Trever G Bivona

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/351512/publications.pdf

Version: 2024-02-01

79 papers 11,139 citations

39 h-index 77 g-index

86 all docs 86 docs citations

86 times ranked 18010 citing authors

#	Article	IF	CITATIONS
1	Evolution of metastasis: new tools and insights. Trends in Cancer, 2022, 8, 98-109.	7.4	40
2	Inhibition of SHP2 as an approach to block RAS-driven cancers. Advances in Cancer Research, 2022, 153, 205-236.	5.0	7
3	Small-molecule targeted therapies induce dependence on DNA double-strand break repair in residual tumor cells. Science Translational Medicine, 2022, 14, eabc7480.	12.4	14
4	Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell, 2022, 185, 1905-1923.e25.	28.9	108
5	Deficiency of the splicing factor RBM10 limits EGFR inhibitor response in EGFR-mutant lung cancer. Journal of Clinical Investigation, 2022, 132, .	8.2	15
6	Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science, 2021, 371, .	12.6	166
7	Kinase-mediated RAS signaling via membraneless cytoplasmic protein granules. Cell, 2021, 184, 2649-2664.e18.	28.9	102
8	Allosteric SHP2 inhibitors in cancer: Targeting the intersection of RAS, resistance, and the immune microenvironment. Current Opinion in Chemical Biology, 2021, 62, 1-12.	6.1	83
9	Stepwise evolution of therapy resistance in AML. Cancer Cell, 2021, 39, 904-906.	16.8	3
10	Targeting AXL in NSCLC. Lung Cancer: Targets and Therapy, 2021, Volume 12, 67-79.	2.7	8
11	Exocyst protein subnetworks integrate Hippo and mTOR signaling to promote virus detection and cancer. Cell Reports, 2021, 36, 109491.	6.4	11
12	Liquid Biopsy for Advanced NSCLC: A Consensus Statement From the International Association for the Study of Lung Cancer. Journal of Thoracic Oncology, 2021, 16, 1647-1662.	1.1	274
13	Profiling Sensitivity to Targeted Therapies in EGFR-Mutant NSCLC Patient-Derived Organoids. Journal of Visualized Experiments, 2021, , .	0.3	2
14	Co-occurring Alterations in the RAS–MAPK Pathway Limit Response to MET Inhibitor Treatment in MET Exon 14 Skipping Mutation-Positive Lung Cancer. Clinical Cancer Research, 2020, 26, 439-449.	7.0	64
15	Acquired Resistance in Lung Cancer. Annual Review of Cancer Biology, 2020, 4, 279-297.	4. 5	13
16	Functional screening identifies aryl hydrocarbon receptor as suppressor of lung cancer metastasis. Oncogenesis, 2020, 9, 102.	4.9	24
17	Multi-faceted epigenetic dysregulation of gene expression promotes esophageal squamous cell carcinoma. Nature Communications, 2020, 11 , 3675.	12.8	63
18	Long non-coding RNA ESCCAL-1 promotes esophageal squamous cell carcinoma by down regulating the negative regulator of APOBEC3G. Cancer Letters, 2020, 493, 217-227.	7.2	17

