Jun He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3523359/publications.pdf

Version: 2024-02-01

		34105	37204
102	9,582	52	96
papers	citations	h-index	g-index
102 all docs	102 docs citations	102 times ranked	11862 citing authors

#	Article	IF	CITATIONS
1	Highâ€Performance Memristors Based on Ultrathin 2D Copper Chalcogenides. Advanced Materials, 2022, 34, e2108313.	21.0	45
2	Nonvolatile reconfigurable broadband photodiodes based on BP/ α -In2Se3 ferroelectric p–n junctions. Applied Physics Letters, 2022, 120, .	3.3	21
3	Intercalated Gold Nanoparticle in 2D Palladium Nanosheet Avoiding CO Poisoning for Formate Production under a Wide Potential Window. ACS Applied Materials & Interfaces, 2022, 14, 10344-10352.	8.0	5
4	High-performance ultraviolet photodetectors based on 2D layered In4/3P2Se6 nanoflakes. Applied Physics Letters, 2022, 120, .	3.3	7
5	A Ferroelectric p–i–n Heterostructure for Highly Enhanced Short ircuit Current Density and Selfâ€Powered Photodetection. Advanced Electronic Materials, 2022, 8, .	5.1	17
6	Controllable Synthesis Quadratic-Dependent Unsaturated Magnetoresistance of Two-Dimensional Nonlayered Fe ₇ S ₈ with Robust Environmental Stability. ACS Nano, 2022, 16, 8301-8308.	14.6	12
7	Functional annotation of creeping bentgrass protein sequences based on convolutional neural network. BMC Plant Biology, 2022, 22, 227.	3.6	O
8	Van der waals epitaxial growth of two-dimensional PbSe and its high-performance heterostructure devices. Science Bulletin, 2022, , .	9.0	9
9	Few-layered CuInP ₂ S ₆ nanosheet with sulfur vacancy boosting photocatalytic hydrogen evolution. CrystEngComm, 2021, 23, 591-598.	2.6	25
10	Elimination of Interlayer Potential Barriers of Chromium Sulfide by Self-Intercalation for Enhanced Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13055-13062.	8.0	17
11	Recent Advances in 2D Materials for Photodetectors. Advanced Electronic Materials, 2021, 7, 2001125.	5.1	89
12	Nonlayered Tin Thiohypodiphosphate Nanosheets: Controllable Growth and Solar-Light-Driven Water Splitting. ACS Applied Materials & Solar S	8.0	15
13	Modulation of Negative Differential Resistance in Black Phosphorus Transistors. Advanced Materials, 2021, 33, e2008329.	21.0	18
14	Self-intercalated two-dimensional magnetic semiconductor V8(S1-xSex)15. Applied Physics Letters, 2021, 118, 221903.	3.3	2
15	Emerging 2D Memory Devices for Inâ€Memory Computing. Advanced Materials, 2021, 33, e2007081.	21.0	92
16	Using ferroelectric polarization to regulate and preserve the valley polarization in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>HfN</mml:mi><mm .<="" 103,="" 2021,="" b,="" heterotrilayer.="" physical="" review="" td=""><td>l:mǥ∞2<td>าmไมดีก></td></td></mm></mml:msub></mml:mrow></mml:math>	l:mǥ ∞2 <td>าmไมดีก></td>	าmไ ม ดีก>
17	High Carrier Separation Efficiency in Morphology-Controlled BiOBr/C Schottky Junctions for Photocatalytic Overall Water Splitting. ACS Nano, 2021, 15, 13209-13219.	14.6	72
18	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	3.9	24

