Caroline C W Klaver

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3523253/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stargardt disease: monitoring incidence and diagnostic trends in the Netherlands using a nationwide disease registry. Acta Ophthalmologica, 2022, 100, 395-402.	1.1	10
2	Myopia progression from wearing first glasses to adult age: the DREAM Study. British Journal of Ophthalmology, 2022, 106, 820-824.	3.9	28
3	Physical Activity, Incidence, and Progression of Age-Related Macular Degeneration: A Multicohort Study. American Journal of Ophthalmology, 2022, 236, 99-106.	3.3	13
4	Early onset Xâ€linked female limited high myopia in three multigenerational families caused by novel mutations in the <i>ARR3</i> gene. Human Mutation, 2022, 43, 380-388.	2.5	11
5	Whole exome sequence analysis in 51 624 participants identifies novel genes and variants associated with refractive error and myopia. Human Molecular Genetics, 2022, , .	2.9	10
6	Prevalence of Myopic Macular Features in Dutch Individuals of European Ancestry With High Myopia. JAMA Ophthalmology, 2022, 140, 115.	2.5	13
7	Zebrafish: An In Vivo Screening Model to Study Ocular Phenotypes. Translational Vision Science and Technology, 2022, 11, 17.	2.2	6
8	The Phenotypic Course of Age-Related Macular Degeneration for ARMS2/HTRA1. Ophthalmology, 2022, 129, 752-764.	5.2	19
9	The Role of <i>GJD2</i> (Cx36) in Refractive Error Development. , 2022, 63, 5.		3
10	Whole exome sequencing of known eye genes reveals genetic causes for high myopia. Human Molecular Genetics, 2022, 31, 3290-3298.	2.9	16
11	Association of Diabetes Medication With Open-Angle Glaucoma, Age-Related Macular Degeneration, and Cataract in the Rotterdam Study. JAMA Ophthalmology, 2022, 140, 674.	2.5	15
12	Rates of spectacle wear in early childhood in the Netherlands. BMC Pediatrics, 2022, 22, .	1.7	1
13	Genetic Risk, Lifestyle, and Age-Related Macular Degeneration in Europe. Ophthalmology, 2021, 128, 1039-1049.	5.2	46
14	Development of a Genotype Assay for Age-Related Macular Degeneration. Ophthalmology, 2021, 128, 1604-1617.	5.2	38
15	Longâ€ŧerm longitudinal changes in axial length in the Caucasian myopic and hyperopic population with a phakic intraocular lens. Acta Ophthalmologica, 2021, 99, e562-e568.	1.1	3
16	Predicting Progression to Advanced Age-Related Macular Degeneration from Clinical, Genetic, and Lifestyle Factors UsingÂMachine Learning. Ophthalmology, 2021, 128, 587-597.	5.2	34
17	Association of Rhegmatogenous Retinal Detachment Incidence With Myopia Prevalence in the Netherlands. JAMA Ophthalmology, 2021, 139, 85.	2.5	30
18	A systematic review and participant-level meta-analysis found little association of retinal microvascular caliber with reduced kidney function. Kidney International, 2021, 99, 696-706.	5.2	8

#	Article	IF	CITATIONS
19	Differences in clinical presentation of primary openâ€angle glaucoma between African and European populations. Acta Ophthalmologica, 2021, 99, e1118-e1126.	1.1	6
20	Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nature Communications, 2021, 12, 1258.	12.8	196
21	Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color. Science Advances, 2021, 7, .	10.3	36
22	A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Communications Biology, 2021, 4, 266.	4.4	36
23	IMI 2021 Yearly Digest. , 2021, 62, 7.		36
24	Multimodal, multitask, multiattention (M3) deep learning detection of reticular pseudodrusen: Toward automated and accessible classification of age-related macular degeneration. Journal of the American Medical Informatics Association: JAMIA, 2021, 28, 1135-1148.	4.4	11
