
Thomas Braulke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3514264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sorting of lysosomal proteins. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 605-614.	4.1	676
2	Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5. Cell Metabolism, 2014, 19, 605-617.	16.2	647
3	Neuronal ceroid lipofuscinoses. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 697-709.	4.1	288
4	Mucolipidosis II is caused by mutations in GNPTA encoding the $\hat{1}\pm/\hat{1}^2$ GlcNAc-1-phosphotransferase. Nature Medicine, 2005, 11, 1109-1112.	30.7	187
5	A Key Enzyme in the Biogenesis of Lysosomes Is a Protease That Regulates Cholesterol Metabolism. Science, 2011, 333, 87-90.	12.6	144
6	Protein Kinase A Dependent Phosphorylation of Apical Membrane Antigen 1 Plays an Important Role in Erythrocyte Invasion by the Malaria Parasite. PLoS Pathogens, 2010, 6, e1000941.	4.7	124
7	Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1866-1881.	3.8	117
8	A New Type of Congenital Disorders of Glycosylation (CDG-Ii) Provides New Insights into the Early Steps of Dolichol-linked Oligosaccharide Biosynthesis. Journal of Biological Chemistry, 2003, 278, 22498-22505.	3.4	110
9	In Vivo Evidence for Lysosome Depletion and Impaired Autophagic Clearance in Hereditary Spastic Paraplegia Type SPG11. PLoS Genetics, 2015, 11, e1005454.	3.5	109
10	Scoring Evaluation of the Natural Course of Mucopolysaccharidosis Type IIIA (Sanfilippo Syndrome) Tj ETQq0 0 () rgBT /Ov 2.1	erlock 10 Tf 5 101
11	Mannose 6-Phosphate/Insulin-like Growth Factor II Receptor Fails to Interact with G-proteins. Journal of Biological Chemistry, 1995, 270, 287-295.	3.4	97
12	Mannose 6-phosphate/insulin-like growth factor II receptor: Distinct binding sites for mannose 6-phosphate and insulin-like growth factor II. Biochemical and Biophysical Research Communications, 1988, 150, 1287-1293.	2.1	96
13	Mannose phosphorylation in health and disease. European Journal of Cell Biology, 2010, 89, 117-123.	3.6	96
14	Proteolysis of Insulin-Like Growth Factors (IGF) and IGF Binding Proteins by Cathepsin D ¹ . Endocrinology, 1997, 138, 3797-3803.	2.8	88
15	Defective Endoplasmic Reticulum-resident Membrane Protein CLN6 Affects Lysosomal Degradation of Endocytosed Arylsulfatase A. Journal of Biological Chemistry, 2004, 279, 22347-22352.	3.4	88
16	Mannose 6-phosphate/insulin like growth factor II receptor: The two types of ligands bind simultaneously to one receptor at different sites. Biochemical and Biophysical Research Communications, 1988, 152, 1248-1254.	2.1	82
17	A Hereditary Spastic Paraplegia Mouse Model Supports a Role of ZFYVE26/SPASTIZIN for the Endolysosomal System. PLoS Genetics, 2013, 9, e1003988.	3.5	82
18	46-kDa Mannose 6-phosphate-Specific Receptor: Biosynthesis, Processing, Subcellular Location and	1.4	81

46-kDa Mannose 6-phosphate-Specific Receptor: Biosynthesis, Processing, Subcellular Location and Topology. Biological Chemistry Hoppe-Seyler, 1987, 368, 937-948. 18

#	Article	IF	CITATIONS
19	Functional biology of the neuronal ceroid lipofuscinoses (NCL) proteins. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 920-933.	3.8	79
20	Localization of the Insulin-like Growth Factor II Binding Site to Amino Acids 1508–1566 in Repeat 11 of the Mannose 6-Phosphate/Insulin-like Growth Factor II Receptor. Journal of Biological Chemistry, 1995, 270, 14975-14982.	3.4	76
21	Glutaric Aciduria Type 1 Metabolites Impair the Succinate Transport from Astrocytic to Neuronal Cells. Journal of Biological Chemistry, 2011, 286, 17777-17784.	3.4	70
