Oscar PÃ mies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3521971/publications.pdf

Version: 2024-02-01

170 papers 9,287 citations

43973 48 h-index 90 g-index

244 all docs

244 docs citations

times ranked

244

4571 citing authors

#	Article	IF	Citations
1	Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions. Chemical Reviews, 2008, 108, 2796-2823.	23.0	930
2	Combination of Enzymes and Metal Catalysts. A Powerful Approach in Asymmetric Catalysis. Chemical Reviews, 2003, 103, 3247-3262.	23.0	557
3	Asymmetric Hydrogenation of Olefins Using Chiral Crabtree-type Catalysts: Scope and Limitations. Chemical Reviews, 2014, 114, 2130-2169.	23.0	413
4	Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chemical Reviews, 2021, 121, 4373-4505.	23.0	302
5	Phosphite-Containing Ligands for Asymmetric Catalysis. Chemical Reviews, 2011, 111, 2077-2118.	23.0	287
6	Studies on the Mechanism of Metal-Catalyzed Hydrogen Transfer from Alcohols to Ketones. Chemistry - A European Journal, 2001, 7, 5052-5058.	1.7	266
7	Ligands Derived from Carbohydrates for Asymmetric Catalysis. Chemical Reviews, 2004, 104, 3189-3216.	23.0	256
8	Biaryl Phosphites: New Efficient Adaptative Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions. Accounts of Chemical Research, 2010, 43, 312-322.	7.6	187
9	Recent advances in Rh-catalyzed asymmetric hydroformylation using phosphite ligands. Tetrahedron: Asymmetry, 2004, 15, 2113-2122.	1.8	177
10	Carbohydrate derivative ligands in asymmetric catalysis. Coordination Chemistry Reviews, 2004, 248, 2165-2192.	9.5	170
11	Pyranoside Phosphite–Oxazoline Ligands for the Highly Versatile and Enantioselective Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins. A Combined Theoretical and Experimental Study. Journal of the American Chemical Society, 2011, 133, 13634-13645.	6.6	163
12	Chemoenzymatic dynamic kinetic resolution. Trends in Biotechnology, 2004, 22, 130-135.	4.9	146
13	Iridium Phosphiteâ^'Oxazoline Catalysts for the Highly Enantioselective Hydrogenation of Terminal Alkenes. Journal of the American Chemical Society, 2009, 131, 12344-12353.	6.6	134
14	An efficient and mild ruthenium-catalyzed racemization of amines: application to the synthesis of enantiomerically pure amines. Tetrahedron Letters, 2002, 43, 4699-4702.	0.7	131
15	New Phosphiteâ^'Oxazoline Ligands for Efficient Pd-Catalyzed Substitution Reactions. Journal of the American Chemical Society, 2005, 127, 3646-3647.	6.6	131
16	Chiral Diphosphites Derived fromD-Glucose: New Ligands for the Asymmetric Catalytic Hydroformylation of Vinyl Arenes. Chemistry - A European Journal, 2001, 7, 3086-3094.	1.7	127
17	Dynamic Kinetic Resolution of \hat{l}^2 -Azido Alcohols. An Efficient Route to Chiral Aziridines and \hat{l}^2 -Amino Alcohols. Journal of Organic Chemistry, 2001, 66, 4022-4025.	1.7	117
18	An Efficient Route to Chiral α- and β-Hydroxyalkanephosphonates. Journal of Organic Chemistry, 2003, 68, 4815-4818.	1.7	105

