chemistry, 2006, 17, 1057-1062.	3.6	73
22	Fabrication and in vitro testing of polymeric delivery system for condensed DNA. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1384-1392.	4.0	82
23	Thiosugar nucleotide analogs: Synthesis of 5′-(2,3,4-tri-O-acetyl-6-S-acetyl-6-thio-α-d-galactopyranosyl) Tj ETQ	q110.78	4314 rgBT
24	Biodistribution, Metabolism, and in Vivo Gene Expression of Low Molecular Weight Glycopeptide Polyethylene Glycol Peptide DNA Co ondensates. , 2000, 89, 499-512.		69
25	Comparative gene transfer efficiency of low molecular weight polylysine DNA-condensing peptides. Chemical Biology and Drug Design, 1999, 54, 311-318.	1.1	74
26	Synthesis and Applications for Unnatural Sugar Nucleotides. Current Medicinal Chemistry, 1999, 6, 93-116.	2.4	30
27	Iodinated Plasmid DNA as a Tool for Studying Gene Delivery. Analytical Biochemistry, 1998, 263, 120-123.	2.4	35
28	Peptide-Mediated Gene Delivery:  Influence of Peptide Structure on Gene Expression. Bioconjugate Chemistry, 1997, 8, 81-88.	3.6	208
29	Receptor Mediated Glycotargeting, Journal of Drug Targeting, 1995, 3, 111-127.	4.4	104