David Giganti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/352032/publications.pdf Version: 2024-02-01

DAVID CICANTI

#	Article	IF	CITATIONS
1	Basal oxidation of conserved cysteines modulates cardiac titin stiffness and dynamics. Redox Biology, 2022, 52, 102306.	9.0	7
2	Dissecting the Structural and Chemical Determinants of the "Open-to-Closed―Motion in the Mannosyltransferase PimA from Mycobacteria. Biochemistry, 2020, 59, 2934-2945.	2.5	5
3	The force-dependent mechanism of DnaK-mediated mechanical folding. Science Advances, 2018, 4, eaaq0243.	10.3	37
4	Disulfide isomerization reactions in titin immunoglobulinÂdomains enable a mode of protein elasticity. Nature Communications, 2018, 9, 185.	12.8	70
5	Conformational entropy of a single peptide controlled under force governs protease recognition and catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11525-11530.	7.1	11
6	Mechanical Modulation of Protease Activity Captured at the Single-Molecule Level. Biophysical Journal, 2017, 112, 456a.	0.5	0
7	Chaperone-Mediated Mechanical Protein Folding at the Single Molecule Level. Biophysical Journal, 2016, 110, 392a.	0.5	0
8	Secondary structure reshuffling modulates glycosyltransferase function at the membrane. Nature Chemical Biology, 2015, 11, 16-18.	8.0	44
9	S-Glutathionylation of Cryptic Cysteines Enhances Titin Elasticity by Blocking Protein Folding. Cell, 2014, 156, 1235-1246.	28.9	170
10	Structure-function relationships of membrane-associated GT-B glycosyltransferases. Glycobiology, 2014, 24, 108-124.	2.5	80
11	A novel Plasmodium-specific prodomain fold regulates the malaria drug target SUB1 subtilase. Nature Communications, 2014, 5, 4833.	12.8	20
12	Disulfide Bonds are Allosteric Regulator of Mechanical Stability. Biophysical Journal, 2014, 106, 449a-450a.	0.5	0
13	Large-Scale Modulation of Titin Elasticity by S-Glutathionylation of Cryptic Cysteines. Biophysical Journal, 2014, 106, 454a.	0.5	0
14	Elasticity, structure, and relaxation of extended proteins under force. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3847-3852.	7.1	81
15	In Silico Screening on the Three-dimensional Model of the Plasmodium vivax SUB1 Protease Leads to the Validation of a Novel Anti-parasite Compound. Journal of Biological Chemistry, 2013, 288, 18561-18573.	3.4	21
16	Conformational Plasticity of the Essential Membrane-associated Mannosyltransferase PimA from Mycobacteria. Journal of Biological Chemistry, 2013, 288, 29797-29808.	3.4	24
17	Comparative Evaluation of 3D Virtual Ligand Screening Methods: Impact of the Molecular Alignment on Enrichment. Journal of Chemical Information and Modeling, 2010, 50, 992-1004.	5.4	52
18	Substrate-induced Conformational Changes in the Essential Peripheral Membrane-associated Mannosyltransferase PimA from Mycobacteria. Journal of Biological Chemistry, 2009, 284, 21613-21625.	3.4	35

#	Article	IF	CITATIONS
19	Molecular Recognition and Interfacial Catalysis by the Essential Phosphatidylinositol Mannosyltransferase PimA from Mycobacteria. Journal of Biological Chemistry, 2007, 282, 20705-20714.	3.4	121
20	Three Dimensional Structure and Implications for the Catalytic Mechanism of 6-Phosphogluconolactonase from Trypanosoma brucei. Journal of Molecular Biology, 2007, 366, 868-881.	4.2	21