Liang-Sheng Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3522021/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nature Nanotechnology, 2020, 15, 668-674.	15.6	541
2	Highly efficient luminescence from space-confined charge-transfer emitters. Nature Materials, 2020, 19, 1332-1338.	13.3	413
3	High-efficiency tandem organic light-emitting diodes. Applied Physics Letters, 2004, 84, 167-169.	1.5	393
4	High Efficiency Near-Infrared and Semitransparent Non-Fullerene Acceptor Organic Photovoltaic Cells. Journal of the American Chemical Society, 2017, 139, 17114-17119.	6.6	384
5	Interfacial chemistry of Alq3 and LiF with reactive metals. Journal of Applied Physics, 2001, 89, 2756-2765.	1.1	339
6	Progress of Leadâ€Free Halide Double Perovskites. Advanced Energy Materials, 2019, 9, 1803150.	10.2	322
7	Controllable Perovskite Crystallization by Water Additive for Highâ€Performance Solar Cells. Advanced Functional Materials, 2015, 25, 6671-6678.	7.8	321
8	A near-infrared non-fullerene electron acceptor for high performance polymer solar cells. Energy and Environmental Science, 2017, 10, 1610-1620.	15.6	272
9	Composition Stoichiometry of Cs ₂ AgBiBr ₆ Films for Highly Efficient Lead-Free Perovskite Solar Cells. Nano Letters, 2019, 19, 2066-2073.	4.5	250
10	One-Pot Microwave Synthesis of Water-Dispersible, Ultraphoto- and pH-Stable, and Highly Fluorescent Silicon Quantum Dots. Journal of the American Chemical Society, 2011, 133, 14192-14195.	6.6	249
11	Tandem Organic Lightâ€Emitting Diode using Hexaazatriphenylene Hexacarbonitrile in the Intermediate Connector. Advanced Materials, 2008, 20, 324-329.	11.1	243
12	Optimization of Lowâ€Dimensional Components of Quasiâ€2D Perovskite Films for Deepâ€Blue Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1904319.	11.1	242
13	Highâ€Efficiency Red Organic Lightâ€Emitting Diodes with External Quantum Efficiency Close to 30% Based on a Novel Thermally Activated Delayed Fluorescence Emitter. Advanced Materials, 2019, 31, e1902368.	11.1	238
14	Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nature Photonics, 2020, 14, 570-577.	15.6	237
15	Over 10% EQE Nearâ€Infrared Electroluminescence Based on a Thermally Activated Delayed Fluorescence Emitter. Advanced Functional Materials, 2017, 27, 1700986.	7.8	236
16	Blue luminescence from Si+â€implanted SiO2 films thermally grown on crystalline silicon. Applied Physics Letters, 1996, 68, 850-852.	1.5	228
17	Dopantâ€Free Spiroâ€Triphenylamine/Fluorene as Holeâ€Transporting Material for Perovskite Solar Cells with Enhanced Efficiency and Stability. Advanced Functional Materials, 2016, 26, 1375-1381.	7.8	226
18	Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells. Journal of Materials Chemistry A, 2016, 4, 5890-5897.	5.2	219

#	Article	IF	CITATIONS
19	High efficiency hybrid PEDOT:PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact. Energy and Environmental Science, 2015, 8, 297-302.	15.6	213
20	High Efficiency Pb–In Binary Metal Perovskite Solar Cells. Advanced Materials, 2016, 28, 6695-6703.	11.1	211
21	Allâ€Inorganic Quantumâ€Dot LEDs Based on a Phaseâ€Stabilized αâ€CsPbI ₃ Perovskite. Angewan Chemie - International Edition, 2021, 60, 16164-16170.	dte 7.2	210
22	Passivated Perovskite Crystallization via <i>g</i> â€C ₃ N ₄ for Highâ€Performance Solar Cells. Advanced Functional Materials, 2018, 28, 1705875.	7.8	208
23	The Design of Fused Amine/Carbonyl System for Efficient Thermally Activated Delayed Fluorescence: Novel Multiple Resonance Core and Electron Acceptor. Advanced Optical Materials, 2019, 7, 1801536.	3.6	208
24	Chlorine Vacancy Passivation in Mixed Halide Perovskite Quantum Dots by Organic Pseudohalides Enables Efficient Rec. 2020 Blue Light-Emitting Diodes. ACS Energy Letters, 2020, 5, 793-798.	8.8	208
25	Copper Salts Doped Spiroâ€OMeTAD for Highâ€Performance Perovskite Solar Cells. Advanced Energy Materials, 2016, 6, 1601156.	10.2	205
26	Whiteâ€Light Emitting Microtubes of Mixed Organic Chargeâ€Transfer Complexes. Advanced Materials, 2012, 24, 5345-5351.	11.1	201
27	Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801509.	10.2	184
28	Real-Time Observation of Temperature Rise and Thermal Breakdown Processes in Organic LEDs Using an IR Imaging and Analysis System. Advanced Materials, 2000, 12, 265-269.	11.1	178
29	Circularly Polarized Thermally Activated Delayed Fluorescence Emitters in Through-Space Charge Transfer on Asymmetric Spiro Skeletons. Journal of the American Chemical Society, 2020, 142, 17756-17765.	6.6	174
30	Non-fullerene polymer solar cells based on a selenophene-containing fused-ring acceptor with photovoltaic performance of 8.6%. Energy and Environmental Science, 2016, 9, 3429-3435.	15.6	170
31	Pure Hydrocarbon Hosts for â‰^100% Exciton Harvesting in Both Phosphorescent and Fluorescent Lightâ€Emitting Devices. Advanced Materials, 2015, 27, 4213-4217.	11.1	165
32	Crystalline Liquid-like Behavior: Surface-Induced Secondary Grain Growth of Photovoltaic Perovskite Thin Film. Journal of the American Chemical Society, 2019, 141, 13948-13953.	6.6	163
33	Tailored Phase Transformation of CsPbI ₂ Br Films by Copper(II) Bromide for High-Performance All-Inorganic Perovskite Solar Cells. Nano Letters, 2019, 19, 5176-5184.	4.5	161
34	Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices. Advanced Materials, 2016, 28, 7620-7625.	11.1	160
35	Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts. Nature Communications, 2017, 8, 2250.	5.8	159
36	White Organic LED with a Luminous Efficacy Exceeding 100 lm W ^{â^'1} without Light Out oupling Enhancement Techniques. Advanced Functional Materials, 2017, 27, 1701314.	7.8	157

#	Article	IF	CITATIONS
37	Competition between Arene–Perfluoroarene and Chargeâ€Transfer Interactions in Organic Lightâ€Harvesting Systems. Angewandte Chemie - International Edition, 2017, 56, 10352-10356.	7.2	152
38	Intense blue emission from porous βâ€6iC formed on C+â€implanted silicon. Applied Physics Letters, 1995, 66, 2382-2384.	1.5	149
39	Highly Efficient Thermally Activated Delayed Fluorescence via an Unconjugated Donor–Acceptor System Realizing EQE of Over 30%. Advanced Materials, 2020, 32, e2003885.	11.1	148
40	Self-Assembled High Quality CsPbBr ₃ Quantum Dot Films toward Highly Efficient Light-Emitting Diodes. ACS Nano, 2018, 12, 9541-9548.	7.3	146
41	Orthogonal Molecular Structure for Better Host Material in Blue Phosphorescence and Larger OLED White Lighting Panel. Advanced Functional Materials, 2015, 25, 645-650.	7.8	140
42	Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition. Chemical Physics Letters, 2000, 327, 263-270.	1.2	133
43	Graphdiyne-modified cross-linkable fullerene as an efficient electron-transporting layer in organometal halide perovskite solar cells. Nano Energy, 2018, 43, 47-54.	8.2	126
44	Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. ACS Nano, 2016, 10, 5479-5489.	7.3	125
45	A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset. Nano Energy, 2016, 27, 430-438.	8.2	125
46	Tandem Organic Lightâ€Emitting Diodes. Advanced Materials, 2016, 28, 10381-10408.	11.1	124
47	Tin Halide Perovskites: Progress and Challenges. Advanced Energy Materials, 2020, 10, 1902584.	10.2	124
48	Hierarchical self-assembly of organic heterostructure nanowires. Nature Communications, 2019, 10, 3839.	5.8	123
49	Perovskite Grains Embraced in a Soft Fullerene Network Make Highly Efficient Flexible Solar Cells with Superior Mechanical Stability. Advanced Materials, 2019, 31, e1901519.	11.1	123
50	A room-temperature CuAlO ₂ hole interfacial layer for efficient and stable planar perovskite solar cells. Journal of Materials Chemistry A, 2016, 4, 1326-1335.	5.2	122
51	Selective Growth of Dual-Color-Emitting Heterogeneous Microdumbbells Composed of Organic Charge-Transfer Complexes. Journal of the American Chemical Society, 2013, 135, 3744-3747.	6.6	121
52	General Mild Reaction Creates Highly Luminescent Organic-Ligand-Lacking Halide Perovskite Nanocrystals for Efficient Light-Emitting Diodes. Journal of the American Chemical Society, 2019, 141, 15423-15432.	6.6	121
53	2D Organic Photonics: An Asymmetric Optical Waveguide in Selfâ€Assembled Halogenâ€Bonded Cocrystals. Angewandte Chemie - International Edition, 2018, 57, 11300-11304.	7.2	118
54	Planar perovskite solar cells with 15.75% power conversion efficiency by cathode and anode interfacial modification. Journal of Materials Chemistry A, 2015, 3, 13533-13539.	5.2	116

