Sue-Hwa Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3522240/publications.pdf Version: 2024-02-01

SHE-HWALIN

#	Article	IF	CITATIONS
1	Prostate tumor-induced stromal reprogramming generates Tenascin C that promotes prostate cancer metastasis through YAP/TAZ inhibition. Oncogene, 2022, 41, 757-769.	5.9	12
2	Stem Cell Theory of Cancer: Rude Awakening or Bad Dream from Cancer Dormancy?. Cancers, 2022, 14, 655.	3.7	8
3	Retinoic Acid Receptor Activation Reduces Metastatic Prostate Cancer Bone Lesions by Blocking the Endothelial-to-Osteoblast Transition. Cancer Research, 2022, 82, 3158-3171.	0.9	9
4	Combinatorial effect of radium-223 and irreversible electroporation on prostate cancer bone metastasis in mice. International Journal of Hyperthermia, 2021, 38, 650-662.	2.5	2
5	Radium-223 Treatment Increases Immune Checkpoint Expression in Extracellular Vesicles from the Metastatic Prostate Cancer Bone Microenvironment. Clinical Cancer Research, 2021, 27, 3253-3264.	7.0	26
6	Multiple pathways coordinating reprogramming of endothelial cells into osteoblasts by BMP4. IScience, 2021, 24, 102388.	4.1	12
7	Statins reduce castration-induced bone marrow adiposity and prostate cancer progression in bone. Oncogene, 2021, 40, 4592-4603.	5.9	10
8	P4HA2-induced prolyl hydroxylation suppresses YAP1-mediated prostate cancer cell migration, invasion, and metastasis. Oncogene, 2021, 40, 6049-6056.	5.9	19
9	Reciprocal and Autonomous Glucocorticoid and Androgen Receptor Activation in Salivary Duct Carcinoma. Clinical Cancer Research, 2020, 26, 1175-1184.	7.0	8
10	A Phase II Study of Cabozantinib and Androgen Ablation in Patients with Hormone-NaÃ ⁻ ve Metastatic Prostate Cancer. Clinical Cancer Research, 2020, 26, 990-999.	7.0	11
11	Resistance to MET/VEGFR2 Inhibition by Cabozantinib Is Mediated by YAP/TBX5-Dependent Induction of FGFR1 in Castration-Resistant Prostate Cancer. Cancers, 2020, 12, 244.	3.7	21
12	Cabozantinib Reverses Renal Cell Carcinoma–mediated Osteoblast Inhibition in Three-dimensional Coculture <i>In Vitro</i> and Reduces Bone Osteolysis <i>In Vivo</i> . Molecular Cancer Therapeutics, 2020, 19, 1266-1278.	4.1	9
13	Bone vascular niche E-selectin induces mesenchymal–epithelial transition and Wnt activation in cancer cells to promote bone metastasis. Nature Cell Biology, 2019, 21, 627-639.	10.3	160
14	Bone secreted factors induce cellular quiescence in prostate cancer cells. Scientific Reports, 2019, 9, 18635.	3.3	26
15	Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII–p38MAPK–pS249/T252RB Pathway. Cancer Research, 2018, 78, 2911-2924.	0.9	117
16	Organelle-Derived Acetyl-CoA Promotes Prostate Cancer Cell Survival, Migration, and Metastasis via Activation of Calmodulin Kinase II. Cancer Research, 2018, 78, 2490-2502.	0.9	27
17	BICH3 Promotes Osteolytic Lesions in Renal Cell Carcinoma Bone Metastasis by Inhibiting Osteoblast Differentiation. Neoplasia, 2018, 20, 32-43.	5.3	13
18	Impact of Detergents on Membrane Protein Complex Isolation. Journal of Proteome Research, 2018, 17, 348-358.	3.7	22

