Nadine Bouby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3515304/publications.pdf

Version: 2024-02-01

98 papers

4,203 citations

39 h-index 62 g-index

104 all docs

104 docs citations

104 times ranked 3584 citing authors

#	Article	IF	CITATIONS
1	Vasopressin: a novel target for the prevention and retardation of kidney disease?. Nature Reviews Nephrology, 2013, 9, 223-239.	4.1	179
2	Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: the prospective Malm \tilde{A}^{\P} Diet and Cancer Study cardiovascular cohort. International Journal of Obesity, 2013, 37, 598-603.	1.6	157
3	Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R700-R705.	0.9	149
4	Genetically increased angiotensin I-converting enzyme level and renal complications in the diabetic mouse. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 13330-13334.	3.3	132
5	Vasopressin contributes to hyperfiltration, albuminuria, and renal hypertrophy in diabetes mellitus: Study in vasopressin-deficient Brattleboro rats. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 10397-10402.	3.3	128
6	Low Water Intake and Risk for New-Onset Hyperglycemia. Diabetes Care, 2011, 34, 2551-2554.	4.3	127
7	Vasopressin increases urinary albumin excretion in rats and humans: involvement of V2 receptors and the renin-angiotensin system. Nephrology Dialysis Transplantation, 2003, 18, 497-506.	0.4	120
8	Vasopressin-V2 Receptor Stimulation Reduces Sodium Excretion in Healthy Humans. Journal of the American Society of Nephrology: JASN, 2005, 16, 1920-1928.	3.0	117
9	Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney International, 2008, 74, 486-494.	2.6	115
10	Comparison Between Copeptin and Vasopressin in a Population From the Community and in People With Chronic Kidney Disease. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 4656-4663.	1.8	110
11	Chronic Exposure to Vasopressin Upregulates ENaC and Sodium Transport in the Rat Renal Collecting Duct and Lung. Hypertension, 2001, 38, 1143-1149.	1.3	107
12	Expression of type 1 angiotensin II receptor subtypes and angiotensin II-induced calcium mobilization along the rat nephron Journal of the American Society of Nephrology: JASN, 1997, 8, 1658-1667.	3.0	106
13	Hydration and Chronic Kidney Disease Progression: A Critical Review of the Evidence. American Journal of Nephrology, 2016, 43, 281-292.	1.4	104
14	Vasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension?. American Journal of Physiology - Renal Physiology, 2010, 299, F917-F928.	1.3	100
15	Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. American Journal of Physiology - Renal Physiology, 1990, 258, F973-F979.	1.3	95
16	Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action Journal of the American Society of Nephrology: JASN, 1996, 7, 842-851.	3.0	91
17	Protein- and diabetes-induced glomerular hyperfiltration: role of glucagon, vasopressin, and urea. American Journal of Physiology - Renal Physiology, 2015, 309, F2-F23.	1.3	88
18	Sodium Excretion in Response to Vasopressin and Selective Vasopressin Receptor Antagonists. Journal of the American Society of Nephrology: JASN, 2008, 19, 1721-1731.	3.0	87