#	Article	IF	CITATIONS
19	Chiral Pyranoside Phosphiteâ^'Oxazolines: A New Class of Ligand for Asymmetric Catalytic Hydrogenation of Alkenes. Journal of the American Chemical Society, 2008, 130, 7208-7209.	6.6	102
20	Use of sugar-based ligands in selective catalysis: Recent developments. Coordination Chemistry Reviews, 2010, 254, 2007-2030.	9 . 5	98
21	Recent Progress in Asymmetric Catalysis Using Chiral Carbohydrateâ€Based Ligands. European Journal of Organic Chemistry, 2007, 2007, 4621-4634.	1.2	93
22	Asymmetric Hydrogenation of Minimally Functionalised Terminal Olefins: An Alternative Sustainable and Direct Strategy for Preparing Enantioenriched Hydrocarbons. Chemistry - A European Journal, 2010, 16, 14232-14240.	1.7	93
23	Screening of a Modular Sugar-Based Phosphite–Oxazoline Ligand Library in Asymmetric Pd-Catalyzed Heck Reactions. Chemistry - A European Journal, 2007, 13, 3296-3304.	1.7	90
24	Enzymatic Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of l´-Hydroxy Esters. An Efficient Route to Chiral l´-Lactones. Journal of Organic Chemistry, 2002, 67, 1261-1265.	1.7	88
25	Synthesis and Coordination Chemistry of Novel Chiral P,S-Ligands with a Xylofuranose Backbone:Â Use in Asymmetric Hydroformylation and Hydrogenation. Organometallics, 2000, 19, 1488-1496.	1.1	86
26	Modular Furanoside Phosphite Ligands for Asymmetric Pd-Catalyzed Allylic Substitution. Journal of Organic Chemistry, 2001, 66, 8867-8871.	1.7	84
27	Chemoenzymatic Dynamic Kinetic Resolution of \hat{l}^2 -Halo Alcohols. An Efficient Route to Chiral Epoxides. Journal of Organic Chemistry, 2002, 67, 9006-9010.	1.7	81
28	New Carbohydrate-Based Phosphite-Oxazoline Ligands as Highly Versatile Ligands for Palladium-Catalyzed Allylic Substitution Reactions. Advanced Synthesis and Catalysis, 2005, 347, 1943-1947.	2.1	72
29	Asymmetric hydroformylation of styrene catalyzed by carbohydrate diphosphite-Rh(I) complexes. New Journal of Chemistry, 2002, 26, 827-833.	1.4	68
30	Artificial Metalloenzymes in Asymmetric Catalysis: Key Developments and Future Directions. Advanced Synthesis and Catalysis, 2015, 357, 1567-1586.	2.1	67
31	Highly Enantioselective Rh-Catalyzed Hydrogenation Based on Phosphineâ^'Phosphite Ligands Derived from Carbohydrates. Journal of Organic Chemistry, 2001, 66, 8364-8369.	1.7	66
32	Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of Î ² -Hydroxy Nitriles. A Route to Useful Precursors for Î ³ -Amino Alcohols. Advanced Synthesis and Catalysis, 2001, 343, 726-731.	2.1	66
33	Modular Phosphite–Oxazoline/Oxazine Ligand Library for Asymmetric Pdâ€Catalyzed Allylic Substitution Reactions: Scope and Limitations—Origin of Enantioselectivity. Chemistry - A European Journal, 2008, 14, 3653-3669.	1.7	64
34	Palladium-Diphosphite Catalysts for the Asymmetric Allylic Substitution Reactions. Journal of Organic Chemistry, 2005, 70, 3363-3368.	1.7	62
35	Dynamic kinetic resolution of γ-hydroxy acid derivatives. Tetrahedron Letters, 2002, 43, 2983-2986.	0.7	61
36	Chiral Phosphite-oxazolines:  A New Class of Ligands for Asymmetric Heck Reactions. Organic Letters, 2005, 7, 5597-5599.	2.4	60