22	Specific Mannose-6-Phosphate Receptor-Independent Sorting of Pro-Cathepsin D in Breast Cancer Cells. Experimental Cell Research, 1994, 215, 154-163.	2.6	66
23	Influenza binds phosphorylated glycans from human lung. Science Advances, 2019, 5, eaav2554.	10.3	64
24	Molecular order in mucolipidosis II and III nomenclature. American Journal of Medical Genetics, Part A, 2008, 146A, 512-513.	1.2	62
25	Characterization of the IGF axis components in isolated rat hepatic stellate cells. Hepatology, 1998, 27, 1275-1284.	7.3	61
26	Disruption of the Autophagy-Lysosome Pathway Is Involved in Neuropathology of the nclf Mouse Model of Neuronal Ceroid Lipofuscinosis. PLoS ONE, 2012, 7, e35493.	2.5	60
27	Missense mutation in theN-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG. Human Mutation, 2006, 27, 830-831.	2.5	58
28	A Dileucine Motif and a Cluster of Acidic Amino Acids in the Second Cytoplasmic Domain of the Batten Disease-related CLN3 Protein Are Required for Efficient Lysosomal Targeting. Journal of Biological Chemistry, 2004, 279, 53625-53634.	3.4	55
29	Lrp1/ <scp>LDL</scp> Receptor Play Critical Roles in Mannose 6â€Phosphateâ€Independent Lysosomal Enzyme Targeting. Traffic, 2015, 16, 743-759.	2.7	52
30	Analysis of Potential Biomarkers and Modifier Genes Affecting the Clinical Course of CLN3 Disease. Molecular Medicine, 2011, 17, 1253-1261.	4.4	50
31	Retention of lysosomal protein CLN5 in the endoplasmic reticulum causes neuronal ceroid lipofuscinosis in Asian Sibship. Human Mutation, 2009, 30, E651-E661.	2.5	48
32	Lysoplex: An efficient toolkit to detect DNA sequence variations in the autophagy-lysosomal pathway. Autophagy, 2015, 11, 928-938.	9.1	47
33	Accumulation of bis(monoacylglycero)phosphate and gangliosides in mouse models of neuronal ceroid lipofuscinosis. Journal of Neurochemistry, 2008, 106, 1415-1425.	3.9	46
34	Partial IGF Affinity of Circulating N- and C-Terminal Fragments of Human Insulin-like Growth Factor Binding Protein-4 (IGFBP-4) and the Disulfide Bonding Pattern of the C-Terminal IGFBP-4 Domain. Biochemistry, 2000, 39, 5082-5088.	2.5	44
35	Missense mutations inN-acetylglucosamine-1-phosphotransferase α/β subunit gene in a patient with mucolipidosis III and a mild clinical phenotype. American Journal of Medical Genetics, Part A, 2005, 137A, 235-240.	1.2	44
36	Topology and endoplasmic reticulum retention signals of the lysosomal storage disease-related membrane protein CLN6. Molecular Membrane Biology, 2007, 24, 74-87.	2.0	44

#	Article	IF	CITATIONS
37	Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. Journal of Biological Chemistry, 2019, 294, 9592-9604.	3.4	44
38	Occurrence of tyrosine sulfate in proteins - a balance sheet. 1. Secretory and lysosomal proteins. FEBS Journal, 1990, 188, 577-586.	0.2	43
39	Lysosomal Targeting of the CLN7 Membrane Glycoprotein and Transport Via the Plasma Membrane Require a Dileucine Motif. Traffic, 2010, 11, 987-1000.	2.7	43
40	Mannose 6 Dephosphorylation of Lysosomal Proteins Mediated by Acid Phosphatases Acp2 and Acp5. Molecular and Cellular Biology, 2012, 32, 774-782.	2.3	43
41	Disease-Linked Glutarylation Impairs Function and Interactions of Mitochondrial Proteins and Contributes to Mitochondrial Heterogeneity. Cell Reports, 2018, 24, 2946-2956.	6.4	42
42	Proteolysis of Insulin-Like Growth Factor Binding Proteins by a Novel 50-Kilodalton Metalloproteinase in Human Pregnancy Serum ¹ . Endocrinology, 1998, 139, 1556-1563.	2.8	41
43	The Mutation p.Ser298Pro in the sulphamidase gene (SGSH) is associated with a slowly progressive clinical phenotype in mucopolysaccharidosis type IIIA (Sanfilippo A Syndrome). Human Mutation, 2008, 29, 770-770.	2.5	39
