
Stefan Karlsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3522165/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Successful gene therapy of Diamond-Blackfan anemia in a mouse model and human CD34 ⁺ cord blood hematopoietic stem cells using a clinically applicable lentiviral vector. Haematologica, 2022, 107, 446-456.	3.5	13
2	BMPR1a Is Required for the Optimal TGFβ1-Dependent CD207+ Langerhans Cell Differentiation and Limits Skin Inflammation through CD11c+ Cells. Journal of Investigative Dermatology, 2022, 142, 2446-2454.e3.	0.7	3
3	Single-cell transcriptional profiling informs efficient reprogramming of human somatic cells to cross-presenting dendritic cells. Science Immunology, 2022, 7, eabg5539.	11.9	16
4	BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica, 2021, 106, 2203-2214.	3.5	6
5	Correction of pathology in mice displaying Gaucher disease type 1 by a clinically-applicable lentiviral vector. Molecular Therapy - Methods and Clinical Development, 2021, 20, 312-323.	4.1	13
6	Bone marrow transplantation without myeloablative conditioning in a mouse model for Diamond-Blackfan anemia corrects the disease phenotype. Experimental Hematology, 2021, 99, 44-53.e2.	0.4	3
7	S100A6 is a critical regulator of hematopoietic stem cells. Leukemia, 2020, 34, 3323-3337.	7.2	21
8	Fetal gene therapy for neurodegenerative disease of infants. Nature Medicine, 2018, 24, 1317-1323.	30.7	117
9	Tipping Clonal Hematopoiesis into Transformation. New England Journal of Medicine, 2018, 379, 295-296.	27.0	3
10	Roscoe Owen Brady, MD: Remembrances of co-investigators and colleagues. Molecular Genetics and Metabolism, 2017, 120, 1-7.	1.1	3
11	Lentiviral Vectors with Cellular Promoters Correct Anemia and Lethal Bone Marrow Failure in a Mouse Model for Diamond-Blackfan Anemia. Molecular Therapy, 2017, 25, 1805-1814.	8.2	19
12	The stem cell regulator PEDF is dispensable for maintenance and function of hematopoietic stem cells. Scientific Reports, 2017, 7, 10134.	3.3	4
13	Signaling via Smad2 and Smad3 is dispensable for adult murine hematopoietic stem cell function inAvivo. Experimental Hematology, 2017, 55, 34-44.e2.	0.4	4
14	A network including TGFβ/Smad4, Gata2, and p57 regulates proliferation ofÂmouse hematopoietic progenitor cells. Experimental Hematology, 2016, 44, 399-409.e5.	0.4	10
15	Inactivation of TGFβ receptors in stem cells drives cutaneous squamous cell carcinoma. Nature Communications, 2016, 7, 12493.	12.8	81
16	Glucosylated cholesterol in mammalian cells and tissues: formation and degradation by multiple cellular β-glucosidases. Journal of Lipid Research, 2016, 57, 451-463.	4.2	61
17	Lentiviral Gene Therapy Using Cellular Promoters Cures Type 1 Gaucher Disease in Mice. Molecular Therapy, 2015, 23, 835-844.	8.2	55
18	TGF-β signaling in the control of hematopoietic stem cells. Blood, 2015, 125, 3542-3550.	1.4	207

#	Article	IF	CITATIONS
19	Glucocorticoids improve erythroid progenitor maintenance and dampen <i>Trp53</i> response in a mouse model of Diamond–Blackfan anaemia. British Journal of Haematology, 2015, 171, 517-529.	2.5	18
20	The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease. Haematologica, 2014, 99, 647-655.	3.5	18
21	Dppa5 Improves Hematopoietic Stem Cell Activity by Reducing Endoplasmic Reticulum Stress. Cell Reports, 2014, 7, 1381-1392.	6.4	69