#	Article	IF	Citations
37	Palladium Nanoparticles in Allylic Alkylations and Heck Reactions: The Molecular Nature of the Catalyst Studied in a Membrane Reactor. Advanced Synthesis and Catalysis, 2008, 350, 2583-2598.	2.1	60
38	Novel diphosphite derived from d-gluco-furanose provides high regio- and enantioselectivity in Rh-catalysed hydroformylation of vinyl arenes. Chemical Communications, 2000, , 1607-1608.	2.2	59
39	Diphosphite ligands based on ribose backbone as suitable ligands in the hydrogenation and hydroformylation of prochiral olefins. Tetrahedron: Asymmetry, 2000, 11, 1097-1108.	1.8	58
40	Adaptative Biaryl Phosphite–Oxazole and Phosphite–Thiazole Ligands for Asymmetric Ir atalyzed Hydrogenation of Alkenes. Chemistry - A European Journal, 2010, 16, 4567-4576.	1.7	58
41	Enantioselective copper-catalysed 1,4-addition of diethylzinc to cyclohexenone using chiral diphosphite ligands. Tetrahedron: Asymmetry, 1999, 10, 2007-2014.	1.8	57
42	Combined metal catalysis and biocatalysis for an efficient deracemization process. Current Opinion in Biotechnology, 2003, 14, 407-413.	3.3	57
43	Screening of a Phosphite–Phosphoramidite Ligand Library for Palladium atalysed Asymmetric Allylic Substitution Reactions: The Origin of Enantioselectivity. Chemistry - A European Journal, 2008, 14, 944-960.	1.7	55
44	Triazolylidene Iridium Complexes for Highly Efficient and Versatile Transfer Hydrogenation of Câ•O, Câ•N, and Câ•€ Bonds and for Acceptorless Alcohol Oxidation. Inorganic Chemistry, 2017, 56, 11282-11298.	1.9	54
45	Pyranoside Phosphiteâ€Oxazoline Ligand Library: Highly Efficient Modular P,N Ligands for Palladiumâ€Catalyzed Allylic Substitution Reactions. A Study of the Key Palladium Allyl Intermediates. Advanced Synthesis and Catalysis, 2009, 351, 3217-3234.	2.1	52
46	Biaryl Phosphite–Oxazoline Ligands from the Chiral Pool: Highly Efficient Modular Ligands for the Asymmetric Pd atalyzed Heck Reaction. Chemistry - A European Journal, 2010, 16, 3434-3440.	1.7	52
47	Copper-catalysed asymmetric 1,4-addition of organometallic reagents to 2-cyclohexenone using novel phosphine-phosphite ligands. Tetrahedron: Asymmetry, 2000, 11, 3161-3166.	1.8	50
48	Chiral Phosphineâ^Phosphite Ligands in the Highly Enantioselective Rhodium-Catalyzed Asymmetric Hydrogenation. Journal of Organic Chemistry, 2001, 66, 7626-7631.	1.7	50
49	Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of \hat{l}^2 -Hydroxy Nitriles. Correction of Absolute Configuration and Transformation to Chiral \hat{l}^2 -Hydroxy Acids and \hat{l}^3 -Amino Alcohols. Advanced Synthesis and Catalysis, 2002, 344, 947-952.	2.1	50
50	Biaryl phosphite-oxazolines from hydroxyl aminoacid derivatives: highly efficient modular ligands for Ir-catalyzed hydrogenation of alkenes. Chemical Communications, 2008, , 3888.	2.2	50
51	Rh-Catalyzed Asymmetric Hydroformylation of Heterocyclic Olefins Using Chiral Diphosphite Ligands. Scope and Limitations. Journal of Organic Chemistry, 2009, 74, 5440-5445.	1.7	50
52	Asymmetric Hydroformylation. , 2006, , 35-64.		48
53	Screening of a Modular Sugar-Based Phosphite Ligand Library in the Asymmetric Nickel-Catalyzed Trialkylaluminum Addition to Aldehydes. Journal of Organic Chemistry, 2006, 71, 8159-8165.	1.7	47
54	Highly Versatile Pd–Thioether–Phosphite Catalytic Systems for Asymmetric Allylic Alkylation, Amination, and Etherification Reactions. Organic Letters, 2014, 16, 1892-1895.	2.4	46

#	Article	IF	CITATIONS
55	Copper-catalysed asymmetric conjugate addition of organometallic reagents to enones using S,O-ligands with a xylofuranose backbone. Tetrahedron: Asymmetry, 2000, 11, 871-877.	1.8	45
56	Evolution in heterodonor P-N, P-S and P-O chiral ligands for preparing efficient catalysts for asymmetric catalysis. From design to applications. Coordination Chemistry Reviews, 2021, 446, 214120.	9.5	45
57	Modular Furanoside Diphosphite Ligands for Pd-Catalyzed Asymmetric Allylic Substitution Reactions: Scope and Limitations. Advanced Synthesis and Catalysis, 2005, 347, 1257-1266.	2.1	44
58	First successful application of diphosphite ligands in the asymmetric hydroformylation of dihydrofurans. Chemical Communications, 2005, , 1221-1223.	2.2	44
59	Asymmetric hydroformylation of styrene catalyzed by furanoside phosphine–phosphite–Rh(I) complexes. Tetrahedron: Asymmetry, 2002, 12, 3441-3445.	1.8	43
60	Thioether-phosphite: new ligands for the highly enantioselective Ir-catalyzed hydrogenation of minimally functionalized olefins. Chemical Communications, 2011, 47, 9215.	2.2	43
61	Stereospecific S _N 2@P reactions: novel access to bulky P-stereogenic ligands. Chemical Communications, 2015, 51, 17548-17551.	2.2	43
62	Phosphite-oxazole/imidazoleligands in asymmetric intermolecular Heck reaction. Organic and Biomolecular Chemistry, 2011, 9, 941-946.	1.5	42
63	Asymmetric Hydrogenation of Disubstituted, Trisubstituted, and Tetrasubstituted Minimally Functionalized Olefins and Cyclic β-Enamides with Easily Accessible Ir–P,Oxazoline Catalysts. ACS Catalysis, 2018, 8, 10316-10320.	5.5	42
64	Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Functionalized \hat{I}^3 -Hydroxy Amides. Journal of Organic Chemistry, 2005, 70, 2582-2587.	1.7	41
65	A Theoreticallyâ€Guided Optimization of a New Family of Modular P,Sâ€Ligands for Iridiumâ€Catalyzed Hydrogenation of Minimally Functionalized Olefins. Chemistry - A European Journal, 2014, 20, 12201-12214.	1.7	41
66	Mechanistic study of the hydroformylation of styrene catalyzed by the rhodium/BDPP system. Journal of Organometallic Chemistry, 2000, 608, 115-121.	0.8	40
67	Highly active and enantioselective copper-catalyzed conjugate addition of diethylzinc to cyclohexenone using sugar derivative diphosphites. Tetrahedron: Asymmetry, 2000, 11, 4377-4383.	1.8	40
68	Sugar-Based Diphosphoroamidite as a Promising New Class of Ligands in Pd-Catalyzed Asymmetric Allylic Alkylation Reactions. Journal of Organic Chemistry, 2007, 72, 2842-2850.	1.7	40
69	A New Modular Phosphiteâ€Pyridine Ligand Library for Asymmetric Pdâ€Catalyzed Allylic Substitution Reactions: A Study of the Key Pdâ€i€â€Allyl Intermediates. Chemistry - A European Journal, 2013, 19, 2416-2432.	1.7	40
70	Phosphine–phosphite, a new class of auxiliaries in highly active and enantioselective hydrogenation. Chemical Communications, 2000, , 2383-2384.	2.2	39
71	First Chiral Phosphoroamidite-phosphite Ligands for Highly Enantioselective and Versatile Pd-Catalyzed Asymmetric Allylic Substitution Reactions. Organic Letters, 2007, 9, 49-52.	2.4	39
72	A Modular Furanoside Thioetherâ€Phosphite/Phosphinite/ Phosphine Ligand Library for Asymmetric Iridiumâ€Catalyzed Hydrogenation of Minimally Functionalized Olefins: Scope and Limitations. Advanced Synthesis and Catalysis, 2013, 355, 143-160.	2.1	38

