
Rohan J Stanger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3518129/publications.pdf Version: 2024-02-01

POHAN I STANCER

#	Article	IF	CITATIONS
1	Characterisation of coal density fractions separated from Victorian brown coal by reflux classification. Fuel, 2021, 292, 120385.	6.4	3
2	Impact of large sized inertinite particles on thermo-swelling and volatile release of coking coals. Fuel Processing Technology, 2019, 193, 63-72.	7.2	5
3	Low-Cost Carbon Fibre Derived from Sustainable Coal Tar Pitch and Polyacrylonitrile: Fabrication and Characterisation. Materials, 2019, 12, 1281.	2.9	22
4	An investigation of the molecular change in coal maceral concentrates prepared under dimensional heating condition. Fuel Processing Technology, 2019, 189, 80-88.	7.2	2
5	In-situ study of plastic layers during coking of six Australian coking coals using a lab-scale coke oven. Fuel Processing Technology, 2019, 188, 51-59.	7.2	33
6	Study of chemical structure transition in the plastic layers sampled from a pilot-scale coke oven using a thermogravimetric analyzer coupled with Fourier transform infrared spectrometer. Fuel, 2019, 242, 277-286.	6.4	31
7	Evaluating the Thermal Extrusion Behavior of a Coking Coal for Direct Carbon Fiber Production. Energy & Fuels, 2018, 32, 4528-4537.	5.1	5
8	Impact of Coal Pyrolysis Products as a Rheological Additive on Thermoplasticity of a Coking Coal. Energy & Fuels, 2018, 32, 4382-4390.	5.1	8
9	Thermoplastic development of coking and non-coking maceral concentrates and molecular weight distribution of their pyrolysis products. Journal of Analytical and Applied Pyrolysis, 2018, 129, 72-85.	5.5	5
10	An investigation of mineral distribution in coking and thermal coal chars as fuels for the direct carbon fuel cell. Fuel, 2018, 217, 11-20.	6.4	10
11	Dataset for the estimation of costs for direct contact condenser. Data in Brief, 2018, 20, 535-543.	1.0	0
12	Dynamic measurement of liquidâ€phase mass transfer coefficient and significance on the SO ₂ absorption rate. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2242.	1.5	1
13	A comparative study on the design of direct contact condenser for air and oxy-fuel combustion flue gas based on Callide Oxy-fuel Project. International Journal of Greenhouse Gas Control, 2018, 75, 74-84.	4.6	10
14	Separation and analysis of high range extractable molecules formed during coal pyrolysis using coupled thin layer chromatography-imaging mass spectrometry (TLC-LDI-IMS). Fuel, 2017, 196, 269-279.	6.4	11
15	Mercury and SO 3 measurements on the fabric filter at the Callide Oxy-fuel Project during air and oxy-fuel firing transitions. International Journal of Greenhouse Gas Control, 2016, 47, 221-232.	4.6	11
16	Linking Thermoplastic Development and Swelling with Molecular Weight Changes of a Coking Coal and Its Pyrolysis Products. Energy & Fuels, 2016, 30, 3906-3916.	5.1	15
17	Impacts of Sulfur Oxides on Mercury Speciation and Capture by Fly Ash during Oxy-fuel Pulverized Coal Combustion. Energy & Fuels, 2016, 30, 8658-8664.	5.1	17
18	Conceptual design of a packed bed for the removal of SO 2 in Oxy-fuel combustion prior to compression. International Journal of Greenhouse Gas Control, 2016, 53, 65-78.	4.6	7

