
George M Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3515076/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Viral dynamics in human immunodeficiency virus type 1 infection. Nature, 1995, 373, 117-122.	27.8	3,369
2	Antibody neutralization and escape by HIV-1. Nature, 2003, 422, 307-312.	27.8	2,233
3	Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7552-7557.	7.1	1,708
4	Antiviral pressure exerted by HIV-l-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nature Medicine, 1997, 3, 205-211.	30.7	1,138
5	Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nature Medicine, 1998, 4, 1302-1307.	30.7	985
6	Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus. Nature, 2013, 496, 469-476.	27.8	961
7	Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell, 1986, 45, 637-648.	28.9	827
8	Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. Journal of Experimental Medicine, 2009, 206, 1273-1289.	8.5	684
9	Major expansion of CD8+ T cells with a predominant Vβ usage during the primary immune response to HIV. Nature, 1994, 370, 463-467.	27.8	630
10	The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. Journal of Experimental Medicine, 2009, 206, 1253-1272.	8.5	562
11	Deciphering Human Immunodeficiency Virus Type 1 Transmission and Early Envelope Diversification by Single-Genome Amplification and Sequencing. Journal of Virology, 2008, 82, 3952-3970.	3.4	540
12	Human infection by genetically diverse SIVSM-related HIV-2 in West Africa. Nature, 1992, 358, 495-499.	27.8	486
13	Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors. Journal of Virology, 2011, 85, 9998-10009.	3.4	393
14	Phenotypic properties of transmitted founder HIV-1. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6626-6633.	7.1	379
15	Maturation Pathway from Germline to Broad HIV-1 Neutralizer of a CD4-Mimic Antibody. Cell, 2016, 165, 449-463.	28.9	305
16	Inflammatory Genital Infections Mitigate a Severe Genetic Bottleneck in Heterosexual Transmission of Subtype A and C HIV-1. PLoS Pathogens, 2009, 5, e1000274.	4.7	298
17	Antigenic conservation and immunogenicity of the HIV coreceptor binding site. Journal of Experimental Medicine, 2005, 201, 1407-1419.	8.5	296
18	Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1. Journal of Experimental Medicine, 2009, 206, 1117-1134.	8.5	295

#	Article	IF	CITATIONS
19	Cooperation of B Cell Lineages in Induction of HIV-1-Broadly Neutralizing Antibodies. Cell, 2014, 158, 481-491.	28.9	266
20	High Multiplicity Infection by HIV-1 in Men Who Have Sex with Men. PLoS Pathogens, 2010, 6, e1000890.	4.7	263
21	HIV Transmission. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006965-a006965.	6.2	257
22	Staged induction of HIV-1 glycan–dependent broadly neutralizing antibodies. Science Translational Medicine, 2017, 9, .	12.4	212
23	An HIV-1 gp120 Envelope Human Monoclonal Antibody That Recognizes a C1 Conformational Epitope Mediates Potent Antibody-Dependent Cellular Cytotoxicity (ADCC) Activity and Defines a Common ADCC Epitope in Human HIV-1 Serum. Journal of Virology, 2011, 85, 7029-7036.	3.4	210
24	Wide Variation in the Multiplicity of HIV-1 Infection among Injection Drug Users. Journal of Virology, 2010, 84, 6241-6247.	3.4	189
25	Relative resistance of HIV-1 founder viruses to control by interferon-alpha. Retrovirology, 2013, 10, 146.	2.0	183
26	Envelope residue 375 substitutions in simian–human immunodeficiency viruses enhance CD4 binding and replication in rhesus macaques. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3413-22.	7.1	170
27	African origin of the malaria parasite Plasmodium vivax. Nature Communications, 2014, 5, 3346.	12.8	167
28	Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. Journal of Clinical Investigation, 2013, 123, 380-93.	8.2	165
29	Modeling sequence evolution in acute HIV-1 infection. Journal of Theoretical Biology, 2009, 261, 341-360.	1.7	162