25	Genetic variation affects morphological retinal phenotypes extracted from UK Biobank optical coherence tomography images. PLoS Genetics, 2021, 17, e1009497.	3.5	50
26	Age-related macular degeneration. Nature Reviews Disease Primers, 2021, 7, 31.	30.5	340
27	Loss of Gap Junction Delta-2 (GJD2) gene orthologs leads to refractive error in zebrafish. Communications Biology, 2021, 4, 676.	4.4	19
28	Smartphone Use Associated with Refractive Error in Teenagers. Ophthalmology, 2021, 128, 1681-1688.	5.2	19
29	Enlargement of Geographic Atrophy From First Diagnosis to End of Life. JAMA Ophthalmology, 2021, 139, 743.	2.5	11
30	Phenotypic Consequences of the <i>GJD2</i> Risk Genotype in Myopia Development. , 2021, 62, 16.		5
31	Characteristics of p.Gln368Ter Myocilin Variant and Influence of Polygenic Risk on Glaucoma Penetrance in the UK Biobank. Ophthalmology, 2021, 128, 1300-1311.	5.2	27
32	GenNet framework: interpretable deep learning for predicting phenotypes from genetic data. Communications Biology, 2021, 4, 1094.	4.4	20
33	Consortium for Refractive Error and Myopia (CREAM): Vision, Mission, and Accomplishments. Essentials in Ophthalmology, 2021, , 381-407.	0.1	2
34	CLINICAL CHARACTERISTICS AND NATURAL HISTORY OF RHO-ASSOCIATED RETINITIS PIGMENTOSA. Retina, 2021, 41, 213-223.	1.7	18
35	Realâ€world treatment outcomes of neovascular Ageâ€related Macular Degeneration in the Netherlands. Acta Ophthalmologica, 2021, 99, e884-e892.	1.1	8
36	Evaluating the Occurrence of Rare Variants in the Complement Factor H Gene in Patients With Early-Onset Drusen Maculopathy. JAMA Ophthalmology, 2021, 139, 1218.	2.5	6

#	Article	IF	CITATIONS
37	Spectacle wear and refractive errors in Dutch children. European Journal of Public Health, 2021, 31, .	0.3	1
38	Association of Smoking, Alcohol Consumption, Blood Pressure, Body Mass Index, and Glycemic Risk Factors With Age-Related Macular Degeneration. JAMA Ophthalmology, 2021, 139, 1299.	2.5	29
39	Exploring Consensus on Preventive Measures and Identification of Patients at Risk of Age-Related Macular Degeneration Using the Delphi Process. Journal of Clinical Medicine, 2021, 10, 5432.	2.4	2
40	Physical Activity Spaces Not Effective against Socioeconomic Inequalities in Myopia Incidence: The Generation R Study. Optometry and Vision Science, 2021, 98, 1371-1378.	1.2	4
41	Whole genome sequencing and in vitro splice assays reveal genetic causes for inherited retinal diseases. Npj Genomic Medicine, 2021, 6, 97.	3.8	27
42	Genetic Risk in Families with Age-Related Macular Degeneration. Ophthalmology Science, 2021, 1, 100087.	2.5	5
43	Subfoveal choroidal thickness at age 9Âyears in relation to clinical and perinatal characteristics in the populationâ€based Generation R Study. Acta Ophthalmologica, 2020, 98, 172-176.	1.1	7
44	Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization. Nature Communications, 2020, 11, 29.	12.8	112
45	LONGITUDINAL STUDY OF RPE65-ASSOCIATED INHERITED RETINAL DEGENERATIONS. Retina, 2020, 40, 1812-1828.	1.7	12
46	A 3-year follow-up study of atropine treatment for progressive myopia in Europeans. Eye, 2020, 34, 2020-2028.	2.1	28
47	Response to Dr. Watts letter on "The impact of computer use on myopia development in childhood― Preventive Medicine, 2020, 139, 106069.	3.4	0
48	Association of Sex With Frequent and Mild <i>ABCA4</i> Alleles in Stargardt Disease. JAMA Ophthalmology, 2020, 138, 1035.	2.5	31
49	Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Communications Biology, 2020, 3, 755.	4.4	10