SUE-HWA LIN

#	Article	IF	CITATIONS
19	Frequent PTEN loss and differential HER2/PI3K signaling pathway alterations in salivary duct carcinoma: Implications for targeted therapy. Cancer, 2018, 124, 3693-3705.	4.1	26
20	Osteoblastic Factors in Prostate Cancer Bone Metastasis. Current Osteoporosis Reports, 2018, 16, 642-647.	3.6	48
21	Identification of Clypican-3 (GPC3) Expression in a Lethal Subgroup of Refractory Cisplatin-Resistant Testicular Germ-Cell Tumors. Clinical Genitourinary Cancer, 2018, 16, 325-327.	1.9	2
22	Outcomes of Patients With Metastatic Renal Cell Carcinoma and Bone Metastases in the Targeted Therapy Era. Clinical Genitourinary Cancer, 2017, 15, 363-370.	1.9	17
23	Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer. Developmental Cell, 2017, 41, 467-480.e3.	7.0	75
24	LRP1-Dependent BMPER Signaling Regulates Lipopolysaccharide-Induced Vascular Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1524-1535.	2.4	29
25	Clinical predictors of survival in patients with castration-resistant prostate cancer receiving sipuleucel-T cellular immunotherapy. Cancer Chemotherapy and Pharmacology, 2017, 80, 583-589.	2.3	6
26	Proteomics Profiling of Exosomes from Primary Mouse Osteoblasts under Proliferation versus Mineralization Conditions and Characterization of Their Uptake into Prostate Cancer Cells. Journal of Proteome Research, 2017, 16, 2709-2728.	3.7	43
27	Sex Differences and Bone Metastases of Breast, Lung, and Prostate Cancers: Do Bone Homing Cancers Favor Feminized Bone Marrow?. Frontiers in Oncology, 2017, 7, 163.	2.8	19
28	Angiomotin regulates prostate cancer cell proliferation by signaling through the Hippo-YAP pathway. Oncotarget, 2017, 8, 10145-10160.	1.8	16
29	Cabozantinib-induced osteoblast secretome promotes survival and migration of metastatic prostate cancer cells in bone. Oncotarget, 2017, 8, 74987-75006.	1.8	9
30	Dynamic Phosphorylation of NudC by Aurora B in Cytokinesis. PLoS ONE, 2016, 11, e0153455.	2.5	5
31	Mutational Profiles Reveal an Aberrant TGF-β-CEA Regulated Pathway in Colon Adenomas. PLoS ONE, 2016, 11, e0153933.	2.5	17
32	Intratumoral heterogeneity: Role of differentiation in a potentially lethal phenotype of testicular cancer. Cancer, 2016, 122, 1836-1843.	4.1	39
33	Phosphorylation-Dependent Activation of the ESCRT Function of ALIX in Cytokinetic Abscission and Retroviral Budding. Developmental Cell, 2016, 36, 331-343.	7.0	19
34	Integrating Murine and Clinical Trials with Cabozantinib to Understand Roles of MET and VEGFR2 as Targets for Growth Inhibition of Prostate Cancer. Clinical Cancer Research, 2016, 22, 107-121.	7.0	44
35	Therapeutic relevance of the protein phosphatase 2A in cancer. Oncotarget, 2016, 7, 61544-61561.	1.8	27
36	Intratumoral heterogeneity and chemoresistance in nonseminomatous germ cell tumor of the testis. Oncotarget, 2016, 7, 86280-86289.	1.8	25

SUE-HWA LIN

#	Article	IF	CITATIONS
37	ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discovery, 2015, 1, 15018.	6.7	32
38	Maintenance Therapy Containing Metformin and/or Zyflamend for Advanced Prostate Cancer: A Case Series. Case Reports in Oncological Medicine, 2015, 2015, 1-5.	0.3	10
39	Identification of Bone-Derived Factors Conferring <i>De Novo</i> Therapeutic Resistance in Metastatic Prostate Cancer. Cancer Research, 2015, 75, 4949-4959.	0.9	43
40	RSK Promotes Prostate Cancer Progression in Bone through ING3, CKAP2, and PTK6-Mediated Cell Survival. Molecular Cancer Research, 2015, 13, 348-357.	3.4	43
41	Three-dimensional (3D) culture of bone-derived human 786-O renal cell carcinoma retains relevant clinical characteristics of bone metastases. Cancer Letters, 2015, 365, 89-95.	7.2	29
42	Lectin-Magnetic Beads for Plasma Membrane Isolation. Cold Spring Harbor Protocols, 2015, 2015, pdb.prot074427.	0.3	4
43	Selection and identification of ligand peptides targeting a model of castrate-resistant osteogenic prostate cancer and their receptors. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3776-3781.	7.1	53
44	Cadherin-11 endocytosis through binding to clathrin promotes cadherin-11-mediated migration in prostate cancer cells. Journal of Cell Science, 2015, 128, 4629-41.	2.0	18
45	Angiomotin is a novel component of cadherinâ€11/βâ€catenin/p120 complex and is critical for cadherinâ€11â€mediated cell migration. FASEB Journal, 2015, 29, 1080-1091.	0.5	30
46	Yes-mediated phosphorylation of focal adhesion kinase at tyrosine 861 increases metastatic potential of prostate cancer cells. Oncotarget, 2015, 6, 10175-10194.	1.8	14
47	The Oncogenic STP Axis Promotes Triple-Negative Breast Cancer via Degradation of the REST Tumor Suppressor. Cell Reports, 2014, 9, 1318-1332.	6.4	24
48	Alterations Associated with Androgen Receptor Gene Activation in Salivary Duct Carcinoma of Both Sexes: Potential Therapeutic Ramifications. Clinical Cancer Research, 2014, 20, 6570-6581.	7.0	67
49	Cadherin-11 in Renal Cell Carcinoma Bone Metastasis. PLoS ONE, 2014, 9, e89880.	2.5	31
50	Targeting Constitutively Activated β1 Integrins Inhibits Prostate Cancer Metastasis. Molecular Cancer Research, 2013, 11, 405-417.	3.4	83
51	Molecular Classification of Prostate Cancer Progression: Foundation for Marker-Driven Treatment of Prostate Cancer. Cancer Discovery, 2013, 3, 849-861.	9.4	120
52	Inhibition of Cell Adhesion by a Cadherin-11 Antibody Thwarts Bone Metastasis. Molecular Cancer Research, 2013, 11, 1401-1411.	3.4	41
53	Aberrant expression of katanin p60 in prostate cancer bone metastasis. Prostate, 2012, 72, 291-300.	2.3	24
54	BMP4 Promotes Prostate Tumor Growth in Bone through Osteogenesis . Cancer Research, 2011, 71, 5194-5203.	0.9	120