#	Article	IF	CITATIONS
19	Recent progress on emergent two-dimensional magnets and heterostructures. Nanotechnology, 2021, 32, 472001.	2.6	25
20	Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric p-n junction. Nano Research, 2021, 14, 4328-4335.	10.4	33
21	Logic and in-memory computing achieved in a single ferroelectric semiconductor transistor. Science Bulletin, 2021, 66, 2288-2296.	9.0	23
22	Controlled synthesis and Raman study of a 2D antiferromagnetic P-type semiconductor: α-MnSe. Nanoscale, 2021, 13, 6953-6964.	5.6	20
23	Phase-Tunable Synthesis and Etching-Free Transfer of Two-Dimensional Magnetic FeTe. ACS Nano, 2021, 15, 19089-19097.	14.6	18
24	Defect-mediated ferromagnetism in correlated two-dimensional transition metal phosphorus trisulfides. Science Advances, 2021, 7, eabj4086.	10.3	35
25	Two-Dimensional Palladium Nanosheet Intercalated with Gold Nanoparticles for Plasmon-Enhanced Electrocatalysis. ACS Catalysis, 2021, 11, 13721-13732.	11.2	21
26	Bridging the van der Waals Interface for Advanced Optoelectronic Devices. Advanced Materials, 2020, 32, e1906874.	21.0	31
27	Speeding protons with metal vacancies. Science, 2020, 370, 525-526.	12.6	3
28	Two-Dimensional Unipolar Memristors with Logic and Memory Functions. Nano Letters, 2020, 20, 4144-4152.	9.1	50
29	Gateâ€Couplingâ€Enabled Robust Hysteresis for Nonvolatile Memory and Programmable Rectifier in Van der Waals Ferroelectric Heterojunctions. Advanced Materials, 2020, 32, e1908040.	21.0	84
30	Tunable Room-Temperature Ferromagnetism in Two-Dimensional Cr ₂ Te ₃ . Nano Letters, 2020, 20, 3130-3139.	9.1	175
31	Subthermionic field-effect transistors with sub-5Ânm gate lengths based on van der Waals ferroelectric heterostructures. Science Bulletin, 2020, 65, 1444-1450.	9.0	17
32	Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures. Advanced Materials, 2019, 31, e1901694.	21.0	250
33	Valleytronics in transition metal dichalcogenides materials. Nano Research, 2019, 12, 2695-2711.	10.4	155
34	Growth and Raman Scattering Investigation of a New 2D MOX Material: YbOCl. Advanced Functional Materials, 2019, 29, 1903017.	14.9	21
35	Synthesis and Optoelectronic Applications of a Stable <i>p-</i> Type 2D Material: α-MnS. ACS Nano, 2019, 13, 12662-12670.	14.6	54
36	Multibit Optoelectronic Memory in Topâ€Floatingâ€Gated van der Waals Heterostructures. Advanced Functional Materials, 2019, 29, 1902890.	14.9	69

#	Article	IF	Citations
37	Newly developed two-dimensional materials for efficient photocatalytic hydrogen evolution. Science Bulletin, 2019, 64, 958-960.	9.0	4
38	Robust trap effect in transition metal dichalcogenides for advanced multifunctional devices. Nature Communications, 2019, 10, 4133.	12.8	39
39	2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration. Nanoscale, 2019, 11, 1360-1369.	5.6	195
40	Hierarchically heterostructured metal hydr(oxy)oxides for efficient overall water splitting. Nanoscale, 2019, 11, 11736-11743.	5.6	14
41	Antiâ€Ambipolar Transport with Large Electrical Modulation in 2D Heterostructured Devices. Advanced Materials, 2019, 31, e1901144.	21.0	28
42	Oriented layered Bi2O2Se nanowire arrays for ultrasensitive photodetectors. Applied Physics Letters, 2019, 114, .	3.3	31
43	Controlling Injection Barriers for Ambipolar 2D Semiconductors via Quasiâ€van der Waals Contacts. Advanced Science, 2019, 6, 1801841.	11.2	17
44	Van der Waals integration of 2D atomic crystals for advanced multifunctional devices. Science Bulletin, 2019, 64, 1033-1035.	9.0	6
45	Ultrathin Magnetic 2D Singleâ€Crystal CrSe. Advanced Materials, 2019, 31, e1900056.	21.0	154
46	Sub-millimeter-Scale Growth of One-Unit-Cell-Thick Ferrimagnetic Cr ₂ S ₃ Nanosheets. Nano Letters, 2019, 19, 2154-2161.	9.1	110
47	A unipolar nonvolatile resistive switching behavior in a layered transition metal oxide. Nanoscale, 2019, 11, 20497-20506.	5.6	24
48	Gapless van der Waals Heterostructures for Infrared Optoelectronic Devices. ACS Nano, 2019, 13, 14519-14528.	14.6	24
49	Van der Waals Heterostructure Devices with Dynamically Controlled Conduction Polarity and Multifunctionality. Advanced Functional Materials, 2019, 29, 1804897.	14.9	23
50	Earth abundant materials beyond transition metal dichalcogenides: A focus on electrocatalyzing hydrogen evolution reaction. Nano Energy, 2019, 58, 244-276.	16.0	298
51	Uncovering the Conduction Behavior of van der Waals Ambipolar Semiconductors. Advanced Materials, 2019, 31, e1805317.	21.0	19
52	Heterostructures Based on 2D Materials: A Versatile Platform for Efficient Catalysis. Advanced Materials, 2019, 31, e1804828.	21.0	142
53	High Crystal Quality 2D Manganese Phosphorus Trichalcogenide Nanosheets and their Photocatalytic Activity. Advanced Functional Materials, 2018, 28, 1800548.	14.9	116
54	Nonvolatile infrared memory in MoS ₂ /PbS van der Waals heterostructures. Science Advances, 2018, 4, eaap7916.	10.3	161

