Michal Zapotocky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3520266/publications.pdf

Version: 2024-02-01

236925 233421 2,779 64 25 45 citations h-index g-index papers 66 66 66 3836

docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell, 2017, 31, 737-754.e6.	16.8	836
2	Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell, 2020, 37, 569-583.e5.	16.8	244
3	Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. Journal of Clinical Oncology, 2017, 35, 2934-2941.	1.6	232
4	Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nature Communications, 2019, 10, 4343.	12.8	200
5	Histone H3.3G34-Mutant Interneuron Progenitors Co-opt PDGFRA for Gliomagenesis. Cell, 2020, 183, 1617-1633.e22.	28.9	93
6	Heterogeneity within the PF-EPN-B ependymoma subgroup. Acta Neuropathologica, 2018, 136, 227-237.	7.7	86
7	A Hematogenous Route for Medulloblastoma Leptomeningeal Metastases. Cell, 2018, 172, 1050-1062.e14.	28.9	85
8	Pediatric Brain Tumor Genetics: What Radiologists Need to Know. Radiographics, 2018, 38, 2102-2122.	3.3	75
9	A subset of pediatric-type thalamic gliomas share a distinct DNA methylation profile, H3K27me3 loss and frequent alteration of <i>EGFR</i> . Neuro-Oncology, 2021, 23, 34-43.	1.2	75
10	Outcomes of BRAF V600E Pediatric Gliomas Treated With Targeted BRAF Inhibition. JCO Precision Oncology, 2020, 4, 561-571.	3.0	62
11	Profound clinical and radiological response to BRAF inhibition in a 2â€monthâ€old diencephalic child with hypothalamic/chiasmatic glioma. Pediatric Blood and Cancer, 2016, 63, 2038-2041.	1.5	57
12	Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nature Medicine, 2022, 28, 125-135.	30.7	53
13	Reirradiation in patients with diffuse intrinsic pontine gliomas: The Canadian experience. Pediatric Blood and Cancer, 2018, 65, e26988.	1.5	51
14	Survival and functional outcomes of molecularly defined childhood posterior fossa ependymoma: Cure at a cost. Cancer, 2019, 125, 1867-1876.	4.1	49
15	H3 K27M mutations are extremely rare in posterior fossa group A ependymoma. Child's Nervous System, 2017, 33, 1047-1051.	1.1	46
16	Clinical Outcomes and Patient-Matched Molecular Composition of Relapsed Medulloblastoma. Journal of Clinical Oncology, 2021, 39, 807-821.	1.6	40
17	Survival Benefit for Individuals With Constitutional Mismatch Repair Deficiency Undergoing Surveillance. Journal of Clinical Oncology, 2021, 39, 2779-2790.	1.6	40
18	Multiplex Detection of Pediatric Low-Grade Glioma Signature Fusion Transcripts and Duplications Using the NanoString nCounter System. Journal of Neuropathology and Experimental Neurology, 2017, 76, 562-570.	1.7	39