#	Article	IF	CITATIONS
55	Thin Î ² -SiC nanorods and their field emission properties. Chemical Physics Letters, 2000, 318, 58-62.	1.2	114
56	Improved Hole Interfacial Layer for Planar Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Applied Materials & amp; Interfaces, 2015, 7, 9645-9651.	4.0	114
57	High-efficiency organic light-emitting diodes with exciplex hosts. Journal of Materials Chemistry C, 2019, 7, 11329-11360.	2.7	114
58	Chelating-agent-assisted control of CsPbBr3 quantum well growth enables stable blue perovskite emitters. Nature Communications, 2020, 11, 3674.	5.8	112
59	Plasmon Resonance Enhanced Optical Absorption in Inverted Polymer/Fullerene Solar Cells with Metal Nanoparticle-Doped Solution-Processable TiO ₂ Layer. ACS Applied Materials & Interfaces, 2013, 5, 2935-2942.	4.0	111
60	Polarized Ferroelectric Polymers for Highâ€Performance Perovskite Solar Cells. Advanced Materials, 2019, 31, e1902222.	11.1	109
61	Delayed Fluorescence Emitter Enables Near 17% Efficiency Ternary Organic Solar Cells with Enhanced Storage Stability and Reduced Recombination Energy Loss. Advanced Functional Materials, 2020, 30, 1909837.	7.8	108
62	A solution-processed bathocuproine cathode interfacial layer for high-performance bromine–iodine perovskite solar cells. Physical Chemistry Chemical Physics, 2015, 17, 26653-26658.	1.3	107
63	Pb–Sn–Cu Ternary Organometallic Halide Perovskite Solar Cells. Advanced Materials, 2018, 30, e1800258.	11.1	106
64	Enhanced Light Utilization in Semitransparent Organic Photovoltaics Using an Optical Outcoupling Architecture. Advanced Materials, 2019, 31, e1903173.	11.1	105
65	Competition between Arene–Perfluoroarene and Chargeâ€Transfer Interactions in Organic Lightâ€Harvesting Systems. Angewandte Chemie, 2017, 129, 10488-10492.	1.6	104
66	Synergistic Effect of Dual Ligands on Stable Blue Quasiâ€⊋D Perovskite Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1908339.	7.8	103
67	Heterojunction with Organic Thin Layers on Silicon for Record Efficiency Hybrid Solar Cells. Advanced Energy Materials, 2014, 4, 1300923.	10.2	100
68	Solutionâ€Processed Extremely Efficient Multicolor Perovskite Lightâ€Emitting Diodes Utilizing Doped Electron Transport Layer. Advanced Functional Materials, 2017, 27, 1606874.	7.8	96
69	C1â€Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for Highâ€Performance Blue Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2019, 58, 3848-3853.	7.2	95
70	Highly efficient phosphorescent organic light-emitting diodes using a homoleptic iridium(III) complex as a sky-blue dopant. Organic Electronics, 2013, 14, 2596-2601.	1.4	93
71	Largeâ€Scale Green Synthesis of Fluorescent Carbon Nanodots and Their Use in Optics Applications. Advanced Optical Materials, 2015, 3, 103-111.	3.6	93
72	Holeâ€Transporting Materials Incorporating Carbazole into Spiroâ€Core for Highly Efficient Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1807094.	7.8	93

#	Article	IF	CITATIONS
73	Research Progress of Intramolecular ï€â€Stacked Small Molecules for Device Applications. Advanced Materials, 2022, 34, e2104125.	11.1	93
74	Highly Efficient Deep-Blue Electroluminescence from a Charge-Transfer Emitter with Stable Donor Skeleton. ACS Applied Materials & Interfaces, 2017, 9, 7331-7338.	4.0	91
75	Indoor Thinâ€Film Photovoltaics: Progress and Challenges. Advanced Energy Materials, 2020, 10, 2000641.	10.2	89
76	Intramolecular‣ocked High Efficiency Ultrapure Violetâ€Blue (CIEâ€y <0.046) Thermally Activated Delayed Fluorescence Emitters Exhibiting Amplified Spontaneous Emission. Advanced Functional Materials, 2021, 31, 2009488.	7.8	88
77	Sputter deposition of cathodes in organic light emitting diodes. Journal of Applied Physics, 1999, 86, 4607-4612.	1.1	85
78	Thermally Activated Delayed Fluorescence Material as Host with Novel Spiroâ€Based Skeleton for High Power Efficiency and Low Rollâ€Off Blue and White Phosphorescent Devices. Advanced Functional Materials, 2016, 26, 7929-7936.	7.8	84
79	Ion-beam-induced surface damages on tris-(8-hydroxyquinoline) aluminum. Applied Physics Letters, 1999, 75, 1619-1621.	1.5	83
80	Design and Synthesis of Pyrimidine-Based Iridium(III) Complexes with Horizontal Orientation for Orange and White Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2015, 7, 11007-11014.	4.0	83
81	Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
82	Enhanced hole injection in a bilayer vacuum-deposited organic light-emitting device using a p-type doped silicon anode. Applied Physics Letters, 1999, 74, 609-611.	1.5	82
83	In Situ Inorganic Ligand Replenishment Enables Bandgap Stability in Mixedâ€Halide Perovskite Quantum Dot Solids. Advanced Materials, 2022, 34, e2200854.	11.1	82
84	Vacuum-evaporated all-inorganic cesium lead bromine perovskites for high-performance light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 8144-8149.	2.7	79
85	Multiâ€Layer Ï€â€Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie - International Edition, 2021, 60, 5213-5219.	7.2	79
86	Electronic structure and energy band gap of poly (9,9-dioctylfluorene) investigated by photoelectron spectroscopy. Applied Physics Letters, 2000, 76, 3582-3584.	1.5	77
87	A simple method for fabricating p–n junction photocatalyst CuFe2O4/Bi4Ti3O12 and its photocatalytic activity. Materials Chemistry and Physics, 2014, 143, 952-962.	2.0	77
88	Charge-Transfer Emission of Mixed Organic Cocrystal Microtubes over the Whole Composition Range. Chemistry of Materials, 2015, 27, 1157-1163.	3.2	77
89	Highly Simplified Tandem Organic Light-Emitting Devices Incorporating a Green Phosphorescence Ultrathin Emitter within a Novel Interface Exciplex for High Efficiency. ACS Applied Materials & Interfaces, 2017, 9, 10955-10962.	4.0	77
90	Efficient and Spectrally Stable Blue Perovskite Lightâ€Emitting Diodes Employing a Cationic Ï€â€Conjugated Polymer. Advanced Materials, 2021, 33, e2103640.	11.1	77

#	Article	IF	CITATIONS
91	Fully Bridged Triphenylamine Derivatives as Color-Tunable Thermally Activated Delayed Fluorescence Emitters. Organic Letters, 2021, 23, 958-962.	2.4	76
92	Inverted planar NH ₂ CHî€NH ₂ PbI ₃ perovskite solar cells with 13.56% efficiency via low temperature processing. Physical Chemistry Chemical Physics, 2015, 17, 19745-19750.	1.3	74
93	Electronic structure of silicon nanowires: A photoemission and x-ray absorption study. Physical Review B, 2000, 61, 8298-8305.	1.1	72
94	Doped Copper Phthalocyanine via an Aqueous Solution Process for Normal and Inverted Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1701688.	10.2	71
95	Hierarchical Selfâ€Assembly of Organic Core/Multiâ€Shell Microwires for Trichromatic White‣ight Sources. Advanced Materials, 2021, 33, e2102719.	11.1	71
96	Enhanced crystallization and stability of perovskites by a cross-linkable fullerene for high-performance solar cells. Journal of Materials Chemistry A, 2016, 4, 15088-15094.	5.2	70
97	Flower-like MoS ₂ nanocrystals: a powerful sorbent of Li ⁺ in the Spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 3655-3663.	5.2	70
98	Aqueous solution-processed MoO3 as an effective interfacial layer in polymer/fullerene based organic solar cells. Organic Electronics, 2013, 14, 657-664.	1.4	67
99	Highly efficient single-layer organic light-emitting devices based on a bipolar pyrazine/carbazole hybrid host material. Journal of Materials Chemistry C, 2014, 2, 2488-2495.	2.7	67
100	Through Space Charge Transfer for Efficient Skyâ€Blue Thermally Activated Delayed Fluorescence (TADF) Emitter with Unconjugated Connection. Advanced Optical Materials, 2020, 8, 1901150.	3.6	67
101	N-Type Doping of Fullerenes for Planar Perovskite Solar Cells. ACS Energy Letters, 2018, 3, 875-882.	8.8	66
102	Cascaded Excitedâ€State Intramolecular Proton Transfer Towards Nearâ€Infrared Organic Lasers Beyond 850 nm. Angewandte Chemie - International Edition, 2021, 60, 9114-9119.	7.2	66
103	Doped Chargeâ€Transporting Layers in Planar Perovskite Solar Cells. Advanced Optical Materials, 2018, 6, 1800276.	3.6	65
104	D–π–A structured porphyrins for efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 10008.	5.2	64
105	Near-Infrared Organic Single-Crystal Nanolaser Arrays Activated by Excited-State Intramolecular Proton Transfer. Matter, 2020, 2, 1233-1243.	5.0	64
106	Spiro Compounds for Organic Light-Emitting Diodes. Accounts of Materials Research, 2021, 2, 1261-1271.	5.9	64
107	Bipolar host materials for high efficiency phosphorescent organic light emitting diodes: tuning the HOMO/LUMO levels without reducing the triplet energy in a linear system. Journal of Materials Chemistry C, 2013, 1, 8177.	2.7	63
108	Small Molecule–Polymer Composite Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2017, 9, 13240-13246.	4.0	62