22	Gene therapy cures the anemia and lethal bone marrow failure in a mouse model of RPS19-deficient Diamond-Blackfan anemia. Haematologica, 2014, 99, 1792-1798.	3.5	26
23	The Tetraspanin CD9 Affords High-Purity Capture of All Murine Hematopoietic Stem Cells. Cell Reports, 2013, 4, 642-648.	6.4	42
24	Glucocorticoids Reduce Expression Of p53 Target Genes and Reverse Anemia In a Mouse Model Of Diamond-Blackfan Anemia. Blood, 2013, 122, 3703-3703.	1.4	0
25	Dietary L-leucine improves the anemia in a mouse model for Diamond-Blackfan anemia. Blood, 2012, 120, 2225-2228.	1.4	80
26	Developmental Pluripotency Associated 5 (Dppa5) Regulates Hematopoietic Stem Cell Reconstitution Capacity by Modulating Cellular Metabolism and ER Stress. Blood, 2012, 120, 847-847.	1.4	2
27	Gene Therapy Corrects the Lethal Bone Marrow Failure in a Mouse Model for RPS19-Deficient Diamond-Blackfan Anemia. Blood, 2012, 120, 513-513.	1.4	0
28	A Critical Role for BMP Signaling in Adult Hematopoietic Stem Cells. Blood, 2012, 120, 1194-1194.	1.4	0
29	Nonmyelinating Schwann Cells Maintain Hematopoietic Stem Cell Hibernation in the Bone Marrow Niche. Cell, 2011, 147, 1146-1158.	28.9	654
30	Cripto Regulates Hematopoietic Stem Cells as a Hypoxic-Niche-Related Factor through Cell Surface Receptor GRP78. Cell Stem Cell, 2011, 9, 330-344.	11.1	152
31	Stress hematopoiesis requires Erg. Blood, 2011, 118, 2379-2380.	1.4	0
32	Mice with ribosomal protein S19 deficiency develop bone marrow failure and symptoms like patients with Diamond-Blackfan anemia. Blood, 2011, 118, 6087-6096.	1.4	121
33	Bone Marrow Failure in RPS19-Deficient Mice Is Partly Caused by p53 Activation and Responds to L-Leucine Treatment. Blood, 2011, 118, 727-727.	1.4	1
34	Diamond-Blackfan Anemia: Erythropoiesis Lost in Ribosome Biosynthesis. Blood, 2011, 118, SCI-2-SCI-2.	1.4	0
35	Sparc Is Dispensable for Murine Hematopoiesis, Despite Its Suspected Role in 5q- Myelodysplastic Syndrome. Blood, 2011, 118, 4822-4822.	1.4	0
36	Del(5q) Myelodysplastic Stem Cells Exhibit Their Clonal Advantage Via Increased Adhesion to the Microenvironment. Blood, 2011, 118, 790-790.	1.4	0

#	Article	IF	CITATIONS
37	Gata2 Is a Direct Target for Smad-Mediated TGFβ Signaling in Hematopoietic Stem/Progenitor Cells. Blood, 2011, 118, 1311-1311.	1.4	0
38	Impaired Reconstitution Potential of TGFβ-Hypersensitive Human Hematopoietic Stem Cells. Blood, 2011, 118, 394-394.	1.4	0
39	Cripto Regulates Hematopoietic Stem Cells As a Hypoxic Niche Related Factor Through the Cell Surface Receptor GRP78. Blood, 2011, 118, 2332-2332.	1.4	Ο
40	Canonical BMP signaling is dispensable for hematopoietic stem cell function in both adult and fetal liver hematopoiesis, but essential to preserve colon architecture. Blood, 2010, 115, 4689-4698.	1.4	50
41	Chronic RPS19 Deficiency Leads to Bone Marrow Failure In a Mouse Model for Diamond-Blackfan Anemia. Blood, 2010, 116, 193-193.	1.4	18
42	Cripto Selectively Expands a Distinct Population of Hematopoietic Stem Cells Expressing the Cell Surface Receptor GRP78 and Strongly Induces An Immature Phenotype In Vivo After Ex Vivo Culture. Blood, 2010, 116, 405-405.	1.4	0
43	Development of novel therapies in murine models for Gaucher disease. Clinical Therapeutics, 2009, 31, S198-S199.	2.5	Ο
44	Complex and Context Dependent Regulation of Hematopoiesis by TGFâ€Ŷ Superfamily Signaling. Annals of the New York Academy of Sciences, 2009, 1176, 55-69.	3.8	99
