James Moffett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3525402/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Determination of inert and labile copper on GEOTRACES samples using a novel solvent extraction method. Marine Chemistry, 2022, 239, 104073.	2.3	6
2	Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone. Earth and Planetary Science Letters, 2021, 554, 116676.	4.4	26
3	Rare earth element distributions in the Arabian Sea reveal the influence of redox processes within the oxygen deficient zone. Chemical Geology, 2021, 577, 120214.	3.3	5
4	Lack of redox cycling for nickel in the water column of the Eastern tropical north pacific oxygen deficient zone: Insight from dissolved and particulate nickel isotopes. Geochimica Et Cosmochimica Acta, 2021, 309, 235-250.	3.9	8
5	Iron(II) in the world's oxygen deficient zones. Chemical Geology, 2021, 580, 120314.	3.3	4
6	Organic complexation of iron by strong ligands and siderophores in the eastern tropical North Pacific oxygen deficient zone. Marine Chemistry, 2021, 236, 104021.	2.3	8
7	Distribution of iron in the Western Indian Ocean and the Eastern tropical South pacific: An inter-basin comparison. Chemical Geology, 2020, 532, 119334.	3.3	17
8	Grazing control and iron limitation of primary production in the Arabian Sea: Implications for anticipated shifts in Southwest Monsoon intensity. Deep-Sea Research Part II: Topical Studies in Oceanography, 2020, 179, 104687.	1.4	9
9	Unexpected Source and Transport of Iron from the Deep Peru Margin. ACS Earth and Space Chemistry, 2020, 4, 977-992.	2.7	20
10	Efficient zinc/cobalt interâ€replacement in northeast Pacific diatoms and relationship to high surface dissolved Co : Zn ratios. Limnology and Oceanography, 2020, 65, 2557-2582.	3.1	22
11	The role of water masses in shaping the distribution of redox active compounds in the Eastern Tropical North Pacific oxygen deficient zone and influencing low oxygen concentrations in the eastern Pacific Ocean. Limnology and Oceanography, 2020, 65, 1688-1705.	3.1	33
12	Hydrothermal Activity and Seismicity at Teahitia Seamount: Reactivation of the Society Islands Hotspot?. Frontiers in Marine Science, 2020, 7, .	2.5	9
13	The Distribution and Redox Speciation of Iodine in the Eastern Tropical North Pacific Ocean. Global Biogeochemical Cycles, 2020, 34, e2019GB006302.	4.9	29
14	Commentary on "Insights into the Major Processes Driving the Global Distribution of Copper in the Ocean From a Global 3â€Ð Model―by Camille Richon and Alessandro Tagliabue. Global Biogeochemical Cycles, 2019, 33, 1471-1474.	4.9	1
15	Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Marine Chemistry, 2018, 201, 77-89.	2.3	60
16	Stress response of a marine ammonia-oxidizing archaeon informs physiological status of environmental populations. ISME Journal, 2018, 12, 508-519.	9.8	82
17	Water mass analysis of the 2013 US GEOTRACES eastern Pacific zonal transect (GP16). Marine Chemistry, 2018, 201, 6-19.	2.3	38
18	Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnology and Oceanography, 2018, 63, 741-757.	3.1	39