50	Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine, 2020, 22, 1235-1246.	2.4	92
51	Objectives, design and main findings until 2020 from the Rotterdam Study. European Journal of Epidemiology, 2020, 35, 483-517.	5.7	314
52	Genotype- and Phenotype-Based Subgroups in Geographic Atrophy Secondary to Age-Related Macular Degeneration. Ophthalmology Retina, 2020, 4, 1129-1137.	2.4	26
53	Integrating Metabolomics, Genomics, and Disease Pathways in Age-Related Macular Degeneration. Ophthalmology, 2020, 127, 1693-1709.	5.2	43
54	Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error. Communications Biology, 2020, 3, 133.	4.4	22

#	Article	IF	CITATIONS
55	A Deep Learning Model for Segmentation of Geographic Atrophy to Study Its Long-Term Natural History. Ophthalmology, 2020, 127, 1086-1096.	5.2	41
56	Myopia management in the Netherlands. Ophthalmic and Physiological Optics, 2020, 40, 230-240.	2.0	28
57	Meta-analysis of 542,934 subjects of European ancestry identifies new genes and mechanisms predisposing to refractive error and myopia. Nature Genetics, 2020, 52, 401-407.	21.4	180
58	Performance of Classification Systems for Age-Related Macular Degeneration in the Rotterdam Study. Translational Vision Science and Technology, 2020, 9, 26.	2.2	19
59	Evidence That Emmetropization Buffers Against Both Genetic and Environmental Risk Factors for Myopia. , 2020, 61, 41.		7
60	The impact of computer use on myopia development in childhood: The Generation R study. Preventive Medicine, 2020, 132, 105988.	3.4	79
61	Multitrait analysis of glaucoma identifies new risk loci and enables polygenic prediction of disease susceptibility and progression. Nature Genetics, 2020, 52, 160-166.	21.4	192
62	The Complications of Myopia: A Review and Meta-Analysis. , 2020, 61, 49.		263
63	The Genetics of Myopia. , 2020, , 95-132.		10
64	Environmental Risk Factors Can Reduce Axial Length Elongation and Myopia Incidence in 6- to 9-Year-Old Children. Ophthalmology, 2019, 126, 127-136.	5.2	64
65	Genetic variants linked to myopic macular degeneration in persons with high myopia: CREAM Consortium. PLoS ONE, 2019, 14, e0220143.	2.5	12
66	Dietary Patterns and Age-Related Macular Degeneration. , 2019, , 107-126.		0
67	Determining Possible Shared Genetic Architecture Between Myopia and Primary Open-Angle Glaucoma. , 2019, 60, 3142.		10
68	Growth in foetal life, infancy, and early childhood and the association with ocular biometry. Ophthalmic and Physiological Optics, 2019, 39, 245-252.	2.0	19
69	Association of Genetic Variants With Primary Open-Angle Glaucoma Among Individuals With African Ancestry. JAMA - Journal of the American Medical Association, 2019, 322, 1682.	7.4	50
70	Extending the Spectrum of EYS-Associated Retinal Disease to Macular Dystrophy. , 2019, 60, 2049.		16
71	IMI – Myopia Genetics Report. , 2019, 60, M89.		156
72	IMI – Myopia Control Reports Overview and Introduction. , 2019, 60, M1.		106

#	Article	IF	CITATIONS
73	Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the <i>RP1</i> Gene: Extending the <i>RP1</i> Disease Spectrum. , 2019, 60, 1192.		23
74	Interaction between lifestyle and genetic susceptibility in myopia: the Generation R study. European Journal of Epidemiology, 2019, 34, 777-784.	5.7	49
75	Diagnostic Accuracy of a Device for the Automated Detection of Diabetic Retinopathy in a Primary Care Setting. Diabetes Care, 2019, 42, 651-656.	8.6	77
76	Multi-trait genome-wide association study identifies new loci associated with optic disc parameters. Communications Biology, 2019, 2, 435.	4.4	22