#	Article	IF	Citations
73	Extending the Substrate Scope in the Hydrogenation of Unfunctionalized Tetrasubstituted Olefins with Ir-P Stereogenic Aminophosphine–Oxazoline Catalysts. Organic Letters, 2019, 21, 807-811.	2.4	37
74	Modular Furanoside Phosphiteâ€Phosphoroamidites, a Readily Available Ligand Library for Asymmetric Palladiumâ€Catalyzed Allylic Substitution Reactions. Origin of Enantioselectivity. Advanced Synthesis and Catalysis, 2009, 351, 1648-1670.	2.1	36
75	A Phosphiteâ€Pyridine/Iridium Complex Library as Highly Selective Catalysts for the Hydrogenation of Minimally Functionalized Olefins. Advanced Synthesis and Catalysis, 2013, 355, 2569-2583.	2.1	34
76	Extending the Substrate Scope of Bicyclic Pâ€Oxazoline/Thiazole Ligands for Irâ€Catalyzed Hydrogenation of Unfunctionalized Olefins by Introducing a Biaryl Phosphoroamidite Group. Chemistry - A European Journal, 2015, 21, 3455-3464.	1.7	32
77	PHOX-Based Phosphite-Oxazoline Ligands for the Enantioselective Ir-Catalyzed Hydrogenation of Cyclic \hat{l}^2 -Enamides. ACS Catalysis, 2016, 6, 5186-5190.	5.5	32
78	Chiral ferrocene-based P,S ligands for Ir-catalyzed hydrogenation ofÂminimally functionalized olefins. Scope and limitations. Tetrahedron, 2016, 72, 2623-2631.	1.0	32
79	Filling the Gaps in the Challenging Asymmetric Hydroboration of 1,1â€Disubstituted Alkenes with Simple Phosphiteâ€Based Phosphinooxazoline Iridium Catalysts. ChemCatChem, 2015, 7, 114-120.	1.8	31
80	Iridium-Catalyzed Asymmetric Hydrogenation with Simple Cyclohexane-Based P/S Ligands: <i>In Situ</i> HP-NMR and DFT Calculations for the Characterization of Reaction Intermediates. Organometallics, 2015, 34, 5321-5334.	1.1	30
81	Conformational Preferences of a Tropos Biphenyl Phosphinooxazoline–a Ligand with Wide Substrate Scope. ACS Catalysis, 2016, 6, 1701-1712.	5.5	30
82	Sugar–phosphite–oxazoline and phosphite–phosphoroamidite ligand libraries for Cu-catalyzed asymmetric 1,4-addition reactions. Tetrahedron: Asymmetry, 2007, 18, 1613-1617.	1.8	29
83	A New Class of Modular P,Nâ€Ligand Library for Asymmetric Pdâ€Catalyzed Allylic Substitution Reactions: A Study of the Key Pd–πâ€Allyl Intermediates. Chemistry - A European Journal, 2010, 16, 620-638.	1.7	29
84	Alternatives to Phosphinooxazoline (<i>tâ€</i> BuPHOX) Ligands in the Metalâ€Catalyzed Hydrogenation of Minimally Functionalized Olefins and Cyclic βâ€Enamides. Advanced Synthesis and Catalysis, 2017, 359, 2801-2814.	2.1	28
85	Application of pyranoside phosphite-pyridine ligands to enantioselective metal-catalyzed allylic substitutions and conjugate 1,4-additions. Tetrahedron: Asymmetry, 2013, 24, 995-1000.	1.8	27
86	Expanded Scope of the Asymmetric Hydrogenation of Minimally Functionalized Olefins Catalyzed by Iridium Complexes with Phosphite–Thiazoline Ligands. ChemCatChem, 2013, 5, 2410-2417.	1.8	27
87	Computationally Guided Design of a Readily Assembled Phosphite–Thioether Ligand for a Broad Range of Pd-Catalyzed Asymmetric Allylic Substitutions. ACS Catalysis, 2018, 8, 3587-3601.	5.5	27
88	Chiral Diphosphites as Ligands for the Rhodium- and Iridium-Catalysed Asymmetric Hydrogenation: Precatalyst Complexes, Intermediates and Kinetics of the Reaction. European Journal of Inorganic Chemistry, 2000, 2000, 1287-1294.	1.0	27
89	Phosphiteâ€thioether/selenoether Ligands from Carbohydrates: An Easily Accessible Ligand Library for the Asymmetric Hydrogenation of Functionalized and Unfunctionalized Olefins. ChemCatChem, 2019, 11, 2142-2168.	1.8	26
90	Iridium complexes containing the first sugar dithioether ligands. Application as catalyst precursors in asymmetric hydrogenation. Journal of the Chemical Society Dalton Transactions, 1999, , 3439-3444.	1.1	25