James Moffett

#	Article	IF	CITATIONS
19	The U.S.GEOTRACES Eastern Tropical Pacific Transect (GP16). Marine Chemistry, 2018, 201, 1-5.	2.3	16
20	Determination of iron(II) by chemiluminescence using masking ligands to distinguish interferences. Limnology and Oceanography: Methods, 2018, 16, 750-759.	2.0	9
21	The GEOTRACES Intermediate Data Product 2017. Chemical Geology, 2018, 493, 210-223.	3.3	257
22	Accumulation of NO ₂ â€cobalamin in nutrientâ€stressed ammoniaâ€oxidizing archaea and in the oxygen deficient zone of the eastern tropical North Pacific. Environmental Microbiology Reports, 2018, 10, 453-457.	2.4	13
23	Influence of oxygen availability on the activities of ammoniaâ€oxidizing archaea. Environmental Microbiology Reports, 2017, 9, 250-256.	2.4	102
24	Accumulation of Fe oxyhydroxides in the Peruvian oxygen deficient zone implies non-oxygen dependent Fe oxidation. Geochimica Et Cosmochimica Acta, 2017, 211, 174-193.	3.9	64
25	Two distinct pools of B ₁₂ analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 364-369.	7.1	174
26	Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum Thaumarchaeota. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 5067-5079.	1.7	159
27	Plankton dynamics and biogeochemical fluxes in the Costa Rica Dome: introduction to the CRD Flux and Zinc Experiments. Journal of Plankton Research, 2016, 38, 167-182.	1.8	25
28	Preferential depletion of zinc within Costa Rica upwelling dome creates conditions for zinc co-limitation of primary production. Journal of Plankton Research, 2016, 38, 244-255.	1.8	22
29	Co-occurring <i>Synechococcus</i> ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME Journal, 2016, 10, 333-345.	9.8	169
30	Meta-omic signatures of microbial metal and nitrogen cycling in marine oxygen minimum zones. Frontiers in Microbiology, 2015, 6, 998.	3.5	58
31	Copper distribution and speciation across the International GEOTRACES Section GA03. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 116, 187-207.	1.4	57
32	Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature, 2015, 523, 200-203.	27.8	397
33	Distribution of dissolved manganese in the Peruvian Upwelling and Oxygen Minimum Zone. Geochimica Et Cosmochimica Acta, 2015, 156, 222-240.	3.9	29
34	Biogeochemistry of iron in the <scp>A</scp> rabian <scp>S</scp> ea. Limnology and Oceanography, 2015, 60, 1671-1688.	3.1	38
35	Confounding effects of oxygen and temperature on the TEX ₈₆ signature of marine Thaumarchaeota. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10979-10984.	7.1	133
36	The production of nitric oxide by marine ammoniaâ€oxidizing archaea and inhibition of archaeal ammonia oxidation by a nitric oxide scavenger. Environmental Microbiology, 2015, 17, 2261-2274.	3.8	176

JAMES MOFFETT

#	Article	IF	CITATIONS
37	Iron redox cycling and subsurface offshore transport in the eastern tropical South Pacific oxygen minimum zone. Marine Chemistry, 2015, 168, 95-103.	2.3	43
38	Determination of four forms of vitamin B ₁₂ and other B vitamins in seawater by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2014, 28, 2398-2404.	1.5	67
39	Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12504-12509.	7.1	323
40	Assessment of the potential for copper limitation of ammonia oxidation by Archaea in a dynamic estuary. Marine Chemistry, 2014, 162, 37-49.	2.3	37
41	Iron speciation in the eastern tropical South Pacific oxygen minimum zone off Peru. Limnology and Oceanography, 2014, 59, 1945-1957.	3.1	39
42	Dissolved Fe(II) in the Arabian Sea oxygen minimum zone and western tropical Indian Ocean during the inter-monsoon period. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 73, 73-83.	1.4	33
43	Ammonia oxidation kinetics and temperature sensitivity of a natural marine community dominated by Archaea. ISME Journal, 2013, 7, 2023-2033.	9.8	132
44	Copper requirements of the ammoniaâ€oxidizing archaeon <i>Nitrosopumilus maritimus</i> SCM1 and implications for nitrification in the marine environment. Limnology and Oceanography, 2013, 58, 2037-2045.	3.1	69
45	The speciation of copper across active gradients in nitrogen-cycle processes in the eastern tropical South Pacific. Limnology and Oceanography, 2013, 58, 1387-1394.	3.1	46
46	Chelatorâ€induced inhibition of copper metalloenzymes in denitrifying bacteria. Limnology and Oceanography, 2012, 57, 272-280.	3.1	18
47	The organic complexation of iron and copper: an intercomparison of competitive ligand exchangeâ€adsorptive cathodic stripping voltammetry (CLEâ€ACSV) techniques. Limnology and Oceanography: Methods, 2012, 10, 496-515.	2.0	100
48	Molecular evidence of iron limitation and availability in the global diazotroph <i>Trichodesmium</i> . ISME Journal, 2012, 6, 1728-1739.	9.8	93
49	The flux of iron and iron isotopes from San Pedro Basin sediments. Geochimica Et Cosmochimica Acta, 2012, 93, 14-29.	3.9	79
50	Dissolved zinc in the subarctic North Pacific and Bering Sea: Its distribution, speciation, and importance to primary producers. Global Biogeochemical Cycles, 2012, 26, .	4.9	44
51	The Arabian Sea as a high-nutrient, low-chlorophyll region during the late Southwest Monsoon. Biogeosciences, 2010, 7, 2091-2100.	3.3	91
52	Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geoscience, 2009, 2, 197-201.	12.9	200
53	Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean. Analytica Chimica Acta, 2008, 614, 143-152.	5.4	29
54	Measurement and Implications of Nonphotochemically Generated Superoxide in the Equatorial Pacific Ocean. Environmental Science & Technology, 2008, 42, 2387-2393.	10.0	86