#	Article	IF	CITATIONS
109	Tilted Spiroâ€Type Thermally Activated Delayed Fluorescence Host for â‰^100% Exciton Harvesting in Red Phosphorescent Electronics with Ultralow Doping Ratio. Advanced Functional Materials, 2018, 28, 1706228.	7.8	62
110	Highly Luminescent Waterâ€Ðispersible Silicon Nanowires for Longâ€Term Immunofluorescent Cellular Imaging. Angewandte Chemie - International Edition, 2011, 50, 3080-3083.	7.2	60
111	Segregated Array Tailoring Chargeâ€Transfer Degree of Organic Cocrystal for the Efficient Nearâ€Infrared Emission beyond 760Ânm. Advanced Materials, 2022, 34, e2107169.	11.1	60
112	Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel. Advanced Functional Materials, 2019, 29, 1903112.	7.8	59
113	Lycopeneâ€Based Bionic Membrane for Stable Perovskite Photovoltaics. Advanced Functional Materials, 2021, 31, 2011242.	7.8	59
114	<i>De novo</i> design of D–Ïf–A molecules as universal hosts for monochrome and white phosphorescent organic light-emitting diodes. Chemical Science, 2018, 9, 4062-4070.	3.7	58
115	Evolution of pure hydrocarbon hosts: simpler structure, higher performance and universal application in RGB phosphorescent organic light-emitting diodes. Chemical Science, 2020, 11, 4887-4894.	3.7	58
116	Two-Dimensional Organic Semiconductor Crystals for Photonics Applications. ACS Applied Nano Materials, 2020, 3, 1080-1097.	2.4	58
117	Blue-, green-, and red-light emission from Si+-implanted thermal SiO2 films on crystalline silicon. Journal of Luminescence, 1996, 68, 199-204.	1.5	57
118	High-efficiency quantum dot light-emitting diodes employing lithium salt doped poly(9-vinlycarbazole) as a hole-transporting layer. Journal of Materials Chemistry C, 2017, 5, 5372-5377.	2.7	57
119	Origin of enhanced electrical and conducting properties in pentacene films doped by molybdenum trioxide. Organic Electronics, 2013, 14, 2698-2704.	1.4	56
120	A novel intermediate connector with improved charge generation and separation for large-area tandem white organic lighting devices. Journal of Materials Chemistry C, 2014, 2, 10403-10408.	2.7	56
121	Alleviating Efficiency Roll-Off of Hybrid Single-Emitting Layer WOLED Utilizing Bipolar TADF Material as Host and Emitter. ACS Applied Materials & Interfaces, 2019, 11, 2197-2204.	4.0	56
122	Nearâ€Infrared Electroluminescence beyond 800â€nm with High Efficiency and Radiance from Anthracene Cored Emitters. Angewandte Chemie - International Edition, 2020, 59, 21578-21584.	7.2	56
123	Clean surface transfer of graphene films via an effective sandwich method for organic light-emitting diode applications. Journal of Materials Chemistry C, 2014, 2, 201-207.	2.7	55
124	Host to Guest Energy Transfer Mechanism in Phosphorescent and Fluorescent Organic Light-Emitting Devices Utilizing Exciplex-Forming Hosts. Journal of Physical Chemistry C, 2014, 118, 24006-24012.	1.5	55
125	Emissive Osmium(II) Complexes with Tetradentate Bis(pyridylpyrazolate) Chelates. Inorganic Chemistry, 2013, 52, 5867-5875.	1.9	54
126	Asymmetric Design of Bipolar Host Materials with Novel 1,2,4-Oxadiazole Unit in Blue Phosphorescent Device. Organic Letters, 2014, 16, 1622-1625.	2.4	54

#	Article	IF	CITATIONS
127	Recent advances in electron acceptors with ladder-type backbone for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 17256-17287.	5.2	54
128	Organic Lasers Harnessing Excited State Intramolecular Proton Transfer Process. ACS Photonics, 2020, 7, 1355-1366.	3.2	54
129	Ultraâ€Bright and Stable Pure Blue Lightâ€Emitting Diode from O, N Coâ€Doped Carbon Dots. Laser and Photonics Reviews, 2021, 15, 2000412.	4.4	54
130	Comparative studies on the inorganic and organic p-type dopants in organic light-emitting diodes with enhanced hole injection. Applied Physics Letters, 2013, 102, .	1.5	52
131	Recent Advances in 1D Organic Solidâ€State Lasers. Advanced Functional Materials, 2019, 29, 1902981.	7.8	52
132	Highly Efficient Blue Phosphorescent Organic Light-Emitting Diodes Employing a Host Material with Small Bandgap. ACS Applied Materials & Interfaces, 2016, 8, 16186-16191.	4.0	51
133	Donorâ~Ïf–Acceptor Molecules for Green Thermally Activated Delayed Fluorescence by Spatially Approaching Spiro Conformation. Organic Letters, 2017, 19, 3155-3158.	2.4	51
134	Highâ€Quality White Organic Lightâ€Emitting Diodes Composed of Binary Emitters with Color Rendering Index Exceeding 80 by Utilizing Color Remedy Strategy. Advanced Functional Materials, 2019, 29, 1807541.	7.8	51
135	Spiro-annulated triarylamine-based hosts incorporating dibenzothiophene for highly efficient single-emitting layer white phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 6575.	2.7	50
136	Polymer as an Additive in the Emitting Layer for High-Performance Quantum Dot Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2017, 9, 20239-20246.	4.0	50
137	A simple systematic design of phenylcarbazole derivatives for host materials to high-efficiency phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2013, 1, 3967.	2.7	49
138	Control of Conjugation Degree via Position Engineering to Highly Efficient Phosphorescent Host Materials. Organic Letters, 2014, 16, 3748-3751.	2.4	49
139	Optical waveguides based on one-dimensional organic crystals. PhotoniX, 2021, 2, .	5.5	49
140	Highly Simplified Reddish Orange Phosphorescent Organic Light-Emitting Diodes Incorporating a Novel Carrier- and Exciton-Confining Spiro-Exciplex-Forming Host for Reduced Efficiency Roll-off. ACS Applied Materials & Interfaces, 2017, 9, 2701-2710.	4.0	48
141	High-Efficiency White Organic Light-Emitting Diodes Integrating Gradient Exciplex Allocation System and Novel D-Spiro-A Materials. ACS Applied Materials & Interfaces, 2018, 10, 29840-29847.	4.0	48
142	2D Organic Photonics: An Asymmetric Optical Waveguide in Selfâ€Assembled Halogenâ€Bonded Cocrystals. Angewandte Chemie, 2018, 130, 11470-11474.	1.6	47
143	meta-Linked spirobifluorene/phosphine oxide hybrids as host materials for deep blue phosphorescent organic light-emitting diodes. Organic Electronics, 2013, 14, 1924-1930.	1.4	46
144	Whiteâ€Emissive Selfâ€Assembled Organic Microcrystals. Small, 2017, 13, 1604110.	5.2	46

#	Article	IF	CITATIONS
145	Efficient Nearâ€Infrared Emission by Adjusting the Guest–Host Interactions in Thermally Activated Delayed Fluorescence Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2018, 28, 1802597.	7.8	46
146	Recent Advances in Organic Whisperingâ€Gallery Mode Lasers. Laser and Photonics Reviews, 2020, 14, 2000257.	4.4	46
147	Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications. Science China Chemistry, 2020, 63, 1477-1482.	4.2	46
148	Effect of deposition rate on the morphology, chemistry and electroluminescence of tris-(8-hydroxyqiunoline) aluminum films. Chemical Physics Letters, 2000, 319, 418-422.	1.2	45
149	Interfacial engineering for highly efficient quasi-two dimensional organic–inorganic hybrid perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 4344-4349.	2.7	45
150	Organic superstructure microwires with hierarchical spatial organisation. Nature Communications, 2021, 12, 2252.	5.8	45
151	Bubble formation in organic light-emitting diodes. Journal of Applied Physics, 2000, 88, 2386-2390.	1.1	44
152	Isomeric Effects of Solution Processed Ladderâ€Type Nonâ€Fullerene Electron Acceptors. Solar Rrl, 2017, 1, 1700107.	3.1	44
153	A narrowband blue circularly polarized thermally activated delayed fluorescence emitter with a hetero-helicene structure. Chemical Communications, 2021, 57, 11041-11044.	2.2	44
154	Coherence characteristics of electrically excited tandem organic light-emitting diodes. Optics Letters, 2005, 30, 3072.	1.7	43
155	Rational Design of Dibenzothiophene-Based Host Materials for PHOLEDs. Journal of Physical Chemistry C, 2014, 118, 2375-2384.	1.5	43
156	Organic Nanophotonics: Self-Assembled Single-Crystalline Homo-/Heterostructures for Optical Waveguides. ACS Photonics, 2018, 5, 3763-3771.	3.2	43
157	Super-Stacking Self-Assembly of Organic Topological Heterostructures. CCS Chemistry, 2021, 3, 413-424.	4.6	43
158	Microstructure and field-emission characteristics of boron-doped Si nanoparticle chains. Applied Physics Letters, 2001, 79, 1673-1675.	1.5	42
159	Lithium Hydride Doped Intermediate Connector for High-Efficiency and Long-Term Stable Tandem Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2014, 6, 18228-18232.	4.0	42
160	De Novo Design of Boron-Based Host Materials for Highly Efficient Blue and White Phosphorescent OLEDs with Low Efficiency Roll-Off. ACS Applied Materials & Interfaces, 2016, 8, 20230-20236.	4.0	42
161	High performance blue quantum dot light-emitting diodes employing polyethylenimine ethoxylated as the interfacial modifier. Nanoscale, 2017, 9, 14792-14797.	2.8	42
162	The application of single-layer graphene modified with solution-processed TiOx and PEDOT:PSS as a transparent conductive anode in organic light-emitting diodes. Organic Electronics, 2013, 14, 3348-3354.	1.4	41