#	Article	IF	Citations
55	The Role of Active Oxide Species for Electrochemical Water Oxidation on the Surface of 3dâ€Metal Phosphides. Advanced Energy Materials, 2018, 8, 1703290.	19.5	104
56	Highâ€Performance Nearâ€Infrared Photodetector Based on Ultrathin Bi ₂ O ₂ Se Nanosheets. Advanced Functional Materials, 2018, 28, 1706437.	14.9	201
57	Nonvolatile and Programmable Photodoping in MoTe ₂ for Photoresistâ€Free Complementary Electronic Devices. Advanced Materials, 2018, 30, e1804470.	21.0	70
58	Highâ€Yield Production of Monolayer FePS ₃ Quantum Sheets via Chemical Exfoliation for Efficient Photocatalytic Hydrogen Evolution. Advanced Materials, 2018, 30, e1707433.	21.0	110
59	New Frontiers on van der Waals Layered Metal Phosphorous Trichalcogenides. Advanced Functional Materials, 2018, 28, 1802151.	14.9	223
60	2D library beyond graphene and transition metal dichalcogenides: a focus on photodetection. Chemical Society Reviews, 2018, 47, 6296-6341.	38.1	207
61	Impact of Thickness on Contact Issues for Pinning Effect in Black Phosphorus Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1801398.	14.9	39
62	Edgeâ€Epitaxial Growth of 2D NbS ₂ â€WS ₂ Lateral Metalâ€6emiconductor Heterostructures. Advanced Materials, 2018, 30, e1803665.	21.0	109
63	High-performance, multifunctional devices based on asymmetric van der Waals heterostructures. Nature Electronics, 2018, 1, 356-361.	26.0	197
64	Sub-10 nm Nanopattern Architecture for 2D Material Field-Effect Transistors. Nano Letters, 2017, 17, 1065-1070.	9.1	172
65	Efficient Catalysis of Hydrogen Evolution Reaction from WS _{2(1â^3} <i></i> Nanoribbons. Small, 2017, 13, 1603706.	10.0	60
66	Multifunctional tunneling devices based on graphene/ <i>h</i> h-BN/MoSe2 van der Waals heterostructures. Applied Physics Letters, 2017, 110, .	3.3	49
67	Van der Waals Epitaxial Growth of Atomic Layered HfS ₂ Crystals for Ultrasensitive Nearâ€Infrared Phototransistors. Advanced Materials, 2017, 29, 1700439.	21.0	96
68	2D MoS ₂ Neuromorphic Devices for Brain‣ike Computational Systems. Small, 2017, 13, 1700933.	10.0	268
69	Ferroelectric-induced carrier modulation for ambipolar transition metal dichalcogenide transistors. Applied Physics Letters, 2017, 110, .	3.3	22
70	Dendritic growth of monolayer ternary WS _{2(1â^'x)} Se _{2x} flakes for enhanced hydrogen evolution reaction. Nanoscale, 2017, 9, 5641-5647.	5.6	31
71	Interface Engineered W <i></i> C@WS ₂ Nanostructure for Enhanced Hydrogen Evolution Catalysis. Advanced Functional Materials, 2017, 27, 1605802.	14.9	122
72	Two-dimensional metal phosphorus trisulfide nanosheet with solar hydrogen-evolving activity. Nano Energy, 2017, 40, 673-680.	16.0	91