James Moffett

#	Article	IF	CITATIONS
55	Chapter 15 Instrumentation for Fluorescenceâ€Based Fiber Optic Biosensors. Methods in Enzymology, 2008, 450, 311-337.	1.0	2
56	Evidence for the linked biogeochemical cycling of zinc, cobalt, and phosphorus in the western North Atlantic Ocean. Global Biogeochemical Cycles, 2008, 22, .	4.9	53
57	Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2008, 55, 1672-1683.	1.4	105
58	Determination of Superoxide in Seawater Using 2-Methyl-6-(4-methoxyphenyl)-3,7- dihydroimidazo[1,2-a]pyrazin-3(7 <i>H</i>)-one Chemiluminescence. Analytical Chemistry, 2008, 80, 1215-1227.	6.5	82
59	Molecular assessment of phosphorus and iron physiology in <i>Trichodesmium</i> populations from the western Central and western South Atlantic. Limnology and Oceanography, 2007, 52, 2221-2232.	3.1	56
60	Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 586-595.	1.4	120
61	Reduced iron associated with secondary nitrite maxima in the Arabian Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 2007, 54, 1341-1349.	1.4	98
62	Developing Standards for Dissolved Iron in Seawater. Eos, 2007, 88, 131.	0.1	237
63	Cadmiumâ^'Copper Antagonism in Seaweeds Inhabiting Coastal Areas Affected by Copper Mine Waste Disposals. Environmental Science & Technology, 2006, 40, 4382-4387.	10.0	34
64	Kinetics of copper accumulation in Lessonia nigrescens (Phaeophyceae) under conditions of environmental oxidative stress. Aquatic Toxicology, 2006, 78, 398-401.	4.0	45
65	Distributions of dissolved and particulate biogenic thiols in the subartic Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 1961-1974.	1.4	72
66	Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature, 2006, 439, 68-71.	27.8	508
67	A community-wide intercomparison exercise for the determination of dissolved iron in seawater. Marine Chemistry, 2006, 98, 81-99.	2.3	60
68	Thermodynamic characterization of the partitioning of iron between soluble and colloidal species in the Atlantic Ocean. Marine Chemistry, 2006, 98, 295-303.	2.3	120
69	Distribution of dissolved species and suspended particulate copper in an intertidal ecosystem affected by copper mine tailings in Northern Chile. Marine Chemistry, 2006, 101, 203-212.	2.3	73
70	Production of cobalt binding ligands in a <i>Synechococcus</i> feature at the Costa Rica upwelling dome. Limnology and Oceanography, 2005, 50, 279-290.	3.1	208
71	Cobalt and nickel in the Peru upwelling region: A major flux of labile cobalt utilized as a micronutrient. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	4.9	119
72	Novel copperâ€binding and nitrogenâ€rich thiols produced and exuded by <i>Emiliania huxleyi</i> . Limnology and Oceanography, 2004, 49, 1754-1762.	3.1	78