#	Article	IF	CITATIONS
163	Highly efficient deep-red TADF organic light-emitting diodes via increasing the acceptor strength of fused polycyclic aromatics. Chemical Engineering Journal, 2021, 424, 130470.	6.6	41
164	Aqueous Solution-Processed GeO ₂ : An Anode Interfacial Layer for High Performance and Air-Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 10866-10873.	4.0	40
165	Origin of Enhanced Hole Injection in Organic Light-Emitting Diodes with an Electron-Acceptor Doping Layer: p-Type Doping or Interfacial Diffusion?. ACS Applied Materials & Interfaces, 2015, 7, 11965-11971.	4.0	40
166	Visible electroluminescence from Si+-implanted SiO2 films thermally grown on crystalline Si. Solid State Communications, 1996, 97, 1039-1042.	0.9	39
167	Tunable Emission Color and Morphology of Organic Microcrystals by a "Cocrystal―Approach. Advanced Optical Materials, 2018, 6, 1701300.	3.6	39
168	Sky-Blue Thermally Activated Delayed Fluorescence with Intramolecular Spatial Charge Transfer Based on a Dibenzothiophene Sulfone Emitter. Journal of Organic Chemistry, 2020, 85, 10628-10637.	1.7	39
169	Electronic structure and energy level alignment of Alq3/Al2O3/Al and Alq3/Al interfaces studied by ultraviolet photoemission spectroscopy. Thin Solid Films, 2000, 363, 178-181.	0.8	38
170	Synthesis of new bipolar host materials based on 1,2,4-oxadiazole for blue phosphorescent OLEDs. Dyes and Pigments, 2014, 101, 142-149.	2.0	38
171	Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate. Semiconductor Science and Technology, 2015, 30, 104004.	1.0	38
172	An effective host material with thermally activated delayed fluorescence formed by confined conjugation for red phosphorescent organic light-emitting diodes. Chemical Communications, 2016, 52, 8149-8151.	2.2	38
173	Allâ€Fluorescence White Organic Lightâ€Emitting Diodes Exceeding 20% EQEs by Rational Manipulation of Singlet and Triplet Excitons. Advanced Functional Materials, 2020, 30, 1910633.	7.8	38
174	Study of Hole-Injecting Properties in Efficient, Stable, and Simplified Phosphorescent Organic Light-Emitting Diodes by Impedance Spectroscopy. ACS Applied Materials & Interfaces, 2012, 4, 312-316.	4.0	37
175	New dibenzofuran/spirobifluorene hybrids as thermally stable host materials for efficient phosphorescent organic light-emitting diodes with low efficiency roll-off. Physical Chemistry Chemical Physics, 2012, 14, 14224.	1.3	37
176	Enhanced Hole Injection in Phosphorescent Organic Light-Emitting Diodes by Thermally Evaporating a Thin Indium Trichloride Layer. ACS Applied Materials & Interfaces, 2012, 4, 5211-5216.	4.0	37
177	Novel dibenzothiophene based host materials incorporating spirobifluorene for high-efficiency white phosphorescent organic light-emitting diodes. Organic Electronics, 2013, 14, 902-908.	1.4	37
178	Facet-Selective Growth of Organic Heterostructured Architectures via Sequential Crystallization of Structurally Complementary I€-Conjugated Molecules. Nano Letters, 2017, 17, 695-701.	4.5	37
179	Aqueous solution-processed MoO ₃ thick films as hole injection and short-circuit barrier layer in large-area organic light-emitting devices. Applied Physics Express, 2014, 7, 111601.	1.1	36
180	Investigating blue phosphorescent iridium cyclometalated dopant with phenyl-imidazole ligands. Organic Electronics, 2014, 15, 3127-3136.	1.4	36

#	Article	IF	CITATIONS
181	Simplified Hybrid White Organic Lightâ€Emitting Diodes with a Mixed Fluorescent Blue Emitting Layer for Exciton Managing and Lifetime Improving. Advanced Optical Materials, 2016, 4, 2051-2056.	3.6	36
182	Near-Infrared Solid-State Lasers Based on Small Organic Molecules. ACS Photonics, 2019, 6, 2590-2599.	3.2	36
183	9,9′â€Bicarbazole: New Molecular Skeleton for Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2019, 25, 4501-4508.	1.7	36
184	Incorporating a tercarbazole donor in a spiro-type host material for efficient RGB phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 6714-6720.	2.7	36
185	Efficient Violet Organic Lightâ€Emitting Diodes with CIEy of 0.02 Based on Spiro Skeleton. Advanced Optical Materials, 2020, 8, 2001074.	3.6	36
186	Enhancement of electroluminescence efficiency and stability in phosphorescent organic light-emitting diodes with double exciton-blocking layers. Organic Electronics, 2013, 14, 1177-1182.	1.4	35
187	Direct observation of cation-exchange in liquid-to-solid phase transformation in FA _{1â^'x} MA _x PbI ₃ based perovskite solar cells. Journal of Materials Chemistry A, 2018, 6, 9081-9088.	5.2	35
188	A blue thermally activated delayed fluorescence emitter developed by appending a fluorene moiety to a carbazole donor with <i>meta</i> -linkage for high-efficiency OLEDs. Materials Chemistry Frontiers, 2018, 2, 917-922.	3.2	35
189	Sequential Selfâ€Assembly of 1D Branched Organic Homostructures with Optical Logic Gate Function. Advanced Functional Materials, 2018, 28, 1804915.	7.8	35
190	Experimental Observation of Surface Modes of Quasifree Clusters. Physical Review Letters, 1996, 76, 604-607.	2.9	34
191	Mechanistic Investigation of Improved Syntheses of Iridium(III)-Based OLED Phosphors. Organometallics, 2012, 31, 4349-4355.	1.1	34
192	Improved cation valence state in molybdenum oxides by ultraviolet-ozone treatments and its applications in organic light-emitting diodes. Applied Physics Letters, 2013, 102, .	1.5	34
193	A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. Journal of Materials Chemistry A, 2015, 3, 14424-14430.	5.2	34
194	Planar starburst hole-transporting materials for highly efficient perovskite solar cells. Nano Energy, 2019, 63, 103865.	8.2	34
195	Lattice-mismatch-free growth of organic heterostructure nanowires from cocrystals to alloys. Nature Communications, 2022, 13, .	5.8	33
196	Strongly phosphorescent platinum(<scp>ii</scp>) complexes supported by tetradentate benzazole-containing ligands. Journal of Materials Chemistry C, 2015, 3, 8212-8218.	2.7	32
197	Highly phosphorescent cyclometalated platinum(<scp>ii</scp>) complexes based on 2-phenylbenzimidazole-containing ligands. Journal of Materials Chemistry C, 2017, 5, 6202-6209.	2.7	32
198	In Situ Construction of One-Dimensional Component-Interchange Organic Core/Shell Microrods for Multicolor Continuous-Variable Optical Waveguide. ACS Applied Materials & Interfaces, 2019, 11, 5298-5305.	4.0	32

#	Article	IF	CITATIONS
199	Controllable synthesis of barnyardgrass-like CuO/Cu ₂ O heterostructure nanowires for highly sensitive non-enzymatic glucose sensors. Journal of Materials Chemistry C, 2019, 7, 14874-14880.	2.7	32
200	Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Research, 2020, 13, 2203-2208.	5.8	32
201	Effects of O, H and N passivation on photoluminescence from porous silicon. Thin Solid Films, 2001, 388, 271-276.	0.8	31
202	Siliconâ€Based Material with Spiroâ€Annulated Fluorene/Triphenylamine as Host and Excitonâ€Blocking Layer for Blue Electrophosphorescent Devices. Chemistry - A European Journal, 2013, 19, 11791-11797.	1.7	31
203	A rational design of carbazole-based host materials with suitable spacer group towards highly-efficient blue phosphorescence. Journal of Materials Chemistry C, 2014, 2, 6387.	2.7	31
204	Effective Host Materials for Blue/White Organic Lightâ€Emitting Diodes by Utilizing the Twisted Conjugation Structure in 10â€Phenylâ€9,10â€Dihydroacridine Block. Chemistry - an Asian Journal, 2015, 10, 1402-1409.	1.7	31
205	High-Performance White Organic Light-Emitting Diodes with Simplified Structure Incorporating Novel Exciplex-Forming Host. ACS Applied Materials & amp; Interfaces, 2018, 10, 39116-39123.	4.0	31
206	Highly efficient red thermally activated delayed fluorescence materials based on a cyano-containing planar acceptor. Journal of Materials Chemistry C, 2019, 7, 15301-15307.	2.7	31
207	Harvesting triplet excitons for near-infrared electroluminescence via thermally activated delayed fluorescence channel. IScience, 2021, 24, 102123.	1.9	31
208	Dual roles of MoO3-doped pentacene thin films as hole-extraction and multicharge-separation functions in pentacene/C60 heterojunction organic solar cells. Applied Physics Letters, 2013, 102, .	1.5	30
209	Solutionâ€Processed Thermally Activated Delayed Fluorescence Exciplex Hosts for Highly Efficient Blue Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700012.	3.6	30
210	Efficient non-doped deep blue organic light emitting diodes with high external quantum efficiency and a low efficiency roll-off based on donor-acceptor molecules. Dyes and Pigments, 2017, 142, 499-506.	2.0	30
211	A novel spiro-annulated benzimidazole host for highly efficient blue phosphorescent organic light-emitting devices. Chemical Communications, 2018, 54, 4541-4544.	2.2	30
212	Controllable Synthesis of Organic Microcrystals with Tunable Emission Color and Morphology Based on Molecular Packing Mode. Small, 2018, 14, 1702952.	5.2	30
213	A Bright and Stable Violet Carbon Dot Lightâ€Emitting Diode. Advanced Optical Materials, 2020, 8, 2000239.	3.6	30
214	Smart Textiles Based on MoS ₂ Hollow Nanospheres for Personal Thermal Management. ACS Applied Materials & Interfaces, 2021, 13, 48988-48996.	4.0	30
215	Thermally Activated Delayed Fluorescent Gain Materials: Harvesting Triplet Excitons for Lasing. Advanced Science, 2022, 9, e2200525.	5.6	30
216	54.2: Tandem White OLEDs Combining Fluorescent and Phosphorescent Emission. Digest of Technical Papers SID International Symposium, 2008, 39, 818-821.	0.1	29