#	Article	IF	CITATIONS
19	Therapy-Induced Evolution of Human Lung Cancer Revealed by Single-Cell RNA Sequencing. Cell, 2020, 182, 1232-1251.e22.	28.9	371
20	EGFR targeted therapy resistance: current status, challenges, and future outlook. Journal of Thoracic Disease, 2020, 12, 2849-2850.	1.4	2
21	Molecular Landscape of BRAF-Mutant NSCLC Reveals an Association Between Clonality and Driver Mutations and Identifies Targetable Non-V600 Driver Mutations. Journal of Thoracic Oncology, 2020, 15, 1611-1623.	1.1	43
22	Targeting Oncogenic BRAF: Past, Present, and Future. Cancers, 2019, 11, 1197.	3.7	143
23	Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Cell Reports, 2019, 28, 2317-2330.e8.	6.4	12
24	BRAF Mutations Classes I, II, and III in NSCLC Patients Included in the SLLIP Trial: The Need for a New Pre-Clinical Treatment Rationale. Cancers, 2019, 11, 1381.	3.7	44
25	Principles of Resistance to Targeted Cancer Therapy: Lessons from Basic and Translational Cancer Biology. Trends in Molecular Medicine, 2019, 25, 185-197.	6.7	118
26	Use of nonsteroidal anti-inflammatory drugs predicts improved patient survival for <i>PIK3CA</i> -altered head and neck cancer. Journal of Experimental Medicine, 2019, 216, 419-427.	8.5	46
27	Engineering Multidimensional Evolutionary Forces to Combat Cancer. Cancer Discovery, 2019, 9, 587-604.	9.4	13
28	Dampening oncogenic RAS signaling. Science, 2019, 363, 1280-1281.	12.6	25
29	Polytherapy and Targeted Cancer Drug Resistance. Trends in Cancer, 2019, 5, 170-182.	7.4	183
30	Emerging Targeted Therapies for the Treatment of Non-small Cell Lung Cancer. Current Oncology Reports, 2019, 21, 21.	4.0	82
31	Pathologic Complete Response to Neoadjuvant Crizotinib in a Lung Adenocarcinoma Patient With a MET Exon 14 Skipping Mutation. Clinical Lung Cancer, 2019, 20, e137-e141.	2.6	8
32	Immunohistochemistry to Study YAP in Human Tissue Samples. Methods in Molecular Biology, 2019, 1893, 89-95.	0.9	6
33	Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer. Nature Medicine, 2019, 25, 111-118.	30.7	196
34	Differential Subcellular Localization Regulates Oncogenic Signaling by ROS1 Kinase Fusion Proteins. Cancer Research, 2019, 79, 546-556.	0.9	59
35	Oncogenic Signaling Pathways in The Cancer Genome Atlas. Cell, 2018, 173, 321-337.e10.	28.9	2,111
36	<i>BRAF</i> in Lung Cancers: Analysis of Patient Cases Reveals Recurrent <i>BRAF</i> Mutations, Fusions, Kinase Duplications, and Concurrent Alterations. JCO Precision Oncology, 2018, 2, 1-15.	3.0	24

#	Article	IF	Citations
37	Circulating tumor DNA analysis in patients with EGFR mutant lung cancer. Journal of Thoracic Disease, 2018, 10, S4061-S4064.	1.4	2
38	The evolving understanding of immunoediting and the clinical impact of immune escape. Journal of Thoracic Disease, 2018, 10, 1248-1252.	1.4	10
39	Liquid Biopsy for Advanced Non-Small Cell LungÂCancer (NSCLC): A Statement Paper from theÂlASLC. Journal of Thoracic Oncology, 2018, 13, 1248-1268.	1.1	515
40	RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nature Cell Biology, 2018, 20, 1064-1073.	10.3	276
41	TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer. Journal of Clinical Investigation, 2018, 128, 2500-2518.	8.2	73
42	Emerging application of genomics-guided therapeutics in personalized lung cancer treatment. Annals of Translational Medicine, 2018, 6, 160-160.	1.7	22
43	Superior Efficacy and Selectivity of Novel Small-Molecule Kinase Inhibitors of T790M-Mutant EGFR in Preclinical Models of Lung Cancer. Cancer Research, 2017, 77, 1200-1211.	0.9	11
44	CD74 - ROS1 Fusion in NSCLCÂDetected by Hybrid Capture–Based Tissue Genomic Profiling and ctDNA Assays. Journal of Thoracic Oncology, 2017, 12, e19-e20.	1.1	6
45	Resistance is futile: overcoming resistance to targeted therapies in lung adenocarcinoma. Npj Precision Oncology, 2017, 1 , .	5.4	70
46	A Case of Metastatic Atypical Neuroendocrine Tumor with <i>ALK</i> Translocation and Diffuse Brain Metastases. Oncologist, 2017, 22, 768-773.	3.7	33
47	Novel computational method for predicting polytherapy switching strategies to overcome tumor heterogeneity and evolution. Scientific Reports, 2017, 7, 44206.	3.3	28
48	Understanding and targeting resistance mechanisms in NSCLC. Nature Reviews Cancer, 2017, 17, 637-658.	28.4	679
49	Simultaneous evolutionary expansion and constraint of genomic heterogeneity in multifocal lung cancer. Nature Communications, 2017, 8, 823.	12.8	53
50	Co-activation of STAT3 and YES-Associated Protein 1 (YAP1) Pathway in EGFR-Mutant NSCLC. Journal of the National Cancer Institute, 2017, 109, .	6.3	128
51	Current Landscape of Targeted Therapy in Lung Cancer. Clinical Pharmacology and Therapeutics, 2017, 102, 757-764.	4.7	134
52	Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. Nature Genetics, 2017, 49, 1693-1704.	21.4	423
53	Inactivation of Capicua drives cancer metastasis. Nature Genetics, 2017, 49, 87-96.	21.4	130
54	Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. Nature Communications, 2017, 8, 410.	12.8	117