44	A novel mutation in UDP-N-acetylglucosamine-1-phosphotransferase gamma subunit (GNPTAG) in two siblings with mucolipidosis type III alters a used glycosylation site. Human Mutation, 2004, 24, 535-535.	2.5	38
45	Mutation of the glycosylated asparagine residue 286 in human CLN2 protein results in loss of enzymatic activity. Glycobiology, 2004, 14, 1C-5C.	2.5	36
46	The 5-phosphatase OCRL mediates retrograde transport of the mannose 6-phosphate receptor by regulating a Rac1-cofilin signalling module. Human Molecular Genetics, 2012, 21, 5019-5038.	2.9	36
47	Mass Spectrometric Analysis of Neutral and Anionic N-Glycans from a <i>Dictyostelium discoideum</i> Model for Human Congenital Disorder of Glycosylation CDG IL. Journal of Proteome Research, 2013, 12, 1173-1187.	3.7	36
48	Decreased bone formation and increased osteoclastogenesis cause bone loss in mucolipidosis II. EMBO Molecular Medicine, 2013, 5, 1871-1886.	6.9	36
49	Secretion of phosphomannosyl-deficient arylsulphatase A and cathepsin D from isolated human macrophages. Biochemical Journal, 2002, 368, 845-853.	3.7	35
50	C-Terminal Prenylation of the CLN3 Membrane Glycoprotein Is Required for Efficient Endosomal Sorting to Lysosomes. Traffic, 2007, 8, 431-444.	2.7	35
51	Organic anion transporters OAT1 and OAT4 mediate the high affinity transport of glutarate derivatives accumulating in patients with glutaric acidurias. Pflugers Archiv European Journal of Physiology, 2008, 457, 223-231.	2.8	35
52	3-Hydroxyglutaric acid is transported via the sodium-dependent dicarboxylate transporter NaDC3. Journal of Molecular Medicine, 2007, 85, 763-770.	3.9	33
53	Glycosylation- and phosphorylation-dependent intracellular transport of lysosomal hydrolases. Biological Chemistry, 2009, 390, 521-527.	2.5	33
54	A Novel Single-Chain Antibody Fragment for Detection of Mannose 6-Phosphate-Containing Proteins. American Journal of Pathology, 2010, 177, 240-247.	3.8	33

#	Article	IF	CITATIONS
55	Disease-causing missense mutations affect enzymatic activity, stability and oligomerization of glutaryl-CoA dehydrogenase (GCDH). Human Molecular Genetics, 2008, 17, 3854-3863.	2.9	32
56	Regulation of mannose 6-phosphate/insulin-like growth factor II receptor distribution by activators and inhibitors of protein kinase C. FEBS Journal, 1990, 189, 609-616.	0.2	31
57	Insulin-Like Growth Factor (IGF)-Binding Protein-1 Is Highly Induced during Acute Carbon Tetrachloride Liver Injury and Potentiates the IGF-I-Stimulated Activation of Rat Hepatic Stellate Cells. Endocrinology, 2004, 145, 3463-3472.	2.8	31
58	Endothelial Effects of 3-Hydroxyglutaric Acid: Implications for Glutaric Aciduria Type I. Pediatric Research, 2006, 59, 196-202.	2.3	31
59	Enhanced expression of manganese-dependent superoxide dismutase in human and sheep CLN6 tissues. Biochemical Journal, 2003, 376, 369-376.	3.7	30
60	Increased expression of lysosomal acid phosphatase in CLN3-defective cells and mouse brain tissue. Journal of Neurochemistry, 2007, 103, 2177-2188.	3.9	30
61	Quantitative Proteome Analysis of Mouse Liver Lysosomes Provides Evidence for Mannose 6-phosphate-independent Targeting Mechanisms of Acid Hydrolases in Mucolipidosis II. Molecular and Cellular Proteomics, 2017, 16, 438-450.	3.8	30
62	Transport and distribution of 3-hydroxyglutaric acid before and during induced encephalopathic crises in a mouse model of glutaric aciduria type 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2008, 1782, 385-390.	3.8	29