#	Article	IF	Citations
91	Rhodium cationic complexes using macrocyclic diphosphines as chiral ligands:. Journal of Organometallic Chemistry, 1999, 587, 136-143.	0.8	24
92	Carbohydrate-based pseudo-dipeptides: new ligands for the highly enantioselective Ru-catalyzed transfer hydrogenation reaction. Chemical Communications, 2011, 47, 12188.	2.2	24
93	Modular Furanoside Pseudodipeptides and Thioamides, Readily Available Ligand Libraries for Metalâ€Catalyzed Transfer Hydrogenation Reactions: Scope and Limitations. Advanced Synthesis and Catalysis, 2012, 354, 415-427.	2.1	24
94	Evolution of phosphorus–thioether ligands for asymmetric catalysis. Chemical Communications, 2020, 56, 10795-10808.	2.2	24
95	A New Diphosphane Derived from Carbohydrates as an Effective Ligand for Asymmetric Hydrogenation. European Journal of Inorganic Chemistry, 2000, 2000, 2011-2016.	1.0	23
96	New Highly Effective Phosphite-Phosphoramidite Ligands for Palladium-Catalysed Asymmetric Allylic Alkylation Reactions. Advanced Synthesis and Catalysis, 2007, 349, 836-840.	2.1	23
97	Extending the Substrate Scope for the Asymmetric Iridium-Catalyzed Hydrogenation of Minimally Functionalized Olefins by Using Biaryl Phosphite-Based Modular Ligand Libraries. Chemical Record, 2016, 16, 1578-1590.	2.9	23
98	Fine-tunable monodentate phosphoroamidite and aminophosphine ligands for Rh-catalyzed asymmetric hydroformylation. Tetrahedron: Asymmetry, 2010, 21, 2153-2157.	1.8	21
99	The application of pyranoside phosphite-pyridine ligands to enantioselective Ir-catalyzed hydrogenations of highly unfunctionalized olefins. Tetrahedron: Asymmetry, 2012, 23, 945-951.	1.8	21
100	Theoretical and Experimental Optimization of a New Amino Phosphite Ligand Library for Asymmetric Palladiumâ€Catalyzed Allylic Substitution. ChemCatChem, 2015, 7, 4091-4107.	1.8	21
101	Adaptable P–X Biaryl Phosphite/Phosphoroamiditeâ€Containing Ligands for Asymmetric Hydrogenation and C–X Bondâ€Forming Reactions: Ligand Libraries with Exceptionally Wide Substrate Scope. Chemical Record, 2016, 16, 2460-2481.	2.9	21
102	Asymmetric Catalyzed Allylic Substitution Using a Pd/P–S Catalyst Library with Exceptional High Substrate and Nucleophile Versatility: DFT and Pd-ï∈-allyl Key Intermediates Studies. Organometallics, 2016, 35, 3323-3335.	1.1	21
103	Phosphiteâ€Thiother Ligands Derived from Carbohydrates allow the Enantioswitchable Hydrogenation of Cyclic βâ€Enamides by using either Rh or Ir Catalysts. Chemistry - A European Journal, 2017, 23, 813-822.	1.7	21
104	Synthesis of Rh(I) and Ir(I) metal complexes with the first two chiral dithiolate ligands derived from carbohydrates. Journal of Organometallic Chemistry, 1999, 586, 125-137.	0.8	20
105	Modular Hydroxyamide and Thioamide Pyranosideâ€Based Ligand Library from the Sugar Pool: New Class of Ligands for Asymmetric Transfer Hydrogenation of Ketones. Advanced Synthesis and Catalysis, 2014, 356, 2293-2302.	2.1	20
106	Thirdâ€Generation Amino Acid Furanosideâ€Based Ligands from <scp>d</scp> â€Mannose for the Asymmetric Transfer Hydrogenation of Ketones: Catalysts with an Exceptionally Wide Substrate Scope. Advanced Synthesis and Catalysis, 2016, 358, 4006-4018.	2.1	20
107	Modular carbohydrate diphosphite and phosphite–phosphoroamidite ligands for asymmetric Rh-catalyzed hydrosilylation of ketones. Tetrahedron: Asymmetry, 2002, 13, 83-86.	1.8	19
108	Furanoside thioether–phosphinite ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. Tetrahedron: Asymmetry, 2005, 16, 3877-3880.	1.8	19