77	Deep-intronic ABCA4 variants explain missing heritability in Stargardt disease and allow correction of splice defects by antisense oligonucleotides. Genetics in Medicine, 2019, 21, 1751-1760.	2.4	147
78	Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 393-406.	5.2	88
79	Intake of Vegetables, Fruit, and Fish is Beneficial for Age-Related Macular Degeneration. American Journal of Ophthalmology, 2019, 198, 70-79.	3.3	47
80	The European Eye Epidemiology spectralâ€domain optical coherence tomography classification of macular diseases for epidemiological studies. Acta Ophthalmologica, 2019, 97, 364-371.	1.1	34
81	CLINICAL AND GENETIC CHARACTERISTICS OF MALE PATIENTS WITH RPGR-ASSOCIATED RETINAL DYSTROPHIES. Retina, 2019, 39, 1186-1199.	1.7	56
82	Axial length growth and the risk of developing myopia in European children. Acta Ophthalmologica, 2018, 96, 301-309.	1.1	159
83	Antiplatelet and Anticoagulant Drugs Do Not Affect Visual Outcome in Neovascular Age-Related Macular Degeneration in the BRAMD Trial. American Journal of Ophthalmology, 2018, 187, 130-137.	3.3	12
84	A new perspective on lipid research in age-related macular degeneration. Progress in Retinal and Eye Research, 2018, 67, 56-86.	15.5	162
85	Non-syndromic retinitis pigmentosa. Progress in Retinal and Eye Research, 2018, 66, 157-186.	15.5	565
86	Vitamin A for Children With Retinitis Pigmentosa. JAMA Ophthalmology, 2018, 136, 496.	2.5	5
87	Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration. Survey of Ophthalmology, 2018, 63, 9-39.	4.0	98
88	Environmental factors explain socioeconomic prevalence differences in myopia in 6-year-old children. British Journal of Ophthalmology, 2018, 102, 243-247.	3.9	73
89	Genome-wide association study of primary open-angle glaucoma in continental and admixed African populations. Human Genetics, 2018, 137, 847-862.	3.8	40
90	The mediating role of the venules between smoking and ischemic stroke. European Journal of Epidemiology, 2018, 33, 1219-1228.	5.7	13

#	Article	IF	CITATIONS
91	The Common <i>ABCA4</i> Variant p.Asn1868lle Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in <i>trans</i> With Severe Variants. , 2018, 59, 3220.		67
92	Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus. Acta Ophthalmologica, 2018, 96, 459-464.	1.1	23
93	Clinical Characterization of 66 Patients With Congenital Retinal Disease Due to the Deep-Intronic c.2991+1655A>G Mutation in <i>CEP290</i> . , 2018, 59, 4384.		21
94	Genome-wide association meta-analysis highlights light-induced signaling as a driver for refractive error. Nature Genetics, 2018, 50, 834-848.	21.4	239
95	Cross-ancestry genome-wide association analysis of corneal thickness strengthens link between complex and Mendelian eye diseases. Nature Communications, 2018, 9, 1864.	12.8	63
96	Thinner retinal layers are associated with changes in the visual pathway: A populationâ€based study. Human Brain Mapping, 2018, 39, 4290-4301.	3.6	25
97	Association of Retinal Neurodegeneration on Optical Coherence Tomography With Dementia. JAMA Neurology, 2018, 75, 1256.	9.0	160
98	The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the <i>RPGR</i> Gene. , 2018, 59, 4123.		41
99	A genome-wide association study of corneal astigmatism: The CREAM Consortium. Molecular Vision, 2018, 24, 127-142.	1.1	10
100	Design of a frailty index among community living middle-aged and older people: The Rotterdam study. Maturitas, 2017, 97, 14-20.	2.4	27