30	HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC. PLoS Pathogens, 2009, 5, e1000414.	4.7	161
31	Early Low-Titer Neutralizing Antibodies Impede HIV-1 Replication and Select for Virus Escape. PLoS Pathogens, 2012, 8, e1002721.	4.7	159
32	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
33	Human Non-neutralizing HIV-1 Envelope Monoclonal Antibodies Limit the Number of Founder Viruses during SHIV Mucosal Infection in Rhesus Macaques. PLoS Pathogens, 2015, 11, e1005042.	4.7	145
34	HIV-Host Interactions: Implications for Vaccine Design. Cell Host and Microbe, 2016, 19, 292-303.	11.0	143
35	Quantifying the Diversification of Hepatitis C Virus (HCV) during Primary Infection: Estimates of the In Vivo Mutation Rate. PLoS Pathogens, 2012, 8, e1002881.	4.7	139
36	Resistance to type 1 interferons is a major determinant of HIV-1 transmission fitness. Proceedings of the United States of America, 2017, 114, E590-E599.	7.1	137

#	Article	IF	CITATIONS
37	Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight, 2017, 2, .	5.0	129
38	HIV-1 Vpu Mediates HLA-C Downregulation. Cell Host and Microbe, 2016, 19, 686-695.	11.0	127
39	T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nature Medicine, 2020, 26, 932-940.	30.7	124
40	Genomes of cryptic chimpanzee Plasmodium species reveal key evolutionary events leading to human malaria. Nature Communications, 2016, 7, 11078.	12.8	122
41	Low-Dose Mucosal Simian Immunodeficiency Virus Infection Restricts Early Replication Kinetics and Transmitted Virus Variants in Rhesus Monkeys. Journal of Virology, 2010, 84, 10406-10412.	3.4	120
42	Completeness of HIV-1 Envelope Glycan Shield at Transmission Determines Neutralization Breadth. Cell Reports, 2018, 25, 893-908.e7.	6.4	91
43	A Meta-analysis of Passive Immunization Studies Shows that Serum-Neutralizing Antibody Titer Associates with Protection against SHIV Challenge. Cell Host and Microbe, 2019, 26, 336-346.e3.	11.0	88
44	Antigenicity and Immunogenicity of Transmitted/Founder, Consensus, and Chronic Envelope Glycoproteins of Human Immunodeficiency Virus Type 1. Journal of Virology, 2013, 87, 4185-4201.	3.4	83
45	Tracking HIV-1 recombination to resolve its contribution to HIV-1 evolution in natural infection. Nature Communications, 2018, 9, 1928.	12.8	83
46	Evidence of Two Distinct Subsubtypes within the HIV-1 Subtype A Radiation. AIDS Research and Human Retroviruses, 2001, 17, 675-688.	1.1	82
47	Broadly Neutralizing Antibody Mediated Clearance of Human Hepatitis C Virus Infection. Cell Host and Microbe, 2018, 24, 717-730.e5.	11.0	78
48	Elucidation of Hepatitis C Virus Transmission and Early Diversification by Single Genome Sequencing. PLoS Pathogens, 2012, 8, e1002880.	4.7	74
49	Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly Reactive HIV-1 V3-Specific Antibodies in Human Plasma. Journal of Virology, 2009, 83, 1240-1259.	3.4	67
50	Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4 + T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity. EBioMedicine, 2016, 3, 122-134.	6.1	67
51	Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.	11.0	66
52	Rare HIV-1 transmitted/founder lineages identified by deep viral sequencing contribute to rapid shifts in dominant quasispecies during acute and early infection. PLoS Pathogens, 2017, 13, e1006510.	4.7	63
53	Molecular identification, cloning and characterization of transmitted/founder HIV-1 subtype A, D and A/D infectious molecular clones. Virology, 2013, 436, 33-48.	2.4	58
54	Fab-dimerized glycan-reactive antibodies are a structural category of natural antibodies. Cell, 2021, 184, 2955-2972.e25.	28.9	57

#	Article	IF	CITATIONS
55	Cytotoxic T-lymphocyte escape viral variants: how important are they in viral evasion of immune clearance in vivo?. Immunological Reviews, 1998, 164, 37-51.	6.0	55