JAMES MOFFETT

#	Article	IF	CITATIONS
73	Real-Time Determination of Picomolar Free Cu(II) in Seawater Using a Fluorescence-Based Fiber Optic Biosensor. Analytical Chemistry, 2003, 75, 6807-6812.	6.5	95
74	Cobalt limitation and uptake in <i>Prochlorococcus</i> . Limnology and Oceanography, 2002, 47, 1629-1636.	3.1	220
75	Cellâ€specific detection of phosphorus stress in <i>Trichodesmium</i> from the Western North Atlantic. Limnology and Oceanography, 2002, 47, 1832-1836.	3.1	115
76	Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnology and Oceanography, 2002, 47, 976-988.	3.1	195
77	Comparison of Copper Speciation in Coastal Marine Waters Measured Using Analytical Voltammetry and Diffusion Gradient in Thin-Film Techniques. Environmental Science & Technology, 2002, 36, 1061-1068.	10.0	89
78	Temporal and spatial variability of cobalt in the Atlantic Ocean. Geochimica Et Cosmochimica Acta, 2002, 66, 1943-1953.	3.9	120
79	Evidence for grazing-mediated production of dissolved surface-active material by marine protists. Marine Chemistry, 2002, 77, 133-142.	2.3	49
80	Marine Protozoa Produce Organic Matter with a High Affinity for PCBs during Grazing. Environmental Science & Technology, 2001, 35, 4060-4065.	10.0	2
81	Complexation of cobalt by natural organic ligands in the Sargasso Sea as determined by a new high-sensitivity electrochemical cobalt speciation method suitable for open ocean work. Marine Chemistry, 2001, 75, 49-68.	2.3	175
82	Iron Stress in Open-Ocean Cyanobacteria (Synechococcus , Trichodesmium , and Crocosphaera spp.): Identification of the IdiA Protein. Applied and Environmental Microbiology, 2001, 67, 5444-5452.	3.1	144
83	Laboratory and field studies of colloidal iron oxide dissolution as mediated by phagotrophy and photolysis. Limnology and Oceanography, 2000, 45, 827-835.	3.1	77
84	Production of extracellular Cu complexing ligands by eucaryotic phytoplankton in response to Cu stress. Limnology and Oceanography, 2000, 45, 619-627.	3.1	168
85	Intercomparison of voltammetric techniques to determine the chemical speciation of dissolved copper in a coastal seawater sample. Analytica Chimica Acta, 2000, 405, 99-113.	5.4	146
86	Importance of Passive Diffusion in the Uptake of Polychlorinated Biphenyls by Phagotrophic Protozoa. Applied and Environmental Microbiology, 2000, 66, 1987-1993.	3.1	13
87	Polarographic determination of half-wave potentials for copper-organic complexes in seawater. Marine Chemistry, 1999, 67, 219-232.	2.3	83
88	Dissolution of Iron Oxides by Phagotrophic Protists:Â Using a Novel Method To Quantify Reaction Rates. Environmental Science & Technology, 1998, 32, 2969-2975.	10.0	27
89	Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnology and Oceanography, 1997, 42, 789-799.	3.1	184
90	Trace metal control of phytochelatin production in coastal waters. Limnology and Oceanography, 1997, 42, 601-608.	3.1	55

JAMES MOFFETT

#	Article	IF	CITATIONS
91	The importance of microbial Mn oxidation in the upper ocean: a comparison of the Sargasso Sea and equatorial Pacific. Deep-Sea Research Part I: Oceanographic Research Papers, 1997, 44, 1277-1291.	1.4	40
92	Oxidation of cobalt and manganese in seawater via a common microbially catalyzed pathway. Geochimica Et Cosmochimica Acta, 1996, 60, 3415-3424.	3.9	193
93	Role of protozoan grazing in relieving iron limitation of phytoplankton. Nature, 1996, 380, 61-64.	27.8	194
94	Production of strong, extracellular Cu chelators by marine cyanobacteria in response to Cu stress. Limnology and Oceanography, 1996, 41, 388-395.	3.1	274
95	Temporal and spatial variability of copper complexation by strong chelators in the Sargasso Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 1995, 42, 1273-1295.	1.4	125
96	A radiotracer study of cerium and manganese uptake onto suspended particles in Chesapeake Bay. Geochimica Et Cosmochimica Acta, 1994, 58, 695-703.	3.9	129
97	An investigation ofhydrogen peroxide chemistry in surface waters of Vineyard Sound with H218O2 and 18O2. Limnology and Oceanography, 1990, 35, 1221-1229.	3.1	115
98	Microbially mediated cerium oxidation in sea water. Nature, 1990, 345, 421-423.	27.8	292
99	Measurement of copper(I) in surface waters of the subtropical Atlantic and Gulf of Mexico. Geochimica Et Cosmochimica Acta, 1988, 52, 1849-1857.	3.9	83
100	Reaction kinetics of hydrogen peroxide with copper and iron in seawater. Environmental Science & Technology, 1987, 21, 804-810.	10.0	374
101	Solvent extraction of copper acetylacetonate in studies of copper(II) speciation in seawater. Marine Chemistry, 1987, 21, 301-313.	2.3	95
102	Evaluation of bathocuproine for the spectro-photometric determination of copper(I) in copper redox studies with applications in studies of natural waters. Analytica Chimica Acta, 1985, 175, 171-179.	5.4	99
103	Spatial and temporal variations of hydrogen peroxide in Gulf of Mexico waters. Geochimica Et Cosmochimica Acta, 1985, 49, 1173-1184.	3.9	157
104	Oxidation kinetics of Cu(I) in seawater: implications for its existence in the marine environment. Marine Chemistry, 1983, 13, 239-251.	2.3	158