101	New insights into the genetics of primary open-angle glaucoma based on meta-analyses of intraocular pressure and optic disc characteristics Human Molecular Genetics, 2017, 26, ddw399.	2.9	120
102	Diagnostic exome sequencing in 266 Dutch patients with visual impairment. European Journal of Human Genetics, 2017, 25, 591-599.	2.8	104
103	Five-year progression of unilateral age-related macular degeneration to bilateral involvement: the Three Continent AMD Consortium report. British Journal of Ophthalmology, 2017, 101, 1185-1192.	3.9	38
104	Genetic variants in microRNAs and their binding sites within gene 3′UTRs associate with susceptibility to age-related macular degeneration. Human Mutation, 2017, 38, 827-838.	2.5	30
105	Haplotype reference consortium panel: Practical implications of imputations with large reference panels. Human Mutation, 2017, 38, 1025-1032.	2.5	43
106	Genotypic and Phenotypic Characteristics of CRB1 -Associated Retinal Dystrophies. Ophthalmology, 2017, 124, 884-895.	5.2	75
107	The Rotterdam Study: 2018 update on objectives, design and main results. European Journal of Epidemiology, 2017, 32, 807-850.	5.7	379
108	Genetic correlations between intraocular pressure, blood pressure and primary open-angle glaucoma: a multi-cohort analysis. European Journal of Human Genetics, 2017, 25, 1261-1267.	2.8	18

#	Article	IF	CITATIONS
109	Development of Refractive Errors—What Can We Learn From Inherited Retinal Dystrophies?. American Journal of Ophthalmology, 2017, 182, 81-89.	3.3	61
110	Prevalence of Age-Related Macular Degeneration in Europe. Ophthalmology, 2017, 124, 1753-1763.	5.2	337
111	[P3–206]: RETINAL NEURODEGENERATION ON OPTICAL COHERENCE TOMOGRAPHY AND RISK OF DEMENTIA AND STROKE. Alzheimer's and Dementia, 2017, 13, P1014.	0.8	1
112	A Genome-Wide Scan for MicroRNA-Related Genetic Variants Associated With Primary Open-Angle Glaucoma. , 2017, 58, 5368.		25
113	Genetic African Ancestry Is Associated With Central Corneal Thickness and Intraocular Pressure in Primary Open-Angle Glaucoma. , 2017, 58, 3172.		11
114	Epidemiology of Reticular Pseudodrusen in Age-Related Macular Degeneration: The Rotterdam Study. , 2016, 57, 5593.		36
115	Automated Segmentability Index for Layer Segmentation of Macular SD-OCT Images. Translational Vision Science and Technology, 2016, 5, 14.	2.2	15
116	Patient-reported utilities in bilateral visual impairment from amblyopia and age-related macular degeneration. BMC Ophthalmology, 2016, 16, 56.	1.4	6
117	The Generation R Study: design and cohort update 2017. European Journal of Epidemiology, 2016, 31, 1243-1264.	5.7	608
118	Associations with intraocular pressure across Europe: The European Eye Epidemiology (E3) Consortium. European Journal of Epidemiology, 2016, 31, 1101-1111.	5.7	26
119	Low serum vitamin D is associated with axial length and risk of myopia in young children. European Journal of Epidemiology, 2016, 31, 491-499.	5.7	78
120	When do myopia genes have their effect? Comparison of genetic risks between children and adults. Genetic Epidemiology, 2016, 40, 756-766.	1.3	34
121	Mutations in the polyglutamylase gene <i>TTLL5</i> , expressed in photoreceptor cells and spermatozoa, are associated with cone-rod degeneration and reduced male fertility. Human Molecular Genetics, 2016, 25, ddw282.	2.9	27
122	Meta-analysis of gene–environment-wide association scans accounting for education level identifies additional loci for refractive error. Nature Communications, 2016, 7, 11008.	12.8	104
123	Association of Axial Length With Risk of Uncorrectable Visual Impairment for Europeans With Myopia. JAMA Ophthalmology, 2016, 134, 1355.	2.5	211