56	Heightened resistance to host type 1 interferons characterizes HIV-1 at transmission and after antiretroviral therapy interruption. Science Translational Medicine, 2021, 13, .	12.4	54
57	Influence of the Envelope gp120 Phe 43 Cavity on HIV-1 Sensitivity to Antibody-Dependent Cell-Mediated Cytotoxicity Responses. Journal of Virology, 2017, 91, .	3.4	52
58	Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathogens, 2016, 12, e1005537.	4.7	51
59	Recapitulation of HIV-1 Env-antibody coevolution in macaques leading to neutralization breadth. Science, 2021, 371, .	12.6	49
60	Contribution of proteasome-catalyzed peptide <i>cis</i> -splicing to viral targeting by CD8 ⁺ T cells in HIV-1 infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24748-24759.	7.1	48
61	Selection of Unadapted, Pathogenic SHIVs Encoding Newly Transmitted HIV-1 Envelope Proteins. Cell Host and Microbe, 2014, 16, 412-418.	11.0	47
62	Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine, 2016, 14, 97-111.	6.1	47
63	Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nature Communications, 2017, 8, 1635.	12.8	45
64	Transmitted Virus Fitness and Host T Cell Responses Collectively Define Divergent Infection Outcomes in Two HIV-1 Recipients. PLoS Pathogens, 2015, 11, e1004565.	4.7	44
65	Co-immunization of DNA and Protein in the Same Anatomical Sites Induces Superior Protective Immune Responses against SHIV Challenge. Cell Reports, 2020, 31, 107624.	6.4	43
66	Multigenomic Delineation of <i>Plasmodium</i> Species of the <i>Laverania</i> Subgenus Infecting Wild-Living Chimpanzees and Gorillas. Genome Biology and Evolution, 2016, 8, 1929-1939.	2.5	38
67	Pathogen-Associated Molecular Pattern Recognition of Hepatitis C Virus Transmitted/Founder Variants by RIG-I Is Dependent on U-Core Length. Journal of Virology, 2015, 89, 11056-11068.	3.4	30
68	SMAC Mimetic Plus Triple-Combination Bispecific HIVxCD3 Retargeting Molecules in SHIV.C.CH505-Infected, Antiretroviral Therapy-Suppressed Rhesus Macaques. Journal of Virology, 2020, 94, .	3.4	30
69	Simian-Human Immunodeficiency Virus SHIV.CH505 Infection of Rhesus Macaques Results in Persistent Viral Replication and Induces Intestinal Immunopathology. Journal of Virology, 2019, 93, .	3.4	27
70	Longitudinal Antigenic Sequences and Sites from Intra-Host Evolution (LASSIE) Identifies Immune-Selected HIV Variants. Viruses, 2015, 7, 5443-5475.	3.3	26
71	Neutralization Properties of Simian Immunodeficiency Viruses Infecting Chimpanzees and Gorillas. MBio, 2015, 6, .	4.1	25
72	Infection of monkeys by simian-human immunodeficiency viruses with transmitted/founder clade C HIV-1 envelopes. Virology, 2015, 475, 37-45.	2.4	25

#	Article	IF	CITATIONS
73	Collapse of Cytolytic Potential in SIV-Specific CD8+ T Cells Following Acute SIV Infection in Rhesus Macaques. PLoS Pathogens, 2016, 12, e1006135.	4.7	24
74	The C3/465 glycan hole cluster in BC505 HIV-1 envelope is the major neutralizing target involved in preventing mucosal SHIV infection. PLoS Pathogens, 2021, 17, e1009257.	4.7	23
75	Simian-Human Immunodeficiency Virus SHIV.C.CH505 Persistence in ART-Suppressed Infant Macaques Is Characterized by Elevated SHIV RNA in the Gut and a High Abundance of Intact SHIV DNA in Naive CD4 ⁺ T Cells. Journal of Virology, 2020, 95, .	3.4	23
76	CD4 receptor diversity in chimpanzees protects against SIV infection. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3229-3238.	7.1	21
77	New SHIVs and Improved Design Strategy for Modeling HIV-1 Transmission, Immunopathogenesis, Prevention, and Cure. Journal of Virology, 2021, 95, .	3.4	21
78	Rational design and in vivo selection of SHIVs encoding transmitted/founder subtype C HIV-1 envelopes. PLoS Pathogens, 2019, 15, e1007632.	4.7	20