63	Decreased intracellular degradation of insulin-like growth factor binding protein-3 in cathepsin L-deficient fibroblasts. FEBS Letters, 2002, 510, 211-215.	2.8	28
64	Repurposing of tamoxifen ameliorates CLN3 and CLN7 disease phenotype. EMBO Molecular Medicine, 2021, 13, e13742.	6.9	28
65	Proteolysis of Insulin-Like Growth Factors (IGF) and IGF Binding Proteins by Cathepsin D. Endocrinology, 1997, 138, 3797-3803.	2.8	28
66	Cellular localization and hormonal regulation of biosynthesis of insulin-like growth factor binding proteins and of the acid-labile subunit within rat liver. Progress in Growth Factor Research, 1995, 6, 175-180.	1.6	27
67	Transferrin binds insulin-like growth factors and affects binding properties of insulin-like growth factor binding protein-3. FEBS Letters, 2001, 509, 395-398.	2.8	27
68	Transport, enzymatic activity, and stability of mutant sulfamidase (SGSH) identified in patients with mucopolysaccharidosis type III A. Human Mutation, 2004, 23, 559-566.	2.5	26
69	Diversity of Human Insulin-like Growth Factor (IGF) Binding Protein-2 Fragments in Plasma:Â Primary Structure, IGF-Binding Properties, and Disulfide Bonding Patternâ€. Biochemistry, 2005, 44, 3644-3652.	2.5	26
70	The Lysosomal Protein Arylsulfatase B Is a Key Enzyme Involved in Skeletal Turnover. Journal of Bone and Mineral Research, 2018, 33, 2186-2201.	2.8	26
71	Sulfated oligosaccharides in human lysosomal enzymes. Biochemical and Biophysical Research Communications, 1987, 143, 178-185.	2.1	25
72	Compensatory expression of human N-Acetylglucosaminyl-1-phosphotransferase subunits in mucolipidosis type III gamma. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 221-225.	3.8	25

#	Article	IF	CITATIONS
73	Apoptotic Photoreceptor Loss and Altered Expression of Lysosomal Proteins in the <i>nclf</i> Mouse Model of Neuronal Ceroid Lipofuscinosis. , 2013, 54, 6952.		25
74	Transport of the GlcNAc-1-phosphotransferase α/β-Subunit Precursor Protein to the Golgi Apparatus Requires a Combinatorial Sorting Motif. Journal of Biological Chemistry, 2013, 288, 1238-1249.	3.4	25
75	Analyses of disease-related GNPTAB mutations define a novel GlcNAc-1-phosphotransferase interaction domain and an alternative site-1 protease cleavage site. Human Molecular Genetics, 2015, 24, 3497-3505.	2.9	25
76	A replacement of the active-site aspartic acid residue 293 in mouse cathepsin D affects its intracellular stability, processing and transport in HEK-293 cells. Biochemical Journal, 2003, 369, 55-62.	3.7	24
77	Loss of <i>N</i> â€acetylglucosamineâ€1â€phosphotransferase gamma subunit due to intronic mutation in <i>GNPTG</i> causes mucolipidosis type III gamma: Implications for molecular and cellular diagnostics. American Journal of Medical Genetics, Part A, 2010, 152A, 124-132.	1.2	24
78	Lysosomal Proteome and Secretome Analysis Identifies Missorted Enzymes and Their Nondegraded Substrates in Mucolipidosis III Mouse Cells. Molecular and Cellular Proteomics, 2018, 17, 1612-1626.	3.8	24
79	Multiple C-terminal Motifs of the 46-kDa Mannose 6-Phosphate Receptor Tail Contribute to Efficient Binding of Medium Chains of AP-2 and AP-3. Journal of Biological Chemistry, 2001, 276, 4298-4303.	3.4	23
80	Mannose 6â€phosphateâ€independent Lysosomal Sorting of <scp>LIMP</scp> â€2. Traffic, 2015, 16, 1127-1136.	2.7	23
81	Mannose 6 phosphorylation of lysosomal enzymes controls B cell functions. Journal of Cell Biology, 2015, 208, 171-180.	5.2	23
82	Regulation of the components of the 150 kDa IGF binding protein complex in cocultures of rat hepatocytes and Kupffer Cells by 3?,5?-cyclic adenosine monophosphate. Journal of Cellular Physiology, 2001, 186, 425-436.	4.1	22