#	Article	IF	CITATIONS
217	The role of fluorine-substitution on the π-bridge in constructing effective thermally activated delayed fluorescence molecules. Journal of Materials Chemistry C, 2018, 6, 5536-5541.	2.7	29
218	Triplet exciton harvesting by multi-process energy transfer in fluorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 977-985.	2.7	29
219	Ambient effect on the electronic structures of tris-(8-hydroxyquinoline) aluminum films investigated by photoelectron spectroscopy. Chemical Physics Letters, 2001, 333, 212-216.	1.2	28
220	Highly phosphorescent platinum(II) complexes based on rigid unsymmetric tetradentate ligands. Organic Electronics, 2016, 32, 120-125.	1.4	28
221	Suppressed oxidation of tin perovskite by Catechin for eco-friendly indoor photovoltaics. Applied Physics Letters, 2021, 118, .	1.5	28
222	Overcoming Degradation Pathways to Achieve Stable Blue Perovskite Light-Emitting Diodes. ACS Energy Letters, 2022, 7, 1348-1354.	8.8	28
223	A Novel Route to Surfaceâ€Enhanced Raman Scattering: Ag Nanoparticles Embedded in the Nanogaps of a Ag Substrate. Advanced Optical Materials, 2014, 2, 588-596.	3.6	27
224	Active whispering-gallery-mode optical microcavity based on self-assembled organic microspheres. Journal of Materials Chemistry C, 2019, 7, 3443-3446.	2.7	27
225	Auger Effect Assisted Perovskite Electroluminescence Modulated by Interfacial Minority Carriers. Advanced Functional Materials, 2020, 30, 1909222.	7.8	27
226	Management of excitons for highly efficient organic light-emitting diodes with reduced triplet exciton quenching: synergistic effects of exciplex and quantum well structure. Journal of Materials Chemistry C, 2018, 6, 342-349.	2.7	27
227	Light extraction enhancement from organic light-emitting diodes with randomly scattered surface fixture. Applied Surface Science, 2014, 314, 858-863.	3.1	26
228	Enhanced Electrical Property of Compact TiO ₂ Layer via Platinum Doping for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2018, 2, 1800149.	3.1	26
229	Transformation from Nonlasing to Lasing in Organic Solid-State through the Cocrystal Engineering. ACS Photonics, 2019, 6, 1798-1803.	3.2	26
230	Organic polymorph-based alloys for continuous regulation of emission colors. Matter, 2022, 5, 1520-1531.	5.0	26
231	Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes. Applied Physics Letters, 2015, 106, .	1.5	25
232	Controlled synthesis of organic single-crystalline nanowires <i>via</i> the synergy approach of the bottom-up/top-down processes. Nanoscale, 2018, 10, 5140-5147.	2.8	25
233	Rational synthesis of organic single-crystalline microrods and microtubes for efficient optical waveguides. Journal of Materials Chemistry C, 2018, 6, 9594-9598.	2.7	25
234	Controllable Fabrication of In‣eries Organic Heterostructures for Optical Waveguide Application. Advanced Optical Materials, 2019, 7, 1900373.	3.6	25

#	Article	IF	CITATIONS
235	Nondoped organic light-emitting diodes with low efficiency roll-off: the combination of aggregation-induced emission, hybridized local and charge-transfer state as well as high photoluminescence efficiency. Journal of Materials Chemistry C, 2020, 8, 3079-3087.	2.7	25
236	Unraveling the role of active hydrogen caused by carbonyl groups in surface-defect passivation of perovskite photovoltaics. Nano Energy, 2022, 97, 107200.	8.2	25
237	Pure Hydrocarbon Materials as Highly Efficient Host for White Phosphorescent Organic Lightâ€Emitting Diodes: A New Molecular Design Approach. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
238	Raman scattering of porous structure formed on C+â€implanted silicon. Applied Physics Letters, 1996, 68, 2091-2093.	1.5	24
239	Stable and intense blue-green emission in porous silicon achieved by amine immersion and rapid thermal oxidation. Applied Physics Letters, 1997, 70, 1284-1286.	1.5	24
240	Low driving voltage simplified tandem organic light-emitting devices by using exciplex-forming hosts. Applied Physics Letters, 2014, 105, 153302.	1.5	24
241	Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes. Applied Physics Letters, 2015, 106, .	1.5	24
242	Design principles of carbazole/dibenzothiophene derivatives as host material in modern efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 6989-6996.	2.7	24
243	Highly luminescent platinum(II) complexes based on pyrazolo[1,5-f]phenanthridine-containing ligands. Organic Electronics, 2017, 50, 473-479.	1.4	24
244	Progress of Triple Cation Organometal Halide Perovskite Solar Cells. Energy Technology, 2020, 8, 1900804.	1.8	24
245	Highly Efficient Sensitized Chiral Hybridized Local and Chargeâ€Transfer Emitter Circularly Polarized Electroluminescence. Advanced Functional Materials, 2022, 32, .	7.8	24
246	Interface formation between poly(9,9-dioctylfluorene) and Ca electrode investigated using photoelectron spectroscopy. Chemical Physics Letters, 2000, 325, 405-410.	1.2	23
247	The interface analyses of inorganic layer for organic electroluminescent devices. Displays, 2000, 21, 79-82.	2.0	23
248	Photoelectron spectroscopic study of iodine- and bromine-treated indium tin oxides and their interfaces with organic films. Chemical Physics Letters, 2003, 370, 425-430.	1.2	23
249	Operating longevity of organic light-emitting diodes with perylene derivatives as aggregating light-emitting-layer additives: Expansion of the emission zone. Journal of Applied Physics, 2006, 100, 094907.	1.1	23
250	Spiro-annulated hole-transport material outperforms NPB with higher mobility and stability in organic light-emitting diodes. Dyes and Pigments, 2014, 107, 15-20.	2.0	23
251	Solution-processable iridium phosphors for efficient red and white organic light-emitting diodes with low roll-off. Journal of Materials Chemistry C, 2016, 4, 1250-1256.	2.7	23
252	CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} under Different Fabrication Strategies: Electronic Structures and Energy-Level Alignment with an Organic Hole Transport Material. ACS Applied Materials & Interfaces, 2017, 9, 7859-7865.	4.0	23

#	Article	IF	CITATIONS
253	WO ₃ nanobelt doped PEDOT:PSS layers for efficient hole-injection in quantum dot light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 12343-12348.	2.7	23
254	Polyphenylnaphthalene as a Novel Building Block for Highâ€Performance Deepâ€Blue Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2018, 6, 1700855.	3.6	23
255	Dispiro and Propellane: Novel Molecular Platforms for Highly Efficient Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 1925-1932.	4.0	23
256	Exciplexâ€Based Organic Lightâ€Emitting Diodes with Nearâ€Infrared Emission. Advanced Optical Materials, 2020, 8, 1901917.	3.6	23
257	Homoleptic Ir(III) Phosphors with 2-Phenyl-1,2,4-triazol-3-ylidene Chelates for Efficient Blue Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 59023-59034.	4.0	23
258	Damage study of ITO under high electric field. Thin Solid Films, 2000, 363, 240-243.	0.8	22
259	Oxygen effect on the interface formation between calcium and a polyfluorene film. Physical Review B, 2000, 62, 10004-10007.	1.1	22
260	Spiro-fused N-phenylcarbazole-based host materials for blue phosphorescent organic light-emitting diodes. Organic Electronics, 2015, 20, 112-118.	1.4	22
261	New advances in small molecule hole-transporting materials for perovskite solar cells. Chinese Chemical Letters, 2016, 27, 1293-1303.	4.8	22
262	Utilizing 9,10-dihydroacridine and pyrazine-containing donor–acceptor host materials for highly efficient red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 7869-7874.	2.7	22
263	Dibenzo[g,p]chrysene: A new platform for highly efficient red phosphorescent organic light-emitting diodes. Dyes and Pigments, 2017, 146, 234-239.	2.0	22
264	D–A–Aâ€Type Emitter Featuring Benzo[c][1,2,5]thiadiazole and Polar CN Bond as Tandem Acceptor for Highâ€Performance Nearâ€Infrared Organic Lightâ€Emitting Diodes. Advanced Optical Materials, 2017, 5, 1700566.	3.6	22
265	Low-Threshold Organic Lasers Based on Single-Crystalline Microribbons of Aggregation-Induced Emission Luminogens. Journal of Physical Chemistry Letters, 2019, 10, 679-684.	2.1	22
266	C1â€Linked Spirobifluorene Dimers: Pure Hydrocarbon Hosts for Highâ€Performance Blue Phosphorescent OLEDs. Angewandte Chemie, 2019, 131, 3888-3893.	1.6	22
267	Ï€-stacked donor-acceptor molecule to realize hybridized local and charge-transfer excited state emission with multi-stimulus response. Chemical Engineering Journal, 2021, 418, 129366.	6.6	22
268	The very strong photoluminescent (PL) effect of mesoporous molecular sieve materials. Supramolecular Science, 1998, 5, 523-526.	0.7	21
269	Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant. Applied Physics Letters, 2014, 105, .	1.5	21
270	A rational molecular design on choosing suitable spacer for better host materials in highly efficient blue and white phosphorescent organic light-emitting diodes. Organic Electronics, 2014, 15, 1368-1377.	1.4	21

#	Article	IF	CITATIONS
271	A novel electron-acceptor moiety as a building block for efficient donor–acceptor based fluorescent organic lighting-emitting diodes. Chemical Communications, 2017, 53, 263-265.	2.2	21
272	9-Silafluorene and 9-germafluorene: novel platforms for highly efficient red phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 8144-8151.	2.7	21
273	Influence of a lecithin additive on the performance of all-inorganic perovskite light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2905-2910.	2.7	21
274	Acceptor modulation for improving a spiro-type thermally activated delayed fluorescence emitter. Journal of Materials Chemistry C, 2020, 8, 8579-8584.	2.7	21
275	Positive isotope effect in thermally activated delayed fluorescence emitters based on deuterium-substituted donor units. Chemical Engineering Journal, 2022, 430, 132822.	6.6	21
276	Improved host material for electrophosphorescence by positional engineering of spirobifluorene–carbazole hybrids. Journal of Materials Chemistry C, 2014, 2, 8736-8744.	2.7	20
277	The study on two kinds of spiro systems for improving the performance of host materials in blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 9053-9056.	2.7	20
278	A new synthesis strategy for acridine derivatives to constructing novel host for phosphorescent organic light-emitting diodes. Dyes and Pigments, 2016, 126, 131-137.	2.0	20
279	Efficient sky-blue emitting Pt(<scp>ii</scp>) complexes based on imidazo[1,2-f]phenanthridine-containing tetradentate ligands. Journal of Materials Chemistry C, 2017, 5, 9496-9503.	2.7	20
280	A sky-blue thermally activated delayed fluorescence emitter based on multimodified carbazole donor for efficient organic light-emitting diodes. Organic Electronics, 2019, 68, 113-120.	1.4	20
281	Organic single-crystalline whispering-gallery mode microlasers with efficient optical gain activated via excited state intramolecular proton transfer luminogens. Journal of Materials Chemistry C, 2020, 8, 11916-11921.	2.7	20
282	Surface Plasmon Polariton Enhancement in Blue Organic Light-Emitting Diode: Role of Metallic Cathode. Applied Physics Express, 2012, 5, 102102.	1.1	19
283	Role of hole injection layer in intermediate connector of tandem organic light-emitting devices. Organic Electronics, 2014, 15, 3694-3701.	1.4	19
284	Interfacial degradation effects of aqueous solution-processed molybdenum trioxides on the stability of organic solar cells evaluated by a differential method. Applied Physics Letters, 2014, 105, .	1.5	19
285	An efficient organic–inorganic hybrid hole injection layer for organic light-emitting diodes by aqueous solution doping. Journal of Materials Chemistry C, 2015, 3, 6218-6223.	2.7	19
286	A facile way to synthesize high-triplet-energy hosts for blue phosphorescent organic light-emitting diodes with high glass transition temperature and low driving voltage. Dyes and Pigments, 2015, 122, 6-12.	2.0	19
287	Inverted and large flexible organic light-emitting diodes with low operating voltage. Journal of Materials Chemistry C, 2015, 3, 12399-12402.	2.7	19
288	Origin of improved stability in green phosphorescent organic light-emitting diodes based on a dibenzofuran/spirobifluorene hybrid host. Applied Physics A: Materials Science and Processing, 2015, 118, 381-387.	1.1	19