124	Childhood gene-environment interactions and age-dependent effects of genetic variants associated with refractive error and myopia: The CREAM Consortium. Scientific Reports, 2016, 6, 25853.	3.3	80
125	Defining a Minimum Set of Standardized Patient-centered Outcome Measures for Macular Degeneration. American Journal of Ophthalmology, 2016, 168, 1-12.	3.3	92
126	Ophthalmic epidemiology in Europe: the "European Eye Epidemiology―(E3) consortium. European Journal of Epidemiology, 2016, 31, 197-210.	5.7	32

#	Article	IF	CITATIONS
127	Duke-Elder's Views on Prognosis, Prophylaxis, and Treatment of Myopia: Way Ahead of His Time. Strabismus, 2016, 24, 40-43.	0.7	9
128	Visual Prognosis in USH2A-Associated Retinitis Pigmentosa Is Worse for Patients with Usher Syndrome Type IIa Than for Those with Nonsyndromic Retinitis Pigmentosa. Ophthalmology, 2016, 123, 1151-1160.	5.2	76
129	A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nature Genetics, 2016, 48, 134-143.	21.4	1,167
130	Validity of Automated Choroidal Segmentation in SS-OCT and SD-OCT. , 2015, 56, 3202.		74
131	Characterizing the Impact of Off-Axis Scan Acquisition on the Reproducibility of Total Retinal Thickness Measurements in SDOCT Volumes. Translational Vision Science and Technology, 2015, 4, 3.	2.2	9
132	Thyroid function and age-related macular degeneration: a prospective population-based cohort study - the Rotterdam Study. BMC Medicine, 2015, 13, 94.	5.5	53
133	Method for segmentation of the layers in the outer retina. , 2015, 2015, 5646-9.		3
134	Visual Consequences of Refractive Errors in the General Population. Ophthalmology, 2015, 122, 101-109.	5.2	119
135	ARHGEF12 influences the risk of glaucoma by increasing intraocular pressure. Human Molecular Genetics, 2015, 24, 2689-2699.	2.9	79
136	Metaâ€analysis of Genomeâ€Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology. Genetic Epidemiology, 2015, 39, 207-216.	1.3	72
137	Automatic Identification of Reticular Pseudodrusen Using Multimodal Retinal Image Analysis. Investigative Ophthalmology and Visual Science, 2015, 56, 633-639.	3.3	32
138	Increasing Prevalence of Myopia in Europe and the Impact of Education. Ophthalmology, 2015, 122, 1489-1497.	5.2	329
139	The Effect of Light Deprivation in Patients WithÂStargardt Disease. American Journal of Ophthalmology, 2015, 159, 964-972.e2.	3.3	29
140	Genome-wide association study for refractive astigmatism reveals genetic co-determination with spherical equivalent refractive error: the CREAM consortium. Human Genetics, 2015, 134, 131-146.	3.8	24
141	Prevalence of refractive error in Europe: the European Eye Epidemiology (E3) Consortium. European Journal of Epidemiology, 2015, 30, 305-315.	5.7	306
142	Association of Smoking and <i>CFH</i> and <i>ARMS2</i> Risk Variants With Younger Age at Onset of Neovascular Age-Related Macular Degeneration. JAMA Ophthalmology, 2015, 133, 533.	2.5	27
143	WNT10A exonic variant increases the risk of keratoconus by decreasing corneal thickness. Human Molecular Genetics, 2015, 24, 5060-5068.	2.9	58
144	The Rotterdam Study: 2016 objectives and design update. European Journal of Epidemiology, 2015, 30, 661-708.	5.7	358

#	Article	IF	CITATIONS
145	Heterozygous Deep-Intronic Variants and Deletions in <i>ABCA4</i> in Persons with Retinal Dystrophies and One Exonic <i>ABCA4</i> Variant. Human Mutation, 2015, 36, 43-47.	2.5	68
146	The efficacy of microarray screening for autosomal recessive retinitis pigmentosa in routine clinical practice. Molecular Vision, 2015, 21, 461-76.	1.1	18