#	Article	IF	Citations
19	Plasma Copeptin and Renal Outcomes in Patients With Type 2 Diabetes and Albuminuria. Diabetes Care, 2013, 36, 3639-3645.	4.3	73
20	Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia, 2015, 58, 1081-1090.	2.9	70
21	Selective ADH-induced hypertrophy of the medullary thick ascending limb in Brattleboro rats. Kidney International, 1985, 28, 456-466.	2.6	69
22	Contribution of vasopressin to progression of chronic renal failure: Study in Brattleboro rats. Life Sciences, 1999, 65, 991-1004.	2.0	69
23	Diabetes-induced albuminuria: role of antidiuretic hormone as revealed by chronic V2 receptor antagonism in rats. Nephrology Dialysis Transplantation, 2003, 18, 1755-1763.	0.4	69
24	Direct and indirect cost of urea excretion. Kidney International, 1996, 49, 1598-1607.	2.6	67
25	Plasma Copeptin, <i>AVP</i> Gene Variants, and Incidence of Type 2 Diabetes in a Cohort From the Community. Journal of Clinical Endocrinology and Metabolism, 2016, 101, 2432-2439.	1.8	58
26	Kallikrein protects against microalbuminuria in experimental type I diabetes. Kidney International, 2009, 76, 395-403.	2.6	55
27	Apelin Counteracts Vasopressin-Induced Water Reabsorption via Cross Talk Between Apelin and Vasopressin Receptor Signaling Pathways in the Rat Collecting Duct. Endocrinology, 2014, 155, 4483-4493.	1.4	54
28	Mild dehydration, vasopressin and the kidney: animal and human studies. European Journal of Clinical Nutrition, 2003, 57, S39-S46.	1.3	52
29	Plasma Copeptin, Kidney Outcomes, Ischemic Heart Disease, and All-Cause Mortality in People With Long-standing Type 1 Diabetes. Diabetes Care, 2016, 39, 2288-2295.	4.3	51
30	Role of the urinary concentrating process in the renal effects of high protein intake. Kidney International, 1988, 34, 4-12.	2.6	50
31	Selective Kinin Receptor Agonists as Cardioprotective Agents in Myocardial Ischemia and Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2013, 346, 23-30.	1.3	48
32	Murine models of myocardial and limb ischemia: Diagnostic end-points and relevance to clinical problems. Vascular Pharmacology, 2006, 45, 281-301.	1.0	47
33	Quick isolation of rat medullary thick ascending limbs. Pflugers Archiv European Journal of Physiology, 1986, 407, 228-234.	1.3	46
34	Renal synthesis of arginine in chronic renal failure: In vivo and in vitro studies in rats with 5/6 nephrectomy. Kidney International, 1993, 44, 676-683.	2.6	46
35	Is the process of urinary urea concentration responsible for a high glomerular filtration rate?. Journal of the American Society of Nephrology: JASN, 1993, 4, 1091-1103.	3.0	45
36	Plasma Copeptin and Decline in Renal Function in a Cohort from the Community: The Prospective D.E.S.I.R. Study. American Journal of Nephrology, 2015, 42, 107-114.	1.4	43

#	Article	IF	Citations
37	Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: a water intervention in humans. European Journal of Nutrition, 2019, 58, 315-324.	1.8	43
38	Long-term effects of vasopressin on the subcellular localization of ENaC in the renal collecting system. Kidney International, 2006, 69, 1024-1032.	2.6	41
39	Vasopressin and metabolic disorders: translation from experimental models to clinical use. Journal of Internal Medicine, 2017, 282, 298-309.	2.7	40
40	Cyclic AMP is a hepatorenal link influencing natriuresis and contributing to glucagon-induced hyperfiltration in rats Journal of Clinical Investigation, 1996, 98, 2251-2258.	3.9	39
41	Chronic V2 Vasopressin Receptor Stimulation Increases Basal Blood Pressure and Exacerbates Deoxycorticosterone Acetate-Salt Hypertension. Endocrinology, 2002, 143, 2759-2766.	1.4	37
42	Effect of high protein intake on sodium, potassium-dependent adenosine triphosphatase activity in the thick ascending limb of Henle's loop in the rat. Clinical Science, 1988, 74, 319-329.	1.8	35
43	2 The role of the kidney in the maintenance of water balance. Bailliere's Clinical Endocrinology and Metabolism, 1989, 3, 249-311.	1.0	35
44	Functional adaptation of thick ascending limb and internephron heterogeneity to urine concentration. Kidney International, 1987, 31, 549-555.	2.6	34
45	Vasopressin-Dependent Kidney Hypertrophy: Role of Urinary Concentration in Protein-Induced Hypertrophy and in the Progression of Chronic Renal Failure. American Journal of Kidney Diseases, 1991, 17, 661-665.	2.1	34
46	Glucagon actions on the kidney revisited: possible role in potassium homeostasis. American Journal of Physiology - Renal Physiology, 2016, 311, F469-F486.	1.3	32
47	Acute and chronic hyperglycemic effects of vasopressin in normal rats: involvement of V _{1A} receptors. American Journal of Physiology - Endocrinology and Metabolism, 2017, 312, E127-E135.	1.8	32
48	Relationship between Sodium Intake and Water Intake: The False and the True. Annals of Nutrition and Metabolism, 2017, 70, 51-61.	1.0	32
49	Plasma copeptin and chronic kidney disease risk in 3 European cohorts from the general population. JCI Insight, 2018, 3, .	2.3	32
50	Synthesis and fragmentation of hyaluronan in renal ischaemia. Nephrology Dialysis Transplantation, 2012, 27, 3771-3781.	0.4	30
51	Selective blockade of vasopressin V2 receptors reveals significant V2â€mediated water reabsorption in Brattleboro rats with diabetes insipidus. Nephrology Dialysis Transplantation, 2001, 16, 725-734.	0.4	28
52	Effects of glucagon on glomerular filtration rate and urea and water excretion. American Journal of Physiology - Renal Physiology, 1992, 263, F24-F36.	1.3	26
53	Pathophysiology of genetic deficiency in tissue kallikrein activity in mouse and man. Thrombosis and Haemostasis, 2013, 110, 476-483.	1.8	26
54	Stimulation of tubular reabsorption of magnesium and calcium by antidiuretic hormone in conscious rats. Pflugers Archiv European Journal of Physiology, 1984, 402, 458-464.	1.3	24