#	Article	IF	CITATIONS
109	Furanoside thioether–phosphinite ligands for Pd-catalyzed asymmetric allylic substitution reactions: Scope and limitations. Journal of Organometallic Chemistry, 2006, 691, 2257-2262.	0.8	19
110	Synthesis of novel diphosphines from d-(+)-glucose. Use in asymmetric hydrogenation. Tetrahedron: Asymmetry, 2000, 11, 4701-4708.	1.8	18
111	Furanoside diphosphines derived from d-(+)-xylose and d-(+)-glucose as ligands in rhodium-catalysed asymmetric hydroformylation reactions. Tetrahedron: Asymmetry, 2001, 12, 651-656.	1.8	18
112	Giving a Second Chance to Ir/Sulfoximine-Based Catalysts for the Asymmetric Hydrogenation of Olefins Containing Poorly Coordinative Groups. Journal of Organic Chemistry, 2019, 84, 8259-8266.	1.7	18
113	An Improved Class of Phosphite-Oxazoline Ligands for Pd-Catalyzed Allylic Substitution Reactions. ACS Catalysis, 2019, 9, 6033-6048.	5.5	18
114	Effect of Ligand Chelation and Sacrificial Oxidant on the Integrity of Triazole-Based Carbene Iridium Water Oxidation Catalysts. Inorganic Chemistry, 2020, 59, 12337-12347.	1.9	18
115	Screening of a modular sugar-based phosphoroamidite ligand library in the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. Tetrahedron: Asymmetry, 2009, 20, 1575-1579.	1.8	17
116	Sugar-based phosphite and phosphoroamidite ligands for the Cu-catalyzed asymmetric 1,4-addition to enones. Tetrahedron: Asymmetry, 2009, 20, 2167-2172.	1.8	17
117	Iridium-Catalyzed Hydrogenation Using Phosphorus Ligands. Topics in Organometallic Chemistry, 2011, , 11-29.	0.7	17
118	A readily accessible and modular carbohydrate-derived thioether/selenoether-phosphite ligand library for Pd-catalyzed asymmetric allylic substitutions. Dalton Transactions, 2019, 48, 12632-12643.	1.6	17
119	Self-Adaptable Tropos Catalysts. Accounts of Chemical Research, 2021, 54, 3252-3263.	7.6	17
120	Mixed thioether-phosphite and phosphine-phosphite ligands for copper-catalyzed asymmetric 1,4-addition of organometallic reagents to cyclohexenone. Journal of Molecular Catalysis A, 2002, 185, 11-16.	4.8	16
121	Ir–Biaryl phosphite–oxazoline catalyst libraries: a breakthrough in the asymmetric hydrogenation of challenging olefins. Catalysis Science and Technology, 2020, 10, 613-624.	2.1	16
122	Screening of modular sugar phosphite-oxazoline and phosphite-phosphoroamidite ligand libraries in the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. Inorganica Chimica Acta, 2008, 361, 1381-1384.	1.2	15
123	Asymmetric Intermolecular Mizorokiâ€Heck Reaction: From Phosphine/Phosphiniteâ€Nitrogen to Phosphiteâ€Nitrogen Ligands. Israel Journal of Chemistry, 2012, 52, 572-581.	1.0	15
124	Furanoside phosphite–phosphoroamidite: new ligand class for the asymmetric nickel-catalyzed trialkylaluminium addition to aldehydes. Tetrahedron Letters, 2009, 50, 4495-4497.	0.7	14
125	Sugar-monophosphite ligands applied to the asymmetric Ni-catalyzed trialkylaluminum addition to aldehydes. Tetrahedron: Asymmetry, 2011, 22, 834-839.	1.8	14
126	Enantioselective Ir-Catalyzed Hydrogenation of Minimally Functionalized Olefins Using Pyranoside Phosphinite-Oxazoline Ligands. European Journal of Inorganic Chemistry, 2013, 2013, 2139-2145.	1.0	14