147	Genome-Wide Meta-Analysis of Myopia and Hyperopia Provides Evidence for Replication of 11 Loci. PLoS ONE, 2014, 9, e107110.	2.5	40
148	The RD5000 Database: Facilitating Clinical, Genetic, and Therapeutic Studies on Inherited Retinal Diseases. , 2014, 55, 7355.		27
149	The Generation R Study: Biobank update 2015. European Journal of Epidemiology, 2014, 29, 911-927.	5.7	189
150	Meta-analysis of genome-wide association studies identifies novel loci that influence cupping and the glaucomatous process. Nature Communications, 2014, 5, 4883.	12.8	89
151	Population-Based Evaluation of Retinal Nerve Fiber Layer, Retinal Ganglion Cell Layer, and Inner Plexiform Layer as a Diagnostic Tool For Glaucoma. Investigative Ophthalmology and Visual Science, 2014, 55, 8428-8438.	3.3	33
152	Intrinsic and Extrinsic Risk Factors for Sagging Eyelids. JAMA Dermatology, 2014, 150, 836.	4.1	64
153	Exome sequencing and functional analyses suggest that SIX6 is a gene involved in an altered proliferation–differentiation balance early in life and optic nerve degeneration at old age. Human Molecular Genetics, 2014, 23, 1320-1332.	2.9	63
154	Genome-wide analysis of multi-ancestry cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nature Genetics, 2014, 46, 1126-1130.	21.4	212
155	Direct-to-Consumer Personal Genome Testing for Age-Related Macular Degeneration. , 2014, 55, 6167.		18
156	Harmonizing the Classification of Age-related Macular Degeneration in the Three-Continent AMD Consortium. Ophthalmic Epidemiology, 2014, 21, 14-23.	1.7	83
157	Lipids, Lipid Genes, and Incident Age-Related Macular Degeneration: The Three Continent Age-Related Macular Degeneration Consortium. American Journal of Ophthalmology, 2014, 158, 513-524.e3.	3.3	81
158	Causes and consequences of inherited cone disorders. Progress in Retinal and Eye Research, 2014, 42, 1-26.	15.5	127
159	Analysis of Rare Variants in the C3 Gene in Patients with Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e94165.	2.5	34
160	Education influences the role of genetics in myopia. European Journal of Epidemiology, 2013, 28, 973-980.	5.7	102
161	Meta-analysis of genome-wide association studies in five cohorts reveals common variants in RBFOX1, a regulator of tissue-specific splicing, associated with refractive error. Human Molecular Genetics, 2013, 22, 2754-2764.	2.9	60
162	The Rotterdam Study: 2014 objectives and design update. European Journal of Epidemiology, 2013, 28, 889-926.	5.7	282

#	Article	IF	CITATIONS
163	Nine Loci for Ocular Axial Length Identified through Genome-wide Association Studies, Including Shared Loci with Refractive Error. American Journal of Human Genetics, 2013, 93, 264-277.	6.2	139
164	Prediction of Age-related Macular Degeneration in the General Population. Ophthalmology, 2013, 120, 2644-2655.	5.2	84
165	Genome-wide meta-analyses of multiancestry cohorts identify multiple new susceptibility loci for refractive error and myopia. Nature Genetics, 2013, 45, 314-318.	21.4	398
166	Accuracy of Four Commonly Used Color Vision Tests in the Identification of Cone Disorders. Ophthalmic Epidemiology, 2013, 20, 114-122.	1.7	18
167	Seven new loci associated with age-related macular degeneration. Nature Genetics, 2013, 45, 433-439.	21.4	687
168	Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nature Genetics, 2013, 45, 155-163.	21.4	269
169	Identification of a Candidate Gene for Astigmatism. , 2013, 54, 1260.		31