#	Article	IF	CITATIONS
289	Flash-evaporated small molecule films toward low-cost and flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 10721-10727.	2.7	19
290	New carbazole-based bipolar hosts for efficient blue phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 52, 138-145.	1.4	19
291	Micro Organic Light Emitting Diode Arrays by Patterned Growth on Structured Polypyrrole. Advanced Optical Materials, 2020, 8, 1902105.	3.6	19
292	Origin of light manipulation in nano-honeycomb structured organic light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 1666-1671.	2.7	18
293	Microstructural and electrical properties of CuAlO2 ceramic prepared by a novel solvent-free ester elimination process. Journal of Alloys and Compounds, 2015, 653, 219-227.	2.8	18
294	Spirobi[dibenzo[<i>b</i> , <i>e</i>][1,4]azasiline]: a novel platform for host materials in highly efficient organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 1023-1030.	2.7	18
295	Novel carbazole derivatives designed by an ortho-linkage strategy for efficient phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 4300-4307.	2.7	18
296	Molecular- and Structural-Level Organic Heterostructures for Multicolor Photon Transportation. Journal of Physical Chemistry Letters, 2020, 11, 7517-7524.	2.1	18
297	Highly efficient near-infrared thermally activated delayed fluorescence material based on a spirobifluorene decorated donor. Organic Electronics, 2021, 91, 106088.	1.4	18
298	Organic white-light sources: multiscale construction of organic luminescent materials from molecular to macroscopic level. Science China Chemistry, 2022, 65, 740-745.	4.2	18
299	Thermally activated delayed fluorescence sensitizer for D–A–A type emitters with orange-red light emission. Journal of Materials Chemistry C, 2018, 6, 10030-10035.	2.7	17
300	A decacyclic indacenodithiophene-based non-fullerene electron acceptor with meta-alkyl-phenyl substitutions for polymer solar cells. Journal of Materials Chemistry A, 2019, 7, 4063-4071.	5.2	17
301	Construction and optoelectronic applications of organic core/shell micro/nanostructures. Materials Horizons, 2020, 7, 3161-3175.	6.4	17
302	Multiâ€Layer Ï€â€Stacked Molecules as Efficient Thermally Activated Delayed Fluorescence Emitters. Angewandte Chemie, 2021, 133, 5273-5279.	1.6	17
303	Spatial donor/acceptor architecture for intramolecular charge-transfer emitter. Chinese Chemical Letters, 2021, 32, 1245-1248.	4.8	17
304	Flat layered structure and improved photoluminescence emission from porous silicon microcavities formed by pulsed anodic etching. Applied Physics A: Materials Science and Processing, 2002, 74, 807-811.	1.1	16
305	Work-function tuneable and aqueous solution-processed Cs2CO3 for high-performance polymer solar cells. Journal of Materials Chemistry A, 2014, 2, 9400.	5.2	16
306	Direct comparison of charge transport and electronic traps in polymer–fullerene blends under dark and illuminated conditions. Organic Electronics, 2014, 15, 299-305.	1.4	16

#	Article	IF	CITATIONS
307	Conductive Inorganic–Organic Hybrid Distributed Bragg Reflectors. Advanced Materials, 2015, 27, 6696-6701.	11.1	16
308	Doped hole injection bilayers for solution processable blue phosphorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 6570-6574.	2.7	16
309	Short-axis substitution approach on ladder-type benzodithiophene-based electron acceptor toward highly efficient organic solar cells. Science China Chemistry, 2018, 61, 1405-1412.	4.2	16
310	Deep-Blue and Hybrid-White Organic Light Emitting Diodes Based on a Twisting Carbazole-Benzofuro[2,3-b]Pyrazine Fluorescent Emitter. Molecules, 2019, 24, 353.	1.7	16
311	Nâ€ŧype Doping of Organicâ€ŀnorganic Hybrid Perovskites Toward Highâ€Performance Photovoltaic Devices. Solar Rrl, 2019, 3, 1800269.	3.1	16
312	Multichannel Effect of Triplet Excitons for Highly Efficient Green and Red Phosphorescent OLEDs. Advanced Optical Materials, 2020, 8, 2000556.	3.6	16
313	<i>In Situ</i> Growth of Strained Matrix on CsPbl ₃ Perovskite Quantum Dots for Balanced Conductivity and Stability. ACS Nano, 2022, 16, 10534-10544.	7.3	16
314	The influence of charge injection from intermediate connectors on the performance of tandem organic light-emitting devices. Journal of Applied Physics, 2014, 116, .	1.1	15
315	Efficient blue/white phosphorescent organic light-emitting diodes based on a silicon-based host material via a direct carbon–nitrogen bond. Journal of Materials Chemistry C, 2015, 3, 5347-5353.	2.7	15
316	The Control of Conjugation Lengths and Steric Hindrance to Modulate Aggregationâ€Induced Emission with High Electroluminescence Properties and Interesting Optical Properties. Chemistry - A European Journal, 2016, 22, 916-924.	1.7	15
317	Orthogonally substituted aryl derivatives as bipolar hosts for blue phosphorescent organic light-emitting diodes. Organic Electronics, 2017, 46, 105-114.	1.4	15
318	The roles of thermally activated delayed fluorescence sensitizers for efficient red fluorescent organic light-emitting diodes with D–A–A type emitters. Materials Chemistry Frontiers, 2019, 3, 161-167.	3.2	15
319	Lead Oxalate-Induced Nucleation Retardation for High-Performance Indoor and Outdoor Perovskite Photovoltaics. ACS Applied Materials & amp; Interfaces, 2020, 12, 836-843.	4.0	15
320	Cascaded Excitedâ€State Intramolecular Proton Transfer Towards Nearâ€Infrared Organic Lasers Beyond 850 nm. Angewandte Chemie, 2021, 133, 9196-9201.	1.6	15
321	Ï€-Stacked Thermally Activated Delayed Fluorescence Emitters with Alkyl Chain Modulation. CCS Chemistry, 2021, 3, 1757-1763.	4.6	15
322	Singleâ€Crystal Organic Heterostructure for Singleâ€Mode Unidirectional Whisperingâ€Galleryâ€Mode Laser. Advanced Optical Materials, 2022, 10, 2101931.	3.6	15
323	Efficient narrowband electroluminescence based on a hetero-bichromophore thermally activated delayed fluorescence dyad. Journal of Materials Chemistry C, 2022, 10, 4941-4946.	2.7	15
324	Exploring Axial Organic Multiblock Heterostructure Nanowires: Advances in Molecular Design, Synthesis, and Functional Applications. Advanced Functional Materials, 2022, 32, .	7.8	15

#	Article	IF	CITATIONS
325	Recent Progress of Novel Organic Nearâ€Infraredâ€Emitting Materials. Small Science, 2022, 2, .	5.8	15
326	Photoluminescence studies of porous silicon microcavities. Journal of Luminescence, 1998, 80, 137-140.	1.5	14
327	Strong surface segregation of Sb atoms at low temperatures during Si molecular beam epitaxy. Thin Solid Films, 1998, 336, 236-239.	0.8	14
328	Enhanced performance of inverted organic photovoltaic cells using CNTs–TiO _{<i>X</i>} nanocomposites as electron injection layer. Nanotechnology, 2013, 24, 355401.	1.3	14
329	Two-dimensional optical waveguiding and luminescence vapochromic properties of 8-hydroxyquinoline zinc (Znq ₂) hexagonal microsheets. Chemical Communications, 2014, 50, 10812-10814.	2.2	14
330	Aminoborane-based bipolar host material for blue and white-emitting electrophosphorescence devices. Organic Electronics, 2017, 48, 112-117.	1.4	14
331	High-efficiency exciplex-based white organic light-emitting diodes with a new tripodal material as a co-host. Journal of Materials Chemistry C, 2019, 7, 7267-7272.	2.7	14
332	Morphology control of CsPbBr3 films by a surface active Lewis base for bright all-inorganic perovskite light-emitting diodes. Applied Physics Letters, 2019, 114, .	1.5	14
333	High transmittance Er-doped ZnO thin films as electrodes for organic light-emitting diodes. Applied Physics Letters, 2019, 115, .	1.5	14
334	Efficient circularly polarized thermally activated delayed fluorescence hetero-[4]helicene with carbonyl-/sulfone-bridged triarylamine structures. Journal of Materials Chemistry C, 2022, 10, 4393-4401.	2.7	14
335	Photoactivated p-Doping of Organic Interlayer Enables Efficient Perovskite/Silicon Tandem Solar Cells. ACS Energy Letters, 2022, 7, 1987-1993.	8.8	14
336	Correlation of optical and structural properties of porous β-SiC formed on silicon by C+-implantation. Solid State Communications, 1995, 95, 559-562.	0.9	13
337	Sodiumâ^'Quinolate Complexes as Efficient Electron Injection Materials for Organic Light-Emitting Diode Devices. Journal of Physical Chemistry C, 2011, 115, 2433-2438.	1.5	13
338	Efficient optical absorption enhancement in organic solar cells by using a 2-dimensional periodic light trapping structure. Applied Physics Letters, 2014, 104, 243904.	1.5	13
339	Efficiency Enhancement of Perovskite Solar Cells by Pumping Away the Solvent of Precursor Film Before Annealing. Nanoscale Research Letters, 2016, 11, 248.	3.1	13
340	Phosphorescent platinum(<scp>ii</scp>) complexes based on spiro linkage-containing ligands. Journal of Materials Chemistry C, 2017, 5, 1944-1951.	2.7	13
341	Highly efficient non-doped deep-blue organic light-emitting diodes by employing a highly rigid skeleton. Dyes and Pigments, 2018, 158, 396-401.	2.0	13
342	A series of spirofluorene-based host materials for efficient phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 61, 70-77.	1.4	13