ROHAN J STANGER

#	Article	IF	CITATIONS
19	CO 2 quality control in Oxy-fuel technology for CCS: SO 2 removal by the caustic scrubber in Callide Oxy-fuel Project. International Journal of Greenhouse Gas Control, 2016, 51, 207-217.	4.6	16
20	Impacts of Mild Pyrolysis and Solvent Extraction on Coking Coal Thermoplasticity. Energy & Fuels, 2016, 30, 9293-9302.	5.1	7
21	Chemical Changes of Australian Coking Coals from Different Basins with Various Ranks and Maceral Compositions: Linking to Both Physical and Thermal Changes. Energy & Fuels, 2016, 30, 10136-10147.	5.1	3
22	Thermo-swelling Behavior of Australian Coking Coals from Different Basins: Relating to Rank and Maceral Compositions. Energy & Fuels, 2016, 30, 10126-10135.	5.1	6
23	The pyrolysis behaviour of solvent extracted metaplast material from heated coal using LDI-TOF mass spectroscopy measurements. Journal of Analytical and Applied Pyrolysis, 2016, 120, 258-268.	5.5	16
24	The use of LDI-TOF imaging mass spectroscopy to study heated coal with a temperature gradient incorporating the plastic layer and semi-coke. Fuel, 2016, 165, 33-40.	6.4	17
25	Maceral separation from coal by the Reflux Classifier. Fuel Processing Technology, 2016, 143, 43-50.	7.2	28
26	Changes in Solvent-Extracted Matter for Heated Coal during Metaplast Formation Using High-Range Mass Spectrometry. Energy & Fuels, 2015, 29, 7101-7113.	5.1	24
27	CO 2 quality control through scrubbing in oxy-fuel combustion: Rate limitation due to S(IV) oxidation in sodium solutions in scrubbers and prior to waste disposal. International Journal of Greenhouse Gas Control, 2015, 39, 148-157.	4.6	8
28	Oxyfuel derived CO2 compression experiments with NO , SO and mercury removal—Experiments involving compression of slip-streams from the Callide Oxyfuel Project (COP). International Journal of Greenhouse Gas Control, 2015, 41, 50-59.	4.6	24
29	Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40, 55-125.	4.6	346
30	CO2 quality control through scrubbing in oxy-fuel combustion: Simulations on the absorption rates of SO2 into droplets to identify operational pH regions. International Journal of Greenhouse Gas Control, 2015, 37, 115-126.	4.6	7
31	Thermo-swelling Properties of Particle Size Cuts of Coal Maceral Concentrates. Energy & Fuels, 2015, 29, 4893-4901.	5.1	20
32	Field measurements of NO x and mercury from oxy-fuel compression condensates at the Callide Oxyfuel Project. International Journal of Greenhouse Gas Control, 2015, 42, 485-493.	4.6	7
33	CO 2 quality control through scrubbing in oxy-fuel combustion: An evaluation of operational pH impacts, and prediction of SO 2 absorption rate at steady state. International Journal of Greenhouse Gas Control, 2015, 32, 37-46.	4.6	5
34	Mercury and SO3 Emissions in Oxy-fuel Combustion. Energy Procedia, 2014, 63, 386-402.	1.8	23
35	High pressure conversion of NO x and Hg and their capture as aqueous condensates in a laboratory piston-compressor simulating oxy-fuel CO 2 compression. International Journal of Greenhouse Gas Control, 2014, 29, 209-220.	4.6	10
36	High-Temperature Conversion of SO ₂ to SO ₃ : Homogeneous Experiments and Catalytic Effect of Fly Ash from Air and Oxy-fuel Firing. Energy & Fuels, 2014, 28, 7243-7251.	5.1	86

3

ROHAN J STANGER

#	Article	IF	CITATIONS
37	The effect of convective heating on evaporative heat loss in anesthetized children. Paediatric Anaesthesia, 2014, 24, 1274-1280.	1.1	0
38	Oxyfuel CO 2 compression: The gas phase reaction of elemental mercury and NO x at high pressure and absorption into nitric acid. International Journal of Greenhouse Gas Control, 2014, 29, 125-134.	4.6	12
39	Sulfur Capture by Fly Ash in Air and Oxy-fuel Pulverized Fuel Combustion. Energy & Fuels, 2014, 28, 5472-5479.	5.1	22
40	SO ₃ Emissions and Removal by Ash in Coal-Fired Oxy-Fuel Combustion. Energy & Fuels, 2014, 28, 5296-5306.	5.1	50
41	Mercury Emissions and Removal by Ash in Coal-Fired Oxy-fuel Combustion. Energy & Fuels, 2014, 28, 123-135.	5.1	42
42	Dynamic measurement of coal thermal properties and elemental composition of volatile matter during coal pyrolysis. Journal of Materials Research and Technology, 2014, 3, 2-8.	5.8	24
43	Interactions between vitrinite and inertinite-rich coals and the ionic liquid – [bmim][Cl]. Fuel, 2014, 119, 214-218.	6.4	35
44	Dynamic behaviour of coal macerals during pyrolysis – Associations between physical, thermal and chemical changes. Proceedings of the Combustion Institute, 2013, 34, 2393-2400.	3.9	23
45	CO2 quality control by scrubbing in oxy-fuel combustion prior to compression: Relating pH to the liquid composition from absorption of SO2 into sodium based solutions to identify an operational pH window. International Journal of Greenhouse Gas Control, 2013, 19, 462-470.	4.6	9
46	Dynamic Elemental Thermal Analysis (DETA) \hat{a} €" A characterisation technique for the production of biochar and bio-oil from biomass resources. Fuel, 2013, 108, 656-667.	6.4	9
47	Laboratory investigation of high pressure NO oxidation to NO2 and capture with liquid and gaseous water under oxy-fuel CO2 compression conditions. International Journal of Greenhouse Gas Control, 2013, 18, 15-22.	4.6	44
48	Gas cleaning challenges for coal-fired oxy-fuel technology with carbon capture and storage. Fuel, 2013, 108, 85-90.	6.4	54
49	Dynamic Elemental Thermal Analysis: A technique for continuous measurement of carbon, hydrogen, oxygen chemistry of tar species evolved during coal pyrolysis. Fuel, 2013, 103, 764-772.	6.4	17
50	Coal macerals separation by reflux classification and thermo-swelling analysis based on the Computer Aided Thermal Analysis. Fuel, 2013, 103, 1023-1031.	6.4	33
51	Comment on â€~Prevention of intraoperative hypothermia…' Witt L, Denhardt N, Eich C <i>etÂal</i> . Paediatric Anaesthesia, 2013, 23, 970-970.	1.1	0
52	Demonstrations of coal-fired oxy-fuel technology for carbon capture and storage and issues with commercial deployment. International Journal of Greenhouse Gas Control, 2011, 5, S5-S15.	4.6	97
53	Sulphur impacts during pulverised coal combustion in oxy-fuel technology for carbon capture and storage. Progress in Energy and Combustion Science, 2011, 37, 69-88.	31.2	165