170	Large scale international replication and meta-analysis study confirms association of the 15q14 locus with myopia. The CREAM consortium. Human Genetics, 2012, 131, 1467-1480.	3.8	67
171	Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. Human Genetics, 2012, 131, 1783-1793.	3.8	56
172	Risk Alleles in CFH and ARMS2 Are Independently Associated with Systemic Complement Activation in Age-related Macular Degeneration. Ophthalmology, 2012, 119, 339-346.	5.2	127
173	Clinical Course, Genetic Etiology, and Visual Outcome in Cone and Cone–Rod Dystrophy. Ophthalmology, 2012, 119, 819-826.	5.2	115
174	Simultaneous Mutation Detection in 90 Retinal Disease Genes in Multiple Patients Using a Custom-designed 300-kb Retinal Resequencing Chip. Ophthalmology, 2011, 118, 160-167.e3.	5.2	25
175	The Rotterdam Study: 2012 objectives and design update. European Journal of Epidemiology, 2011, 26, 657-686.	5.7	273
176	Clinical course of cone dystrophy caused by mutations in the RPGR gene. Graefe's Archive for Clinical and Experimental Ophthalmology, 2011, 249, 1527-1535.	1.9	36
177	Sifting the wheat from the chaff: prioritizing GWAS results by identifying consistency across analytical methods. Genetic Epidemiology, 2011, 35, 745-754.	1.3	7
178	Reducing the Genetic Risk of Age-Related Macular Degeneration With Dietary Antioxidants, Zinc, and ω-3 Fatty Acids. JAMA Ophthalmology, 2011, 129, 758.	2.4	177
179	Common genetic variants associated with open-angle glaucoma. Human Molecular Genetics, 2011, 20, 2464-2471.	2.9	152
180	A genome-wide association study identifies a susceptibility locus for refractive errors and myopia at 15q14. Nature Genetics, 2010, 42, 897-901.	21.4	200

#	Article	IF	CITATIONS
181	A genome-wide association study for myopia and refractive error identifies a susceptibility locus at 15q25. Nature Genetics, 2010, 42, 902-905.	21.4	204
182	Genetic Etiology and Clinical Consequences of Complete and Incomplete Achromatopsia. Ophthalmology, 2009, 116, 1984-1989.e1.	5.2	112
183	Three Genome-wide Association Studies and a Linkage Analysis Identify HERC2 as a Human Iris Color Gene. American Journal of Human Genetics, 2008, 82, 411-423.	6.2	220
184	Reduced secretion of fibulin 5 in age-related macular degeneration and cutis laxa. Human Mutation, 2006, 27, 568-574.	2.5	73
185	Complement Factor H Polymorphism, Complement Activators, and Risk of Age-Related Macular Degeneration. JAMA - Journal of the American Medical Association, 2006, 296, 301.	7.4	306
186	Dietary Intake of Antioxidants and Risk of Age-Related Macular Degeneration. JAMA - Journal of the American Medical Association, 2005, 294, 3101.	7.4	308
187	Causes and Prevalence of Visual Impairment Among Adults in the UnitedStates. JAMA Ophthalmology, 2004, 122, 477.	2.4	2,296
188	Cholesterol and age-related macular degeneration: is there a link?. American Journal of Ophthalmology, 2004, 137, 750-752.	3.3	102
189	Epidemiology of age-related maculopathy: a review. European Journal of Epidemiology, 2003, 18, 845-854.	5.7	174
190	The Risk and Natural Course of Age-Related Maculopathy. JAMA Ophthalmology, 2003, 121, 519.	2.4	313
191	Age-Specific Prevalence and Causes of Blindness and Visual Impairment in an Older Population. JAMA Ophthalmology, 1998, 116, 653.	2.4	821
192	Smoking Is Also Associated With Age-Related Macular Degeneration in Persons Aged 85 Years and Older: The Rotterdam Study. JAMA Ophthalmology, 1997, 115, 945.	2.4	21
193	An international classification and grading system for age-related maculopathy and age-related macular degeneration. Survey of Ophthalmology, 1995, 39, 367-374.	4.0	1,735