#	Article	IF	Citations
73	Efficient Photocatalytic Hydrogen Evolution via Band Alignment Tailoring: Controllable Transition from Typeâ€l to Typeâ€l. Small, 2017, 13, 1702163.	10.0	47
74	Highâ€Performance Ultraviolet Photodetector Based on a Fewâ€Layered 2D NiPS ₃ Nanosheet. Advanced Functional Materials, 2017, 27, 1701342.	14.9	220
75	Ultrathin Singleâ€Crystalline CdTe Nanosheets Realized via Van der Waals Epitaxy. Advanced Materials, 2017, 29, 1703122.	21.0	118
76	Twoâ€Dimensional Nonâ€Layered Materials: Synthesis, Properties and Applications. Advanced Functional Materials, 2017, 27, 1603254.	14.9	161
77	Configurationâ€Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe ₂ /MoS ₂ . Advanced Functional Materials, 2016, 26, 5499-5506.	14.9	95
78	Engineering the Electronic Structure of 2D WS ₂ Nanosheets Using Co Incorporation as Co <i>_x(i>W_{(i-}<i>_x))S₂for Conspicuously Enhanced Hydrogen Generation. Small, 2016, 12, 3802-3809.</i></i>	10.0	60
79	Highâ€Performance Phototransistor of Epitaxial PbS Nanoplateâ€Graphene Heterostructure with Edge Contact. Advanced Materials, 2016, 28, 6497-6503.	21.0	51
80	Seleniumâ€Enriched Nickel Selenide Nanosheets as a Robust Electrocatalyst for Hydrogen Generation. Angewandte Chemie, 2016, 128, 7033-7038.	2.0	65
81	Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Applied Physics Letters, 2016, 108, .	3.3	95
82	Strong electrically tunable MoTe2/graphene van der Waals heterostructures for high-performance electronic and optoelectronic devices. Applied Physics Letters, 2016, 109, .	3. 3	51
83	Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Applied Physics Letters, 2016, 109, .	3.3	60
84	Carbon dots decorated vertical SnS2 nanosheets for efficient photocatalytic oxygen evolution. Applied Physics Letters, 2016, 109, .	3.3	20
85	Integrated High-Performance Infrared Phototransistor Arrays Composed of Nonlayered PbS–MoS ₂ Heterostructures with Edge Contacts. Nano Letters, 2016, 16, 6437-6444.	9.1	98
86	Highâ€Crystalline 2D Layered Pbl ₂ with Ultrasmooth Surface: Liquidâ€Phase Synthesis and Application of Highâ€Speed Photon Detection. Advanced Electronic Materials, 2016, 2, 1600291.	5.1	98
87	Epitaxial 2D PbS Nanoplates Arrays with Highly Efficient Infrared Response. Advanced Materials, 2016, 28, 8051-8057.	21.0	93
88	Rational Design of Ultralarge Pb _{1â^'<i>x</i>} Sn <i>_x</i> Te Nanoplates for Exploring Crystalline Symmetryâ€Protected Topological Transport. Advanced Materials, 2016, 28, 617-623.	21.0	38
89	Electrostatically tunable lateral MoTe ₂ p–n junction for use in high-performance optoelectronics. Nanoscale, 2016, 8, 13245-13250.	5.6	49
90	Enhanced Electrochemical H ₂ Evolution by Fewâ€Layered Metallic WS _{2(1â^'<i>x</i>)} Se _{2<i>x</i>>/i>} Nanoribbons. Advanced Functional Materials, 2015, 25, 6077-6083.	14.9	111

#	Article	IF	Citations
91	Low-Dimensional Topological Crystalline Insulators. Small, 2015, 11, 4613-4624.	10.0	24
92	van der Waals Epitaxial Ultrathin Two-Dimensional Nonlayered Semiconductor for Highly Efficient Flexible Optoelectronic Devices. Nano Letters, 2015, 15, 1183-1189.	9.1	127
93	A vertical-oriented WS ₂ nanosheet sensitized by graphene: an advanced electrocatalyst for hydrogen evolution reaction. Nanoscale, 2015, 7, 14760-14765.	5.6	88
94	Highly sensitive and fast phototransistor based on large size CVD-grown SnS ₂ nanosheets. Nanoscale, 2015, 7, 14093-14099.	5.6	126
95	High-performance flexible photodetectors based on GaTe nanosheets. Nanoscale, 2015, 7, 7252-7258.	5.6	126
96	Recent advances in transition-metal dichalcogenide based nanomaterials for water splitting. Nanoscale, 2015, 7, 19764-19788.	5.6	327
97	Tunable GaTe-MoS ₂ van der Waals p–n Junctions with Novel Optoelectronic Performance. Nano Letters, 2015, 15, 7558-7566.	9.1	369
98	Component-Controllable WS _{2(1–<i>x</i>)} Se _{2<i>x</i>} Nanotubes for Efficient Hydrogen Evolution Reaction. ACS Nano, 2014, 8, 8468-8476.	14.6	317
99	Van der Waals Epitaxy and Photoresponse of Hexagonal Tellurium Nanoplates on Flexible Mica Sheets. ACS Nano, 2014, 8, 7497-7505.	14.6	259
100	Role of Ga Vacancy on a Multilayer GaTe Phototransistor. ACS Nano, 2014, 8, 4859-4865.	14.6	162
101	Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale, 2013, 5, 8326.	5.6	950
102	Lowâ€Dimensional Teâ€Based Nanostructures. Advanced Materials, 2013, 25, 3915-3921.	21.0	31