#	Article	IF	CITATIONS
343	γâ€Ga ₂ O ₃ Nanocrystals Electronâ€Transporting Layer for Highâ€Performance Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900201.	3.1	13
344	Fluorenone-based thermally activated delayed fluorescence materials for orange-red emission. Organic Electronics, 2019, 73, 240-246.	1.4	13
345	Spiro-type host materials with rigidified skeletons for RGB phosphorescent OLEDs. Journal of Materials Chemistry C, 2020, 8, 12470-12477.	2.7	13
346	W ₁₈ O ₄₉ /N-doped reduced graphene oxide hybrid architectures for full-spectrum photocatalytic degradation of organic contaminants in water. Journal of Materials Chemistry C, 2021, 9, 829-835.	2.7	13
347	Theoretical model for the external quantum efficiency of organic light-emitting diodes and its experimental validation. Organic Electronics, 2015, 25, 200-205.	1.4	12
348	Novel spiro-based host materials for application in blue and white phosphorescent organic light-emitting diodes. Organic Electronics, 2016, 37, 108-114.	1.4	12
349	Chlorinated indium tin oxide electrode by InCl3 aqueous solution for high-performance organic light-emitting diodes. Applied Physics Letters, 2016, 108, .	1.5	12
350	An Imideâ€Based Pentacyclic Building Block for nâ€īype Organic Semiconductors. Chemistry - A European Journal, 2017, 23, 14723-14727.	1.7	12
351	Solution processable small molecule based organic light-emitting devices prepared by dip-coating method. Organic Electronics, 2018, 55, 1-5.	1.4	12
352	Efficient All-Inorganic Perovskite Light-Emitting Diodes with Cesium Tungsten Bronze as a Hole-Transporting Layer. Journal of Physical Chemistry Letters, 2020, 11, 7624-7629.	2.1	12
353	Highly efficient exciplex-based OLEDs incorporating a novel electron donor. Materials Chemistry Frontiers, 2020, 4, 1648-1655.	3.2	12
354	Annealing-free perovskite films by EDOT-assisted anti-solvent strategy for flexible indoor and outdoor photovoltaics. Nano Energy, 2022, 94, 106866.	8.2	12
355	The electroluminescence from porous β-SiC formed on C+ implanted silicon. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 308-312.	0.6	11
356	Operating lifetime recovery in organic light-emitting diodes having an azaaromatic hole-blocking/electron-transporting layer. Journal of Applied Physics, 2008, 104, 074914.	1.1	11
357	Fluorescence/phosphorescence-conversion in self-assembled organic microcrystals. Chemical Communications, 2018, 54, 5895-5898.	2.2	11
358	Highly efficient deep-red organic light-emitting diodes using exciplex-forming co-hosts and thermally activated delayed fluorescence sensitizers with extended lifetime. Journal of Materials Chemistry C, 2019, 7, 9531-9536.	2.7	11
359	Modulation of p-type units in tripodal bipolar hosts towards highly efficient red phosphorescent OLEDs. Dyes and Pigments, 2019, 162, 632-639.	2.0	11
360	Near-infrared non-fullerene acceptors based on dithienyl[1,2-b:4,5-b']benzodithiophene core for high performance PTB7-Th-based polymer solar cells. Organic Electronics, 2019, 65, 63-69.	1.4	11

#	Article	IF	CITATIONS
361	Donor-spiro-acceptor architecture for green thermally activated delayed fluorescence (TADF) emitter. Organic Electronics, 2020, 77, 105520.	1.4	11
362	Nearâ€Infrared Electroluminescence beyond 800â€nm with High Efficiency and Radiance from Anthracene Cored Emitters. Angewandte Chemie, 2020, 132, 21762-21768.	1.6	11
363	High-performance organic light-emitting diodes with natural white emission based on thermally activated delayed fluorescence emitters. Journal of Materials Chemistry C, 2020, 8, 10431-10437.	2.7	11
364	Over 800 nm Emission via Harvesting of Triplet Excitons in Exciplex Organic Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2021, 12, 6034-6040.	2.1	11
365	Nicotinamideâ€Modified PEDOT:PSS for High Performance Indoor and Outdoor Tin Perovskite Photovoltaics. Solar Rrl, 2021, 5, 2100713.	3.1	11
366	Visible and infrared photoluminescence from Er-doped SiOx. Journal of Luminescence, 1998, 80, 369-373.	1.5	10
367	Adhesive modification of indium–tin-oxide surface for template attachment for deposition of highly ordered nanostructure arrays. Applied Surface Science, 2012, 258, 8139-8145.	3.1	10
368	Low-temperature solution-processed hybrid interconnecting layer with bulk/interfacial synergistic effect in symmetric tandem organic solar cells. Organic Electronics, 2019, 75, 105423.	1.4	10
369	Surfacial ligand management of a perovskite film for efficient and stable light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 14725-14730.	2.7	10
370	High-performance sky-blue phosphorescent organic light-emitting diodes employing wide-bandgap bipolar host materials with thermally activated delayed fluorescence characteristics. Organic Electronics, 2020, 81, 105660.	1.4	10
371	UV-Stable and Highly Efficient Perovskite Solar Cells by Employing Wide Band gap NaTaO ₃ as an Electron-Transporting Layer. ACS Applied Materials & Interfaces, 2020, 12, 21772-21778.	4.0	10
372	Micro organic light-emitting diodes fabricated through area-selective growth. Materials Chemistry Frontiers, 2017, 1, 2606-2612.	3.2	10
373	Photoluminescence from C+-implanted SiNxOy films grown on crystalline silicon. Applied Physics Letters, 1997, 71, 2193-2195.	1.5	9
374	A high-resolution electron microscopy study of blue-light emitting β–SiC nanoparticles in C ⁺ -implanted silicon. Journal of Materials Research, 1997, 12, 1640-1645.	1.2	9
375	Improvement of interface formation between metal electrode and polymer film by polymer surface modification using ion sputtering. Applied Physics Letters, 2000, 77, 3191-3193.	1.5	9
376	Substrate dependence of thermal effect on organic light-emitting films. Chemical Physics Letters, 2002, 356, 194-200.	1.2	9
377	Pâ€169: Efficient, Longâ€Lifetime OLED Host and Dopant Formulations for Fullâ€Color Displays. Digest of Technical Papers SID International Symposium, 2007, 38, 830-833.	0.1	9
378	High efficiency and low driving voltage blue/white electrophosphorescence enabled by the synergistic combination of singlet and triplet energy of bicarbazole derivatives. Organic Electronics, 2015, 26, 25-29.	1.4	9

#	Article	IF	CITATIONS
379	Luminescence-/morphology-modulation of organic microcrystals by a protonation process. Journal of Materials Chemistry C, 2017, 5, 6661-6666.	2.7	9
380	Highly efficient and thickness-tolerable bulk heterojunction polymer solar cells based on P3HT donor and a low-bandgap non-fullerene acceptor. Journal of Power Sources, 2017, 364, 426-431.	4.0	9
381	Novel o-D-ï€-A arylamine/arylphosphine oxide hybrid hosts for efficient phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 56, 186-191.	1.4	9
382	Efficient near-infrared organic light-emitting diodes based on a bipolar host. Journal of Materials Chemistry C, 2018, 6, 1407-1412.	2.7	9
383	Chargeâ€Transfer Complexes: Deepâ€Red/Nearâ€Infrared Electroluminescence from Singleâ€Component Chargeâ€Transfer Complex via Thermally Activated Delayed Fluorescence Channel (Adv. Funct. Mater.) Tj ETQq1	1 0. 88431	49gBT /Over
384	Surface CH ₃ NH ₃ ⁺ to CH ₃ ⁺ Ratio Impacts the Work Function of Solutionâ€Processed and Vacuumâ€Sublimed CH ₃ NH ₃ PbI ₃ Thin Films. Advanced Materials Interfaces, 2019, 6, 1801827.	1.9	9
385	A SrGeO ₃ inorganic electron-transporting layer for high-performance perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 14559-14564.	5.2	9
386	Organic bulk-heterojunction injected perovskite films for highly efficient solar cells. Journal of Materials Chemistry C, 2019, 7, 6391-6397.	2.7	9
387	Deep-blue thermally activated delayed fluorescence materials with high glass transition temperature. Journal of Luminescence, 2019, 206, 146-153.	1.5	9
388	Fine Synthesis of Longitudinal/Horizontalâ€Growth Organic Heterostructures for the Optical Logic Gates. Advanced Electronic Materials, 2020, 6, 1901268.	2.6	9
389	Dimers with thermally activated delayed fluorescence (TADF) emission in non-doped device. Journal of Materials Chemistry C, 2021, 9, 4792-4798.	2.7	9
390	Precise synthesis of multilevel branched organic microwires for optical signal processing in the near infrared region. Science China Materials, 2022, 65, 1020-1027.	3.5	9
391	Solvent strategies toward high-performance perovskite light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 3276-3286.	2.7	9
392	Steric Modulation of Spiro Structure for Highly Efficient Multiple Resonance Emitters. Angewandte Chemie, 2022, 134, .	1.6	9
393	Waveguiding and Lasing in 2D Organic Semiconductor Znq ₂ . Advanced Photonics Research, 2021, 2, 2000057.	1.7	8
394	17.3: Highly Efficient Fluorescent/Phosphorescent OLED Devices Using Triplet Harvesting. Digest of Technical Papers SID International Symposium, 2008, 39, 219.	0.1	7
395	Highly Efficient White Organic Light-Emitting Diodes with Controllable Excitons Behavior by a Mixed Interlayer between Fluorescence Blue and Phosphorescence Yellow-Emitting Layers. International Journal of Photoenergy, 2013, 2013, 1-7.	1.4	7
396	Constructing luminescent particle/MOF composites by employing polyvinylpyrrolidone-modified organic crystals as seeds. Chemical Communications, 2016, 52, 12318-12321.	2.2	7