#	Article	IF	CITATIONS
55	Medullary and cortical thick ascending limb: similarities and differences. American Journal of Physiology - Renal Physiology, 2020, 318, F422-F442.	1.3	23
56	Cardioprotective Effect of VEGF and Venom VEGF-like Protein in Acute Myocardial Ischemia in Mice. Journal of Cardiovascular Pharmacology, 2014, 63, 274-281.	0.8	22
57	Tamm-Horsfall Protein Excretion during Chronic Alterations in Urinary Concentration and Protein Intake in the Rat. Kidney and Blood Pressure Research, 1991, 14, 236-245.	0.9	21
58	Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia. FASEB Journal, 2010, 24, 4691-4700.	0.2	21
59	Kinins as Therapeutic Agents in Cardiovascular and Renal Diseases. Current Pharmaceutical Design, 2011, 17, 2654-2662.	0.9	21
60	Kinin Receptor Agonism Restores Hindlimb Postischemic Neovascularization Capacity in Diabetic Mice. Journal of Pharmacology and Experimental Therapeutics, 2015, 352, 218-226.	1.3	19
61	Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clinical Science, 2016, 130, 45-56.	1.8	19
62	Antihypertensive Role of Tissue Kallikrein in Hyperaldosteronism in the Mouse. Endocrinology, 2012, 153, 3886-3896.	1.4	17
63	Antagonism of vasopressin V2 receptor improves albuminuria at the early stage of diabetic nephropathy in a mouse model of type 2 diabetes. Journal of Diabetes and Its Complications, 2017, 31, 929-932.	1.2	16
64	Glucagon revisited: Coordinated actions on the liver and kidney. Diabetes Research and Clinical Practice, 2018, 146, 119-129.	1.1	16
65	Kallikrein/K1, Kinins, and ACE/Kininase II in Homeostasis and in Disease Insight From Human and Experimental Genetic Studies, Therapeutic Implication. Frontiers in Medicine, 2019, 6, 136.	1.2	16
66	Genetic deficiency in tissue kallikrein activity in mouse and man: effect on arteries, heart and kidney. Biological Chemistry, 2008, 389, 701-706.	1.2	14
67	Kinins and Kinin Receptors in Cardiovascular and Renal Diseases. Pharmaceuticals, 2021, 14, 240.	1.7	13
68	Effect of long- and short-term antidiuretic hormone availability on internephron heterogeneity in the adult rat. American Journal of Physiology - Renal Physiology, 1984, 246, F879-F888.	1.3	12
69	Vasopressin is involved in renal effects of high-protein diet: study in homozygous Brattleboro rats. American Journal of Physiology - Renal Physiology, 1991, 260, F96-F100.	1.3	12
70	Renal cortical regulation of COX-1 and functionally related products in early renovascular hypertension (rat). American Journal of Physiology - Renal Physiology, 2006, 291, F987-F994.	1.3	12
71	Tissue kallikrein, blood pressure regulation, and hypertension: insight from genetic kallikrein deficiency. Biological Chemistry, 2013, 394, 329-333.	1.2	12
72	Plasma Adrenomedullin and Allelic Variation in the <i>ADM</i> Gene and Kidney Disease in People With Type 2 Diabetes. Diabetes, 2015, 64, 3262-3272.	0.3	12