#	Article	IF	CITATIONS
55	Dividing and conquering the variation among variants in EML4-ALK lung cancer. Translational Cancer Research, 2017, 6, S369-S370.	1.0	O
56	Neoadjuvant Oncogene-Targeted Therapy in Early Stage Non–Small-Cell Lung Cancer as a Strategy to Improve Clinical Outcome and Identify Early Mechanisms of Resistance. Clinical Lung Cancer, 2016, 17, 466-469.	2.6	16
57	RAS-MAPK signaling influences the efficacy of ALK-targeting agents in lung cancer. Molecular and Cellular Oncology, 2016, 3, e1091061.	0.7	7
58	A framework for understanding and targeting residual disease in oncogene-driven solid cancers. Nature Medicine, 2016, 22, 472-478.	30.7	145
59	Combined chemical–genetic approach identifies cytosolic HSP70 dependence in rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9015-9020.	7.1	33
60	Preclinical efficacy of a RAF inhibitor that evades paradoxical MAPK pathway activation in protein kinase <i>BRAF</i> -mutant lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13456-13461.	7.1	65
61	An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer. Cancer Letters, 2016, 380, 144-152.	7.2	26
62	The Hippo effector YAP regulates the response of cancer cells to MAPK pathway inhibitors. Molecular and Cellular Oncology, 2016, 3, e1021441.	0.7	29
63	RAS signaling in ALK fusion lung cancer. Small GTPases, 2016, 7, 32-33.	1.6	20
64	Tracking Down Response and Resistance to TRK Inhibitors. Cancer Discovery, 2016, 6, 14-16.	9.4	14
65	Transcriptomic-metabolomic reprogramming in EGFR-mutant NSCLC early adaptive drug escape linking TGFÎ ² 2-bioenergetics-mitochondrial priming. Oncotarget, 2016, 7, 82013-82027.	1.8	23
66	AXL receptor tyrosine kinase as a therapeutic target in NSCLC. Lung Cancer: Targets and Therapy, 2015, 6, 27.	2.7	18
67	AUY922 Effectively Overcomes MET- and AXL-Mediated Resistance to EGFR-TKI in Lung Cancer Cells. PLoS ONE, 2015, 10, e0119832.	2.5	28
68	RAS-MAPK in ALK targeted therapy resistance. Cell Cycle, 2015, 14, 3661-3662.	2.6	12
69	The Hippo effector YAP promotes resistance to RAF- and MEK-targeted cancer therapies. Nature Genetics, 2015, 47, 250-256.	21.4	434
70	Cell-Free DNA Next-Generation Sequencing in Pancreatobiliary Carcinomas. Cancer Discovery, 2015, 5, 1040-1048.	9.4	226
71	NF-κB-Activating Complex Engaged in Response to EGFR Oncogene Inhibition Drives Tumor Cell Survival and Residual Disease in Lung Cancer. Cell Reports, 2015, 11, 98-110.	6.4	178
72	AXL Mediates Resistance to PI3K \hat{l}_{\pm} Inhibition by Activating the EGFR/PKC/mTOR Axis in Head and Neck and Esophageal Squamous Cell Carcinomas. Cancer Cell, 2015, 27, 533-546.	16.8	263

#	Article	IF	CITATIONS
73	RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK–positive lung cancer. Nature Medicine, 2015, 21, 1038-1047.	30.7	245
74	Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E748-57.	7.1	90
75	Plasma mRNA expression levels of BRCA1 and TS as potential predictive biomarkers for chemotherapy in gastric cancer. Journal of Translational Medicine, 2014, 12, 355.	4.4	18
76	Recent advances in personalized lung cancer medicine. Personalized Medicine, 2014, 11, 309-321.	1.5	22
77	Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genetics, 2012, 44, 852-860.	21.4	1,049
78	FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature, 2011, 471, 523-526.	27.8	374
79	Ras signalling on the endoplasmic reticulum and the Golgi. Nature Cell Biology, 2002, 4, 343-350.	10.3	582