#	Article	IF	CITATIONS
397	Low-temperature sol–gel processed AlO _x gate dielectric buffer layer for improved performance in pentacene-based OFETs. RSC Advances, 2016, 6, 28801-28808.	1.7	7
398	Design and Synthesis of Donorâ~Ïf–π–Ïf–Acceptor-Type Dispiro Molecules. Organic Letters, 2019, 21, 5281-5284.	2.4	7
399	Durable strategies for perovskite photovoltaics. APL Materials, 2020, 8, .	2.2	7
400	Systematic strategy for high-performance small molecular hybrid white OLED via blade coating at ambient condition. Organic Electronics, 2022, 100, 106366.	1.4	7
401	The formation and microstructures of Si-based blue-light emitting porous β-SiC. Nuclear Instruments & Methods in Physics Research B, 1996, 119, 505-509.	0.6	6
402	Synchrotron radiation photoelectron spectroscopy study of ITO surface. Applied Surface Science, 2000, 157, 35-38.	3.1	6
403	Surface passivation in diamond nucleation. Physical Review B, 2000, 62, 17134-17137.	1.1	6
404	A stacked Al/Ag anode for short circuit protection in ITO free top-emitting organic light-emitting diodes. RSC Advances, 2015, 5, 96478-96482.	1.7	6
405	Inverted with power efficiency over 220ÂlmÂW–1. Nano Energy, 2021, 82, 105660.	8.2	6
406	Isomeric thermally activated delayed fluorescence emitters based on a quinolino[3,2,1- <i>de</i>]acridine-5,9-dione multiple resonance core and carbazole substituent. Materials Chemistry Frontiers, 2022, 6, 966-972.	3.2	6
407	Thermal Stability of Blue Emission from Porous β-SiC Formed on Crystalline Si by C+ Implantation. Physica Status Solidi A, 1996, 155, 233-238.	1.7	5
408	Enhanced efficiency and stability in organic light-emitting diodes by employing a p-i-n-p structure. Applied Physics Letters, 2016, 109, .	1.5	5
409	Perovskite Solar Cells: High Efficiency Pb–In Binary Metal Perovskite Solar Cells (Adv. Mater. 31/2016). Advanced Materials, 2016, 28, 6767-6767.	11.1	5
410	Molecular-Oriented Self-Assembly of Small Organic Molecules into Uniform Microspheres. Crystal Growth and Design, 2017, 17, 4527-4532.	1.4	5
411	Asymmetrical planar acridine-based hole-transporting materials for highly efficient perovskite solar cells. Chemical Engineering Journal, 2021, 413, 127440.	6.6	5
412	Light-emitting carbon dots extracted from naturally grown torreya grandis seeds. Organic Electronics, 2021, 96, 106255.	1.4	5
413	Fine synthesis of hierarchical CuO/Cu(OH)2 urchin-like nanoparticles for efficient removal of Cr(â¥). Journal of Alloys and Compounds, 2021, 884, 161052.	2.8	5
414	A General Synthetic Approach of Organic Lateral Heterostructures for Optical Signal Converters in All-Color Wavelength. CCS Chemistry, 2023, 5, 423-433.	4.6	5

#	Article	IF	CITATIONS
415	Acceptor modulation for improving thermally activated delayed fluorescence emitter in through-space charge transfer on spiroskeletons. Chinese Chemical Letters, 2023, 34, 107634.	4.8	5
416	30.2: Improving Operating Lifetime of Organic Light-Emitting Diodes with Perylene and Derivatives as Aggregating Light-Emitting-Layer Additives. Digest of Technical Papers SID International Symposium, 2007, 38, 1188-1192.	0.1	4
417	Enhancement of device efficiency in CuPc/C60 based organic photovoltaic cells by inserting an InCl3 layer. Synthetic Metals, 2012, 162, 2212-2215.	2.1	4
418	A host material consisting of phosphinic amide for efficient sky-blue phosphorescent organic light-emitting diodes. Synthetic Metals, 2015, 205, 11-17.	2.1	4
419	A surface modification layer capable of tolerating substrate contamination on transparent electrodes of organic electronic devices. Organic Electronics, 2016, 28, 217-224.	1.4	4
420	Blue thermally activated delayed fluorescence materials based on bi/tri-carbazole derivatives. Organic Electronics, 2018, 58, 238-244.	1.4	4
421	Novel tetraarylsilane-based hosts for blue phosphorescent organic light-emitting diodes. Organic Electronics, 2018, 55, 117-125.	1.4	4
422	One-shot triphenylamine/phenylketone hybrid as a bipolar host material for efficient red phosphorescent organic light-emitting diodes. Synthetic Metals, 2019, 254, 42-48.	2.1	4
423	Structurally controlled singlet-triplet splitting for blue star-shaped thermally activated delayed fluorescence emitters incorporating the tricarbazoles-triazine motifs. Organic Electronics, 2020, 84, 105783.	1.4	4
424	Rational self-assembly of polygonal organic microcrystals for shape-dependent multi-directional 2D optical waveguides. Chinese Chemical Letters, 2022, 33, 3255-3258.	4.8	4
425	Exciplex host coupled with a micro-cavity enabling high efficiency OLEDs with narrow emission profile. Journal of Materials Chemistry C, 2022, 10, 5666-5671.	2.7	4
426	Dibenzothiophene, dibenzofuran and pyridine substituted tetraphenyl silicon derivatives hosts for green phosphorescent organic light-emitting diodes. Organic Electronics, 2019, 71, 258-265.	1.4	3
427	High Efficiency Semi-Transparent Organic Photovoltaics. , 2019, , .		3
428	Highly Efficient Blue Thermally Activated Delayed Fluorescence Emitters Based on Multi-Donor Modified Oxygen-Bridged Boron Acceptor. Molecules, 2022, 27, 4048.	1.7	3
429	Thermal Annealing of Si + Implanted Chemical Vapor Deposition SiO 2. Chinese Physics Letters, 1996, 13, 397-400.	1.3	2
430	Photoluminescent (PL) investigation of mesoporous molecular sieve materials. Studies in Surface Science and Catalysis, 1999, 125, 293-300.	1.5	2
431	P-210: Phosphorescence Ranging from Blue to Red from tris-Cyclometalated Iridium (III) Complexes and Application to Organic Light-Emitting Devices. Digest of Technical Papers SID International Symposium, 2008, 39, 1997.	0.1	2
432	Blue OLEDs: Controlling Synergistic Oxidation Processes for Efficient and Stable Blue Thermally Activated Delayed Fluorescence Devices (Adv. Mater. 35/2016). Advanced Materials, 2016, 28, 7807-7807.	11.1	2

#	Article	IF	CITATIONS
433	Materials science in China. Nature Reviews Materials, 2016, 1, .	23.3	2
434	Real-time interface investigation on degradation mechanism of organic light-emitting diode by in-operando X-ray spectroscopies. Organic Electronics, 2020, 87, 105901.	1.4	2
435	Materials, Designs, Fabrications, and Applications of Organic Electronic Devices. International Journal of Photoenergy, 2014, 2014, 1-2.	1.4	1
436	Highly efficient inverted polymer solar cells using aqueous ammonia processed ZnO as an electron selective layer. Applied Physics A: Materials Science and Processing, 2014, 116, 993-999.	1.1	1
437	Management of Exciton for Highly-Efficient Hybrid White Organic Light-Emitting Diodes with a Non-Doped Blue Emissive Layer. Molecules, 2019, 24, 4046.	1.7	1
438	Til4-doping induced bulk defects passivation in halide perovskites for high efficient photovoltaic devices. Organic Electronics, 2021, 88, 105973.	1.4	1
439	Metal-Polyfluorene Interface and Surface. , 2001, , .		1
440	Shape-engineering of organic heterostructures via a sequential self-assembly strategy for multi-channel photon transportation. Nano Research, 2022, 15, 3781-3787.	5.8	1
441	Correlation between small polaron tunneling relaxation and donor ionization in Ga2O3. Applied Physics Letters, 2022, 120, .	1.5	1
442	Photoluminescence from Si-based SiNxOy films. Science Bulletin, 1998, 43, 124-126.	1.7	0
443	Back Cover: Highly Luminescent Waterâ€Dispersible Silicon Nanowires for Longâ€Term Immunofluorescent Cellular Imaging (Angew. Chem. Int. Ed. 13/2011). Angewandte Chemie - International Edition, 2011, 50, 3090-3090.	7.2	0
444	Improved device reliability in organic light emitting devices by controlling the etching of indium zinc oxide anode. Chinese Physics B, 2014, 23, 118508.	0.7	0
445	52.5: Highâ€Quality White Organic Lightâ€Emitting Diodes by Employing Rational Exciplex Allocation and Color Remedy Effect. Digest of Technical Papers SID International Symposium, 2019, 50, 580-580.	0.1	0
446	31.1: Invited Paper: Emitters with Narrowâ€band Emission: Molecular Design Strategy. Digest of Technical Papers SID International Symposium, 2021, 52, 414-414.	0.1	0
447	Synthesis of novel host material based on cyclized diphenyl ether/phosphine oxide and its application in highly efficient phosphorescent organic light-emitting diodes. Scientia Sinica Chimica, 2013, 43, 465-471.	0.2	0
448	Efficient Surfaceâ€Defect Passivation by Sulfurousâ€Acylâ€Included Small Molecule for Highâ€Performance Perovskite Photovoltaics. Solar Rrl, 0, , 2200097.	3.1	0
449	Efficient red organic LEDs via combination of exciplex host and micro-cavity. Materials Chemistry Frontiers, 0, , .	3.2	0