#	Article	IF	Citations
127	Designing new readily available sugar-based ligands for asymmetric transfer hydrogenation of ketones. In the quest to expand the substrate scope. Tetrahedron Letters, 2016, 57, 1301-1308.	0.7	14
128	Phosphite–oxazoline ligands for Rh-catalyzed asymmetric hydrosilylation of ketones. Journal of Molecular Catalysis A, 2006, 249, 207-210.	4.8	13
129	Secondâ€Generation Amino Acid Furanoside Based Ligands from <scp>D</scp> â€Glucose for the Asymmetric Transfer Hydrogenation of Ketones. ChemCatChem, 2013, 5, 3821-3828.	1.8	13
130	Amino-P Ligands from Iminosugars: New Readily Available and Modular Ligands for Enantioselective Pd-Catalyzed Allylic Substitutions. Organometallics, 2018, 37, 1682-1694.	1.1	13
131	P-Stereogenic <i>N</i> Phosphine–Phosphite Ligands for the Rh-Catalyzed Hydrogenation of Olefins. Journal of Organic Chemistry, 2020, 85, 4730-4739.	1.7	13
132	Pyranoside phosphite–phosphoroamidite ligands for Pd-catalyzed asymmetric allylic alkylation reactions. Tetrahedron: Asymmetry, 2006, 17, 3282-3287.	1.8	12
133	Phosphiteâ€Thiazoline versus Phosphiteâ€Oxazoline for Pdâ€Catalyzed Allylic Substitution Reactions: A Case for Comparison. ChemCatChem, 2013, 5, 1504-1516.	1.8	12
134	Rh-catalyzed asymmetric hydrogenation using a furanoside monophosphite second-generation ligand library: scope and limitations. Tetrahedron: Asymmetry, 2014, 25, 258-262.	1.8	12
135	Synthesis, Application and Kinetic Studies of Chiral Phosphiteâ€Oxazoline Palladium Complexes as Active and Selective Catalysts in Intermolecular Heck Reactions. Advanced Synthesis and Catalysis, 2018, 360, 1650-1664.	2.1	12
136	Ir/Thioether–Carbene, â^'Phosphinite, and â^'Phosphite Complexes for Asymmetric Hydrogenation. A Case for Comparison. Organometallics, 2019, 38, 4193-4205.	1.1	12
137	Indene Derived Phosphorusâ€Thioether Ligands for the Irâ€Catalyzed Asymmetric Hydrogenation of Olefins with Diverse Substitution Patterns and Different Functional Groups. Advanced Synthesis and Catalysis, 2021, 363, 4561-4574.	2.1	12
138	Screening of a modular sugar-based phosphite ligand library in the Cu-catalyzed asymmetric 1,4-addition reactions. Journal of Organometallic Chemistry, 2007, 692, 4315-4320.	0.8	11
139	Pyrrolidineâ€Based P,O Ligands from Carbohydrates: Easily Accessible and Modular Ligands for the Irâ€Catalyzed Asymmetric Hydrogenation of Minimally Functionalized Olefins. ChemCatChem, 2018, 10, 5414-5424.	1.8	11
140	Enantioselective Synthesis of Sterically Hindered Tertiary αâ€Aryl Oxindoles via Palladium atalyzed Decarboxylative Protonation. An Experimental and Theoretical Mechanistic Investigation. Advanced Synthesis and Catalysis, 2018, 360, 3124-3137.	2.1	11
141	Asymmetric Allylic Substitution Reactions with a Xylophos-Pd Catalyst. Monatshefte FÃ $\frac{1}{4}$ r Chemie, 2000, 131, 1173-1179.	0.9	10
142	Enantioselective Carbonylation Reactions. , 0, , 65-92.		10
143	Furanoside phosphite–phosphoroamidite and diphosphoroamidite ligands applied to asymmetric Cu-catalyzed allylic substitution reactions. Tetrahedron: Asymmetry, 2012, 23, 67-71.	1.8	9
144	Enantioselective Synthesis of 6,6â€Disubstituted Pentafulvenes Containing a Chiral Pendant Hydroxy Group. Chemistry - A European Journal, 2017, 23, 17195-17198.	1.7	9