#	Article	IF	CITATIONS
19	Long-term visual outcomes of craniopharyngioma in children. Journal of Neuro-Oncology, 2018, 137, 645-651.	2.9	39
20	Clinical impact of combined epigenetic and molecular analysis of pediatric low-grade gliomas. Neuro-Oncology, 2020, 22, 1474-1483.	1.2	39
21	PATZ1 fusions define a novel molecularly distinct neuroepithelial tumor entity with a broad histological spectrum. Acta Neuropathologica, 2021, 142, 841-857.	7.7	36
22	Recurrent fusions in PLAGL1 define a distinct subset of pediatric-type supratentorial neuroepithelial tumors. Acta Neuropathologica, 2021, 142, 827-839.	7.7	33
23	Craniospinal irradiation as part of re-irradiation for children with recurrent intracranial ependymoma. Neuro-Oncology, 2019, 21, 547-557.	1.2	32
24	Adolescents and young adults with brain tumors in the context of molecular advances in neuroâ€oncology. Pediatric Blood and Cancer, 2018, 65, e26861.	1.5	29
25	An integrative molecular and genomic analysis of pediatric hemispheric low-grade gliomas: an update. Child's Nervous System, 2016, 32, 1789-1797.	1.1	26
26	Pattern of Relapse and Treatment Response in WNT-Activated Medulloblastoma. Cell Reports Medicine, 2020, 1, 100038.	6.5	24
27	Valproic acid triggers differentiation and apoptosis in AML1/ETO-positive leukemic cells specifically. Cancer Letters, 2012, 319, 144-153.	7.2	22
28	Therapeutic implications of improved molecular diagnostics for rare CNS embryonal tumor entities: results of an international, retrospective study. Neuro-Oncology, 2021, 23, 1597-1611.	1.2	22
29	Mutations in the RAS/MAPK Pathway Drive Replication Repair–Deficient Hypermutated Tumors and Confer Sensitivity to MEK Inhibition. Cancer Discovery, 2021, 11, 1454-1467.	9.4	19
30	Bevacizumab for NF2â€associated vestibular schwannomas of childhood and adolescence. Pediatric Blood and Cancer, 2020, 67, e28228.	1.5	17
31	Loss of MAT2A compromises methionine metabolism and represents a vulnerability in H3K27M mutant glioma by modulating the epigenome. Nature Cancer, 2022, 3, 629-648.	13.2	16
32	Diffuse intrinsic pontine glioma ventricular peritoneal shunt metastasis: a case report and literature review. Child's Nervous System, 2019, 35, 861-864.	1.1	9
33	Bevacizumab for pediatric radiation necrosis. Neuro-Oncology Practice, 2020, 7, 409-414.	1.6	9
34	BRAF V600E mutant oligodendrogliomaâ€ike tumors with chromosomal instability in adolescents and young adults. Brain Pathology, 2020, 30, 515-523.	4.1	8
35	Rare IDH1 variants are common in pediatric hemispheric diffuse astrocytomas and frequently associated with Li-Fraumeni syndrome. Acta Neuropathologica, 2020, 139, 795-797.	7.7	7
36	Treatment response of CNS highâ€grade neuroepithelial tumors with MN1 alteration. Pediatric Blood and Cancer, 2020, 67, e28627.	1.5	5

#	Article	IF	Citations
37	Survival and functional outcomes in paediatric thalamic and thalamopeduncular low grade gliomas. Acta Neurochirurgica, 2022, 164, 1459-1472.	1.7	5
38	An unusual fusion gene EML4 ―ALK in a patient with congenital mesoblastic nephroma. Genes Chromosomes and Cancer, 2021, 60, 837-840.	2.8	4
39	FIREFLY-1 (PNOC 026): A phase 2 study to evaluate the safety and efficacy of tovorafenib (DAY101) in pediatric patients with <i>RAF</i> -altered recurrent or progressive low-grade glioma or advanced solid tumors Journal of Clinical Oncology, 2022, 40, TPS10062-TPS10062.	1.6	4
40	Relationship of BRAF V600E and associated secondary mutations on survival rate and response to conventional therapies in childhood low-grade glioma Journal of Clinical Oncology, 2016, 34, 10509-10509.	1.6	3
41	ETMR-06. Molecular and clinical characteristics of CNS tumors with <i>BCOR(L1</i>) fusion/internal tandem duplication. Neuro-Oncology, 2022, 24, i50-i50.	1.2	2
42	LGG-60. THE GENETIC LANDSCAPE OF PEDIATRIC LOW-GRADE GLIOMAS: INCIDENCE, PROGNOSIS AND RESPONSE TO THERAPY. Neuro-Oncology, 2018, 20, i117-i117.	1.2	1
43	GENE-14. UNIQUE MOLECULAR AND CLINICAL FEATURES OF LI-FRAUMENI SYNDROME ASSOCIATED BRAIN TUMOURS. Neuro-Oncology, 2019, 21, ii84-ii84.	1.2	1
44	HGG-31. UNIQUE BIOLOGICAL CHARACTERISTICS OF RADIATION-INDUCED GLIOMAS. Neuro-Oncology, 2020, 22, iii349-iii349.	1.2	1
45	Older age is a protective factor for academic achievements irrespective of treatment modalities for posterior fossa brain tumours in children. PLoS ONE, 2020, 15, e0243998.	2.5	1
46	OTHR-41. Amplification of the PLAG family genes â€" PLAGL1 and PLAGL2 â€" is a key feature of a novel embryonal CNS tumor type. Neuro-Oncology, 2022, 24, i156-i156.	1.2	1
47	RARE-15. Astroblastoma, <i>MN1</i> altered comprises two molecularly and clinically distinct subgroups defined by the fusion partners <i>BEND2</i> and <i>CXXC5</i> . Neuro-Oncology, 2022, 24, i12-i13.	1.2	1
48	Can telomerase activity be unleashed to refine prognosis within ependymoma subgroups?. Neuro-Oncology, 2017, 19, 1149-1151.	1.2	0
49	Why it's time for a change in the management of adolescent and adult medulloblastoma. Expert Review of Quality of Life in Cancer Care, 2017, 2, 207-213.	0.6	0
50	EPEN-28. HETEROGENEITY WITHIN THE PFB EPENDYMOMA SUBGROUP. Neuro-Oncology, 2018, 20, i79-i79.	1.2	0
51	EPEN-31. SUBGROUP SPECIFIC LONG-TERM SURVIVAL AND NEUROCOGNITIVE OUTCOMES IN POSTERIOR FOSSA EPENDYMOMA (PFE). Neuro-Oncology, 2018, 20, i79-i79.	1.2	0
52	LGG-49. MOLECULAR ALTERATIONS IN PREGNANT ADOLESCENT AND YOUNG ADULT WOMEN WITH GLIOMA. Neuro-Oncology, 2018, 20, i115-i115.	1.2	0
53	LGG-59. REMARKABLE OBJECTIVE RESPONSE AND FAVORABLE SURVIVAL FOR BRAF-V600E CHILDHOOD LOW-GRADE GLIOMAS TO BRAF INHIBITORS COMPARED CONVENTIONAL CHEMOTHERAPY. Neuro-Oncology, 2018, 20, i117-i117.	1.2	О
54	LGG-01. BRAF V600E MUTANT OLIGODENDROGLIOMA-LIKE TUMORS WITH CHROMOSOMAL INSTABILITY IN ADOLESCENT AND YOUNG ADULT. Neuro-Oncology, 2019, 21, ii98-ii98.	1.2	0

