Daewha Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3515437/publications.pdf

Version: 2024-02-01

361413 395702 1,457 31 20 33 citations h-index g-index papers 39 39 39 1889 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Cytoprotective and Degradable Metal–Polyphenol Nanoshell for Singleâ€Cell Encapsulation. Angewandte Chemie - International Edition, 2014, 53, 12420-12425.	13.8	164
2	Cell-in-Shell Hybrids: Chemical Nanoencapsulation of Individual Cells. Accounts of Chemical Research, 2016, 49, 792-800.	15.6	143
3	Nanocoating of Single Cells: From Maintenance of Cell Viability to Manipulation of Cellular Activities. Advanced Materials, 2014, 26, 2001-2010.	21.0	133
4	Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chemical Communications, 2014 , 50 , 11649 - 11652 .	4.1	100
5	Cytoprotective Alginate/Polydopamine Core/Shell Microcapsules in Microbial Encapsulation. Angewandte Chemie - International Edition, 2014, 53, 14443-14446.	13.8	88
6	Achieving Ultralow Fouling under Ambient Conditions via Surface-Initiated ARGET ATRP of Carboxybetaine. ACS Applied Materials & Samp; Interfaces, 2017, 9, 9255-9259.	8.0	79
7	Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO ₂ Shells for Tâ€Cell Therapy. Angewandte Chemie - International Edition, 2017, 56, 10702-10706.	13.8	74
8	Frontispiece: A Cytoprotective and Degradable Metal–Polyphenol Nanoshell for Singleâ€Cell Encapsulation. Angewandte Chemie - International Edition, 2014, 53, .	13.8	73
9	Artificial spores: cytoprotective nanoencapsulation of living cells. Trends in Biotechnology, 2013, 31, 442-447.	9.3	71
10	Organic/inorganic double-layered shells for multiple cytoprotection of individual living cells. Chemical Science, 2015, 6, 203-208.	7.4	64
11	Ultralow Fouling and Functionalizable Surface Chemistry Based on Zwitterionic Carboxybetaine Random Copolymers. Langmuir, 2019, 35, 1544-1551.	3.5	60
12	Artificial Spores: Immunoprotective Nanocoating of Red Blood Cells with Supramolecular Ferric lon-Tannic Acid Complex. Polymers, 2017, 9, 140.	4.5	48
13	Antifouling Surface Coating Using Droplet-Based SI-ARGET ATRP of Carboxybetaine under Open-Air Conditions. Langmuir, 2019, 35, 7744-7750.	3.5	35
14	A degradable polydopamine coating based on disulfide-exchange reaction. Nanoscale, 2015, 7, 20149-20154.	5.6	31
15	Water-Collecting Capability of Radial-Wettability Gradient Surfaces Generated by Controlled Surface Reactions. Langmuir, 2010, 26, 15080-15083.	3.5	27
16	Turning Diamagnetic Microbes into Multinary Micro-Magnets: Magnetophoresis and Spatio-Temporal Manipulation of Individual Living Cells. Scientific Reports, 2016, 6, 38517.	3.3	25
17	Surface-Initiated ARGET ATRP of Antifouling Zwitterionic Brushes Using Versatile and Uniform Initiator Film. Langmuir, 2019, 35, 13268-13274.	3.5	24
18	Generation of Cellular Micropatterns on a Singleâ€ <scp>L</scp> ayered Graphene Film. Macromolecular Bioscience, 2014, 14, 314-319.	4.1	17

#	Article	IF	CITATIONS
19	Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO ₂ Shells for Tâ€Cell Therapy. Angewandte Chemie, 2017, 129, 10842-10846.	2.0	14
20	Zr(IV) Coordination Chemistry for Cell-Repellent Alginate Coatings: The Effect of Surface Functional Groups. Langmuir, 2020, 36, 5192-5197.	3.5	14
21	Aryl Azide Based, Photochemical Patterning of Cyclic Olefin Copolymer Surfaces with Nonâ€Biofouling Poly[(3â€(methacryloylamino)propyl)dimethyl(3â€sulfopropyl)ammonium hydroxide]. Chemistry - an Asian Journal, 2011, 6, 363-366.	3.3	11
22	Electrochemical Release of Amine Molecules from Carbamate-Based, Electroactive Self-Assembled Monolayers. Langmuir, 2012, 28, 17-21.	3.5	10
23	Accelerated Development of Hippocampal Neurons and Limited Adhesion of Astrocytes on Negatively Charged Surfaces. Langmuir, 2018, 34, 1767-1774.	3.5	10
24	Cationic Polymers for Coating Living Cells. Macromolecular Research, 2018, 26, 1185-1192.	2.4	9
25	Development of a versatile, uniform, and stable initiator layer by the functionalization of a polydopamine/polyethyleneimine film. Bulletin of the Korean Chemical Society, 2022, 43, 788-791.	1.9	5
26	Effect of <i>N</i> -Methylation on Dopamine Surface Chemistry. Langmuir, 2022, 38, 6404-6410.	3.5	5
27	Developing Low Fouling on PET Film via Surfaceâ€initiated ARGET ATRP of Carboxybetaine under Air Condition. Bulletin of the Korean Chemical Society, 2019, 40, 7-8.	1.9	3
28	Development of Stimulusâ€Responsive Degradable Film via Codeposition of Dopamine and Cystamine. Chemistry - an Asian Journal, 2020, 15, 2622-2626.	3.3	3
29	Development of Universal and Clickable Film by Mimicking Melanogenesis: Onâ€Đemand Oxidation of Tyrosineâ€Based Azido Derivative by Tyrosinase. Macromolecular Rapid Communications, 2022, , 2200089.	3.9	2
30	Titelbild: Cytoprotective Encapsulation of Individual Jurkat T Cells within Durable TiO ₂ Shells for Tâ€Cell Therapy (Angew. Chem. 36/2017). Angewandte Chemie, 2017, 129, 10745-10745.	2.0	0
31	Site-Selective Functionalization of Polydopamine Films via Aryl Azide-Based Photochemical Reaction. Macromolecular Research, 2020, 28, 885-887.	2.4	О