#	Article	IF	Citations
145	Rh-Catalyzed Asymmetric Hydroaminomethylation of α-Substituted Acrylamides: Application in the Synthesis of RWAY. Organic Letters, 2020, 22, 9036-9040.	2.4	9
146	C1-Symmetric carbohydrate diphosphite ligands for asymmetric Pd-allylic alkylation reactions. Study of the key Pd-allyl intermediates. Dalton Transactions, 2011, 40, 2852.	1.6	7
147	Furanoside phosphite–phosphoroamidite and diphosphoroamidite ligands for Cu-catalyzed asymmetric 1,4-addition reactions. Tetrahedron: Asymmetry, 2009, 20, 1930-1935.	1.8	6
148	Phosphite Ligands in Asymmetric Hydrogenation. ACS Symposium Series, 2004, , 161-173.	0.5	5
149	Conjugate Addition of Organoaluminum Species to Michael Acceptors and Related Processes. Topics in Organometallic Chemistry, 2012, , 277-306.	0.7	5
150	Asymmetric Rh-catalyzed hydrogenation using a furanoside phosphite–phosphoroamidite and diphosphoroamidite ligand library. Dalton Transactions, 2012, 41, 3038.	1.6	5
151	Density Functional Theory-Inspired Design of Ir/P,S-Catalysts for Asymmetric Hydrogenation of Olefins. Organometallics, 2021, 40, 3424-3435.	1.1	5
152	Proofreading experimentally assigned stereochemistry through Q2MM predictions in Pd-catalyzed allylic aminations. Nature Communications, 2021, 12, 6719.	5.8	5
153	Synthesis and structural studies of rhodium(I)-catalytic precursors containing two furanoside diphosphines. Journal of Organometallic Chemistry, 2001, 629, 77-82.	0.8	3
154	Asymmetric hydrogenation of unfunctionalized olefins or with poorly coordinative groups. Advances in Catalysis, 2021, 68, 135-203.	0.1	3
155	Enantioselective Pdâ€catalyzed allylic substitution using phosphiteâ€oxazoline PHOXâ€based ligands containing a methylene linker. European Journal of Inorganic Chemistry, 0, , .	1.0	2
156	Iridium-Catalyzed Asymmetric Hydrogenation. Topics in Organometallic Chemistry, 2020, , 153-205.	0.7	1
157	Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of β-Hydroxy Nitriles. A Route to Useful Precursors for γ-Amino Alcohols. Advanced Synthesis and Catalysis, 2001, 343, 726-731.	2.1	1
158	Efficient Lipase-Catalyzed Kinetic Resolution and Dynamic Kinetic Resolution of \hat{l}^2 -Hydroxy Nitriles. Correction of Absolute Configuration and Transformation to Chiral \hat{l}^2 -Hydroxy Acids and \hat{l}^3 -Amino Alcohols ChemInform, 2003, 34, no.	0.1	0
159	Chemoenzymatic Dynamic Kinetic Resolution of \hat{l}^2 -Halo Alcohols. An Efficient Route to Chiral Epoxides ChemInform, 2003, 34, no.	0.1	0
160	An Efficient Route to Chiral α- and β-Hydroxyalkanephosphonates ChemInform, 2003, 34, no.	0.1	0
161	Combination of Enzymes and Metal Catalysts. A Powerful Approach in Asymmetric Catalysis. ChemInform, 2003, 34, no.	0.1	0
162	Combined Metal Catalysis and Biocatalysis for an Efficient Deracemization Process. ChemInform, 2004, 35, no.	0.1	0

OSCAR PÃMIES

#	Article	IF	CITATIONS
163	Ligands Derived from Carbohydrates for Asymmetric Catalysis. ChemInform, 2004, 35, no.	0.1	0
164	Recent Advances in Rh-Catalyzed Asymmetric Hydroformylation Using Phosphite Ligands. ChemInform, 2004, 35, no.	0.1	0
165	First Successful Application of Diphosphite Ligands in the Asymmetric Hydroformylation of Dihydrofurans ChemInform, 2005, 36, no.	0.1	O
166	New Phosphiteâ€"Oxazoline Ligands for Efficient Pd-Catalyzed Substitution Reactions ChemInform, 2005, 36, no.	0.1	0
167	Kinetic Resolution and Chemoenzymatic Dynamic Kinetic Resolution of Functionalized Î ³ -Hydroxy Amides ChemInform, 2005, 36, no.	0.1	0
168	Sugar-Based P-Ligands for Asymmetric Hydrogenation. ChemInform, 2005, 36, no.	0.1	0
169	P,S-ligands for Ir-catalyzed Asymmetric Hydrogenation of Minimally Functionalized Olefins â§ A Theoretical Study. , 0, , .		0
170	Metal-Ï€-allyl mediated asymmetric cycloaddition reactions. Advances in Catalysis, 2021, 69, 103-180.	0.1	0