79	Low Multiplicity of HIV-1 Infection and No Vaccine Enhancement in VAX003 Injection Drug Users. Open Forum Infectious Diseases, 2014, 1, ofu056.	0.9	19
80	Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection. Journal of Virology, 2016, 90, 8435-8453.	3.4	19
81	Potent anti-viral activity of a trispecific HIV neutralizing antibody in SHIV-infected monkeys. Cell Reports, 2022, 38, 110199.	6.4	19
82	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	4.7	18
83	Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers. PLoS Pathogens, 2016, 12, e1005879.	4.7	18
84	Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification. Journal of Virology, 2016, 90, 152-166.	3.4	17
85	Superinfection and cure of infected cells as mechanisms for hepatitis C virus adaptation and persistence. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7139-E7148.	7.1	16
86	Identification, Molecular Cloning, and Analysis of Full-Length Hepatitis C Virus Transmitted/Founder Genotypes 1, 3, and 4. MBio, 2015, 6, e02518.	4.1	15
87	Simian-Human Immunodeficiency Virus SHIV.CH505-Infected Infant and Adult Rhesus Macaques Exhibit Similar Env-Specific Antibody Kinetics, despite Distinct T-Follicular Helper and Germinal Center B Cell Landscapes. Journal of Virology, 2019, 93, .	3.4	15
88	Molecular Characterization of a Highly Divergent HIV Type 1 Isolate Obtained Early in the AIDS Epidemic from the Democratic Republic of Congo. AIDS Research and Human Retroviruses, 2001, 17, 1217-1222.	1.1	14
89	Transmitted/Founder Hepatitis C Viruses Induce Cell-Type- and Genotype-Specific Differences in Innate Signaling within the Liver. MBio, 2015, 6, e02510.	4.1	14
90	Analytical Treatment Interruption after Short-Term Antiretroviral Therapy in a Postnatally Simian-Human Immunodeficiency Virus-Infected Infant Rhesus Macaque Model. MBio, 2019, 10, .	4.1	14

6

#	Article	IF	CITATIONS
91	Effective treatment of SIVcpz-induced immunodeficiency in a captive western chimpanzee. Retrovirology, 2017, 14, 35.	2.0	12
92	CD4 receptor diversity represents an ancient protection mechanism against primate lentiviruses. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
93	Zoonotic origin of the human malaria parasite Plasmodium malariae from African apes. Nature Communications, 2022, 13, 1868.	12.8	9
94	Immune Responses and Viral Persistence in Simian/Human Immunodeficiency Virus SHIV.C.CH848-Infected Rhesus Macaques. Journal of Virology, 2021, 95, .	3.4	8
95	High multiplicity of infection following transplantation of hepatitis C virus–positive organs. Journal of Clinical Investigation, 2019, 129, 3134-3139.	8.2	7
96	Assessing routes of hepatitis C transmission in HIV-infected men who have sex with men using single genome sequencing. PLoS ONE, 2020, 15, e0235237.	2.5	6
97	Estimating the Timing of Early Simian-Human Immunodeficiency Virus Infections: a Comparison between Poisson Fitter and BEAST. MBio, 2020, 11, .	4.1	6
98	Enhanced Ability of Plant-Derived PGT121 Glycovariants To Eliminate HIV-1-Infected Cells. Journal of Virology, 2021, 95, e0079621.	3.4	6
99	Dynamics and origin of rebound viremia in SHIV-infected infant macaques following interruption of long-term ART. JCI Insight, 2021, 6, .	5.0	6
100	Differential Outcomes following Optimization of Simian-Human Immunodeficiency Viruses from Clades AE, B, and C. Journal of Virology, 2020, 94, .	3.4	5
101	Repeated exposure to heterologous hepatitis C viruses associates with enhanced neutralizing antibody breadth and potency. Journal of Clinical Investigation, 2022, 132, .	8.2	5
102	Molecular Identification of Transmitted/Founder Hepatitis C Viruses and Their Progeny by Single Genome Sequencing. Methods in Molecular Biology, 2019, 1911, 139-155.	0.9	4
103	Cryptic Multiple HIV-1 Infection Revealed by Early, Frequent, and Deep Sampling during Acute Infection. AIDS Research and Human Retroviruses, 2014, 30, A58-A58.	1.1	2