#	Article	IF	Citations
73	Chronic V2 Vasopressin Receptor Stimulation Increases Basal Blood Pressure and Exacerbates Deoxycorticosterone Acetate-Salt Hypertension. , 0, .		12
74	Effect of salt and water intake on epithelial sodium channel mRNA abundance in the kidney of salt-sensitive Sabra rats. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 963-965.	0.9	11
75	DIFFERENTIAL REGULATION OF ANGIOTENSIN II RECEPTORS DURING RENAL INJURY AND COMPENSATORY HYPERTROPHY IN THE RAT. Clinical and Experimental Pharmacology and Physiology, 2005, 32, 241-248.	0.9	11
76	Multiple Cross Talk between Angiotensin II, Bradykinin, and Insulin Signaling in the Cortical Thick Ascending Limb of Rat Kidney. Endocrinology, 2010, 151, 3181-3194.	1.4	11
77	Effects of osmolality and antidiuretic hormone on prostaglandin synthesis by renal papilla. Pflugers Archiv European Journal of Physiology, 1984, 400, 96-99.	1.3	10
78	Reduced Insulin Secretion and Nocturnal Dipping of Blood Pressure Are Associated with a Disturbed Circadian Pattern of Urine Excretion in Metabolic Syndrome. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E929-E933.	1.8	10
79	Neuroprotective effect of kinin B1 receptor activation in acute cerebral ischemia in diabetic mice. Scientific Reports, 2017, 7, 9410.	1.6	10
80	Desensitization of Type 1 Angiotensin II Receptor Subtypes in the Rat Kidney. Endocrinology, 2001, 142, 4683-4692.	1.4	9
81	Thick ascending limbanatomy and function: role in urine concentrating mechanisms. Advances in Nephrology From the Necker Hospital, 1987, 16, 69-102.	0.2	9
82	Genetic Manipulation and Genetic Variation of the Kallikrein-Kinin System: Impact on Cardiovascular and Renal Diseases., 2014, 69, 145-196.		8
83	Improved protocols for the study of urinary electrolyte excretion and blood pressure in rodents: use of gel food and stepwise changes in diet composition. American Journal of Physiology - Renal Physiology, 2018, 314, F1129-F1137.	1.3	8
84	Distinct Postprandial Bile Acids Responses to a High-Calorie Diet in Men Volunteers Underscore Metabolically Healthy and Unhealthy Phenotypes. Nutrients, 2020, 12, 3545.	1.7	8
85	Genetically determined angiotensin converting enzyme level and myocardial tolerance to ischemia. FASEB Journal, 2010, 24, 4691-4700.	0.2	7
86	Type 1 Angiotensin II Receptor Subtypes in Kidney of Normal and Salt-Sensitive Hypertensive Rats. Hypertension, 1996, 27, 392-398.	1.3	7
87	Tissue kallikrein deficiency, insulin resistance, and diabetes in mouse and man. Journal of Endocrinology, 2014, 221, 297-308.	1.2	6
88	Hydration and Kidney Health. Obesity Facts, 2014, 7, 19-32.	1.6	6
89	Protection of <scp>W</scp> istarâ€ <scp>F</scp> urth rats against postischaemic acute renal injury: Role for nitric oxide and thromboxane?. Clinical and Experimental Pharmacology and Physiology, 2014, 41, 911-920.	0.9	5
90	Genetically increased angiotensin I-converting enzyme alters peripheral and renal vascular reactivity to angiotensin II and bradykinin in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 314, H350-H358.	1.5	5

#	Article	IF	CITATIONS
91	Urine Osmolarity and Risk of Dialysis Initiation in a CKD Cohort. Annals of Nutrition and Metabolism, 2015, 66, 14-17.	1.0	4
92	Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications. Biological Chemistry, 2016, 397, 1217-1222.	1.2	4
93	Renal potassium handling in carriers of the Gly40Ser mutation of the glucagon receptor suggests a role for glucagon in potassium homeostasis. Physiological Reports, 2018, 6, e13661.	0.7	3
94	Characterization of a functional V1B vasopressin receptor in the male rat kidney: evidence for cross talk between V1B and V2 receptor signaling pathways. American Journal of Physiology - Renal Physiology, 2021, 321, F305-F321.	1.3	3
95	Regulation by sodium intake of type 1 angiotensin II receptor mRNAs in the kidney of Sabra rats. Journal of Hypertension, 2000, $18,1097-1105.$	0.3	1
96	Role of Urine Concentration in the Progression of Renal Failure1., 1993,, 216-225.		0
97	ARE RACIAL DIFFERENCES IN SODIUM AND WATER HANDLING AT NIGHT RELATED TO DIFFERENCES IN THE SUSCEPTIBILITY TO HYPERTENSION?. Journal of Hypertension, 2004, 22, S216-S217.	0.3	0
98	VASOPRESSIN MODULATES BLOOD PRESSURE LEVEL THROUGH V2 RECEPTOR-MEDIATED EFFECTS ON THE EPITHELIAL SODIUM CHANNEL. Journal of Hypertension, 2004, 22, S354.	0.3	0