#	Article	IF	CITATIONS
55	ATRT-11. MOLECULAR BACKGROUND AND SURVIVAL OF PATIENTS WITH ATRT AND RHABDOID TUMOURS; SINGLE CENTRE EXPERIENCE. Neuro-Oncology, 2019, 21, ii65-ii65.	1.2	0
56	HGG-19. MOLECULAR ANALYSIS UNCOVERS 3 DISTINCT SUBGROUPS AND MULTIPLE TARGETABLE GENE FUSIONS IN INFANT GLIOMAS. Neuro-Oncology, 2019, 21, ii90-ii91.	1.2	0
57	LGG-16. PREDICTORS OF OUTCOME IN BRAF-V600E PEDIATRIC GLIOMAS TREATED WITH BRAF INHIBITORS: A REPORT FROM THE PLGG TASKFORCE. Neuro-Oncology, 2019, 21, ii102-ii102.	1.2	0
58	Imaging of metastatic medulloblastoma in the molecular era Journal of Clinical Oncology, 2016, 34, e22003-e22003.	1.6	0
59	Molecular alterations to predict survival and response to chemotherapy of pediatric low-grade glioma Journal of Clinical Oncology, 2017, 35, 10503-10503.	1.6	0
60	LGG-46. MOLECULAR CHARACTERIZATION OF HEMISPHERIC LOW-GRADE GLIOMAS IN CHILDREN. Neuro-Oncology, 2020, 22, iii374-iii375.	1.2	0
61	HGG-14. Molecular characterization of unique biological subgroups among H3 wild type high-grade gliomas. Neuro-Oncology, 2022, 24, i63-i63.	1.2	0
62	HGG-11. Clinical characteristics and clinical evolution of a large cohort of pediatric patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Neuro-Oncology, 2022, 24, i61-i62.	1.2	0
63	SURG-05. Survival and functional outcomes in pediatric thalamic and thalamopeduncular low grade gliomas. Neuro-Oncology, 2022, 24, i142-i143.	1.2	0
64	Clinical characteristics and outcome of a large cohort of patients with primary central nervous system (CNS) tumors and tropomyosin receptor kinase (TRK) fusion Journal of Clinical Oncology, 2022, 40, 2052-2052.	1.6	0