45	Successful Low-Risk Hematopoietic Cell Therapy in a Mouse Model of Type 1 Gaucher Disease. Stem Cells, 2009, 27, 744-752.	3.2	37
46	A Novel Mouse Model for RPS19-Deficient Diamond-Blackfan Anemia Locates the Erythroid Defect at CFU-E / Proerythroblast Transition Blood, 2009, 114, 178-178.	1.4	2
47	Ribosomal Protein S19 Deficiency Leads to Reduced Proliferation and Increased Apoptosis but Does Not Affect Terminal Erythroid Differentiation in a Cell Line Model of Diamond-Blackfan Anemia. Stem Cells, 2008, 26, 323-329.	3.2	62
48	Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. British Journal of Haematology, 2008, 142, 859-876.	2.5	408
49	Gene therapy of Diamond Blackfan anemia CD34+ cells leads to improved erythroid development and engraftment following transplantation. Experimental Hematology, 2008, 36, 1428-1435.	0.4	35
50	Signaling pathways governing stem-cell fate. Blood, 2008, 111, 492-503.	1.4	318
51	Smad4 as a Therapeutic Target in Nup98-HoxA9-Induced Leukemia Blood, 2008, 112, 1799-1799.	1.4	Ο
52	Smad4 is critical for self-renewal of hematopoietic stem cells. Journal of Experimental Medicine, 2007, 204, 467-474.	8.5	114
53	Human RPS19, the gene mutated in Diamond-Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood, 2007, 109, 980-986.	1.4	174
54	Diamond-Blackfan anemia: erythropoiesis lost in translation. Blood, 2007, 109, 3152-3154.	1.4	85

#	Article	IF	CITATIONS
55	Endoglin Is Not Critical for Hematopoietic Stem Cell Engraftment and Reconstitution but Regulates Adult Erythroid Development. Stem Cells, 2007, 25, 2809-2819.	3.2	18
56	Smad7 promotes self-renewal of hematopoietic stem cells. Blood, 2006, 108, 4246-4254.	1.4	75
57	A Road Map Toward Defining the Role of Smad Signaling in Hematopoietic Stem Cells. Stem Cells, 2006, 24, 1128-1136.	3.2	38
58	HOXB4-Induced Self-Renewal of Hematopoietic Stem Cells Is Significantly Enhanced by p21 Deficiency. Stem Cells, 2006, 24, 653-661.	3.2	36
59	Effective cell and gene therapy in a murine model of Gaucher disease. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13819-13824.	7.1	108
60	Hematopoietc Stem Cell Targeted Neonatal Gene Therapy Cures oc/oc Mice from Osteopetrosis Blood, 2006, 108, 456-456.	1.4	0
61	Defective Ribosomal RNA Maturation in Patients with Diamond Blackfan Anemia Blood, 2006, 108, 4172-4172.	1.4	О
62	Deficiency of ribosomal protein S19 in CD34+ cells generated by siRNA blocks erythroid development and mimics defects seen in Diamond-Blackfan anemia. Blood, 2005, 105, 4627-4634.	1.4	112
63	The role of Smad signaling in hematopoiesis. Oncogene, 2005, 24, 5676-5692.	5.9	146
64	Quiescence of hematopoietic stem cells and maintenance of the stem cell pool is not dependent on TGF-β signaling in vivo. Experimental Hematology, 2005, 33, 592-596.	0.4	40
65	Compound developmental eye disorders following inactivation of TGFbeta signaling in neural-crest stem cells. Journal of Biology, 2005, 4, 11.	2.7	110
66	Development of cellular models for ribosomal protein S19 (RPS19)-deficient diamond–blackfan anemia using inducible expression of siRNA against RPS19. Molecular Therapy, 2005, 11, 627-637.	8.2	49
67	Deficient Ribosomal Protein S19 in Diamond-Blackfan Anemia Causes a Reduction in bcl-2 and Bad and Leads to Apoptosis in Erythroid Progenitor Cells Blood, 2005, 106, 131-131.	1.4	1