Sue-Hwa Lin

#	Article	IF	CITATIONS
55	Cadherin-11 Increases Migration and Invasion of Prostate Cancer Cells and Enhances their Interaction with Osteoblasts. Cancer Research, 2010, 70, 4580-4589.	0.9	113
56	Chapter 35 Purification of Membrane Proteins. Methods in Enzymology, 2009, 463, 619-629.	1.0	65
57	Soluble ErbB3 Levels in Bone Marrow and Plasma of Men with Prostate Cancer. Clinical Cancer Research, 2008, 14, 3729-3736.	7.0	23
58	Cadherin-11 Promotes the Metastasis of Prostate Cancer Cells to Bone. Molecular Cancer Research, 2008, 6, 1259-1267.	3.4	162
59	Androgen receptor–negative human prostate cancer cells induce osteogenesis in mice through FGF9-mediated mechanisms. Journal of Clinical Investigation, 2008, 118, 2697-710.	8.2	153
60	A Secreted Isoform of ErbB3 Promotes Osteonectin Expression in Bone and Enhances the Invasiveness of Prostate Cancer Cells. Cancer Research, 2007, 67, 6544-6548.	0.9	66
61	Osteoblasts in prostate cancer metastasis to bone. Nature Reviews Cancer, 2005, 5, 21-28.	28.4	499
62	Inhibition of prostate tumor growth by overexpression of NudC, a microtubule motor-associated protein. Oncogene, 2004, 23, 2499-2506.	5.9	30
63	Clinical Aspects of Bone Metastases in Prostate Cancer. Cancer Treatment and Research, 2004, 118, 23-46.	0.5	18
64	Prolactin Modulation of Immune and Inflammatory Responses. Endocrine Reviews, 2002, 57, 435-455.	6.7	177
65	Prolactin activation of IRF-1 transcription involves changes in histone acetylation. FEBS Letters, 2001, 488, 91-94.	2.8	11
66	Expression and androgen regulation of C-CAM cell adhesion molecule isoforms in rat dorsal and ventral prostate. Oncogene, 1999, 18, 3252-3260.	5.9	7
67	C-CAM1 expression: Differential effects on morphology, differentiation state and suppression of human PC-3 prostate carcinoma cells. Oncogene, 1999, 18, 3261-3276.	5.9	11
68	Structural analysis of the C-CAM1 molecule for its tumor suppression function in human prostate cancer. , 1999, 41, 31-38.		9
69	Association of an 80 kDa protein with C-CAM1 cytoplasmic domain correlates with C-CAM1-mediated growth inhibition. Oncogene, 1998, 16, 1141-1147.	5.9	17
70	Characterization of BRCA2: temperature sensitivity of detection and cell-cycle regulated expression. Oncogene, 1998, 17, 2377-2381.	5.9	16
71	Suppression of tumorigenicity of breast cancer cells by an epithelial cell adhesion molecule (C-CAM1): the adhesion and growth suppression are mediated by different domains. Oncogene, 1997, 14, 1697-1704.	5.9	94
72	Growth Hormone-Induced Tyrosyl Phosphorylation and Deoxyribonucleic Acid Binding Activity of Stat5A and Stat5B. Endocrinology, 1997, 138, 3426-3434.	2.8	35

#	Article	IF	CITATIONS
73	Functional expression of a human thrombin receptor in Sf9 insect cells: evidence for an active tethered ligand. Biochemical Journal, 1996, 314, 603-611.	3.7	21
74	Polymorphism of human immunoglobulin VH4 germ-line genes. European Journal of Immunology, 1992, 22, 1075-1082.	2.9	58