68	Stem cell expansion: success and complexities. Blood, 2004, 104, 2210-2211.	1.4	6
69	Hematopoietic Stem Cell Expansion by HOXB4 Is Greatly Enhanced in p21 Deficient Stem Cells Blood, 2004, 104, 1688-1688.	1.4	3
70	High Levels of HoxA10 Severely Impair Erythoid Development In Vivo and Cause Lethal Anemia Blood, 2004, 104, 2773-2773.	1.4	1
71	Hematopoietic Stem Cells Overexpressing Smad7 Exhibit Increased Self-Renewal and Regeneration Capacity in Vivo Blood, 2004, 104, 561-561.	1.4	2
72	Hematopoietic Mechanism in Diamond-Blackfan Anemia: Late Erythroid Development Is Not Affected by Ribosomal Protein S19 Deficiency Blood, 2004, 104, 719-719.	1.4	0

#	Article	IF	CITATIONS
73	Isolation and Characterization of Living Cord Blood CD34+ Cells with Telomerase Reverse Transcriptase (TERT) Expression Blood, 2004, 104, 3559-3559.	1.4	0
74	Apoptotic Change Is a Major Reason for Defect in Early Erythroid Development in Cell Line Models for Ribosomal Protein (RP) S19 Deficient Diamond-Blackfan Anemia Blood, 2004, 104, 2840-2840.	1.4	43
75	Global Gene Expression Analysis Demonstrates that Transforming Growth Factor β1 (TGF-β1) Signals Exclusively through Receptor Complexes Involving TGF-β Receptor I and Identifies Numerous Targets of TGF-β Signaling Blood, 2004, 104, 2178-2178.	1.4	3
76	TGF-β signaling–deficient hematopoietic stem cells have normal self-renewal and regenerative ability in vivo despite increased proliferative capacity in vitro. Blood, 2003, 102, 3129-3135.	1.4	141
77	Proliferation deficiency of multipotent hematopoietic progenitors in ribosomal protein S19 (RPS19)-deficient diamond–Blackfan anemia improves following RPS19 gene transfer. Molecular Therapy, 2003, 7, 613-622.	8.2	43
78	Gene transfer improves erythroid development in ribosomal protein S19–deficient Diamond-Blackfan anemia. Blood, 2002, 100, 2724-2731.	1.4	79
79	Induced disruption of the transforming growth factor beta type II receptor gene in mice causes a lethal inflammatory disorder that is transplantable. Blood, 2002, 100, 560-568.	1.4	219
80	Clinical Gene Therapy in Hematology: Past and Future. International Journal of Hematology, 2001, 73, 162-169.	1.6	24
81	Retroviral transduction of human CD34+ cells on fibronectin fragment CH-296 is inhibited by high concentrations of vector containing medium. Journal of Gene Medicine, 2001, 3, 207-218.	2.8	23
82	The first steps on the gene therapy pathway to anti-sickling success. Nature Medicine, 2000, 6, 139-140.	30.7	1
83	Lentivirus Vector Gene Expression during ES Cell-Derived Hematopoietic Development In Vitro. Journal of Virology, 2000, 74, 10778-10784.	3.4	100
84	Cytokine-Induced Src Homology 2 Protein (Cis) Promotes T Cell Receptor–Mediated Proliferation and Prolongs Survival of Activated T Cells. Journal of Experimental Medicine, 2000, 191, 985-994.	8.5	91
85	Lentiviral gene transfer into primary and secondary NOD/SCID repopulating cells. Blood, 2000, 96, 3725-3733.	1.4	32
86	Retroviral Transfer of the Glucocerebrosidase Gene into CD34 ⁺ Cells from Patients with Gaucher Disease: <i>In Vivo</i> Detection of Transduced Cells without Myeloablation. Human Gene Therapy, 1998, 9, 2629-2640.	2.7	144
87	Retroviral Transfer of the Glucocerebrosidase Gene into CD34+ Cells from Patients with Gaucher Disease: In Vivo Detection of Transduced Cells without Myeloablation. Human Gene Therapy, 1998, 9, 2629-2640	2.7	112