83	Site-specific analysis of N-linked oligosaccharides of recombinant lysosomal arylsulfatase A produced in different cell lines. Glycobiology, 2010, 20, 248-259.	2.5	22
84	Proteolysis of IGFBPs by cathepsin D in vitro and in cathepsin D-deficient mice. Progress in Growth Factor Research, 1995, 6, 265-271.	1.6	21
85	Mutational analysis in longest known survivor of mucopolysaccharidosis typeÂVII. Human Genetics, 2003, 112, 190-194.	3.8	21
86	Mucolipidosis II-Related Mutations Inhibit the Exit from the Endoplasmic Reticulum and Proteolytic Cleavage of GlcNAc-1-Phosphotransferase Precursor Protein (<i>GNPTAB</i>). Human Mutation, 2014, 35, 368-376.	2.5	21
87	Subunit interactions of the disease-related hexameric GlcNAc-1-phosphotransferase complex. Human Molecular Genetics, 2015, 24, 6826-6835.	2.9	21
88	Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1463-1472.	3.8	20
89	Interaction of Glutaric Aciduria Type 1-Related glutaryl-CoA Dehydrogenase with Mitochondrial Matrix Proteins. PLoS ONE, 2014, 9, e87715.	2.5	20
90	Molecular Characterization of Arylsulfatase G. Journal of Biological Chemistry, 2014, 289, 27992-28005.	3.4	20

#	Article	IF	CITATIONS
91	Impaired bone remodeling and its correction by combination therapy in a mouse model of mucopolysaccharidosis-I. Human Molecular Genetics, 2015, 24, ddv407.	2.9	20
92	SILAC-Based Comparative Proteomic Analysis of Lysosomes from Mammalian Cells Using LC-MS/MS. Methods in Molecular Biology, 2017, 1594, 1-18.	0.9	20
93	Isolation and characterization of circulating fragments of the insulin-like growth factor binding protein-3. FEBS Letters, 2002, 518, 124-128.	2.8	19
94	Origin of Lysosomal Proteins. Sub-Cellular Biochemistry, 1996, 27, 15-49.	2.4	19
95	N-Glycans and Glycosylphosphatidylinositol-Anchor Act on Polarized Sorting of Mouse PrPC in Madin-Darby Canine Kidney Cells. PLoS ONE, 2011, 6, e24624.	2.5	19
96	Sustained Neural Stem Cell-Based Intraocular Delivery of CNTF Attenuates Photoreceptor Loss in the nclf Mouse Model of Neuronal Ceroid Lipofuscinosis. PLoS ONE, 2015, 10, e0127204.	2.5	19
97	Biosynthesis and endocytosis of lysosomal enzymes in human colon carcinoma SW 1116 cells: Impaired internalization of plasma membrane-associated cation-independent mannose 6-phosphate receptor. Archives of Biochemistry and Biophysics, 1992, 298, 176-181.	3.0	18
98	Does the Overexpression of Pro-Insulin-Like Growth Factor-II in Transfected Human Embryonic Kidney Fibroblasts Increase the Secretion of Lysosomal Enzymes?. FEBS Journal, 1995, 232, 172-178.	0.2	18
99	Effect of insulin-like growth factor II on uptake of arylsulfatase A by cultured rat hepatocytes and Kupffer cells. Journal of Hepatology, 1995, 22, 356-363.	3.7	18
100	Alteration of the insulin-like growth factor axis during in vitro differentiation of the human osteosarcoma cell line HOS 58. Journal of Cellular Biochemistry, 2007, 102, 28-40.	2.6	18
101	Pathogenic mutations cause rapid degradation of lysosomal storage disease-related membrane protein CLN6. Human Mutation, 2010, 31, E1163-E1174.	2.5	18
102	Site-1 protease and lysosomal homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2162-2168.	4.1	18
103	Association of the precursor of cathepsin D with coated membranes. Kinetics and carbohydrate processing. FEBS Journal, 1987, 168, 37-42.	0.2	17
104	Interaction of Insulin-like Growth Factor II (IGF-II) with Multiple Plasma Proteins. Journal of Biological Chemistry, 2005, 280, 9994-10000.	3.4	17
105	Effects of Differentiation-Inducing Agents on Synthesis, Maturation and Secretion of Cathepsin D in U937 and HL-60 Cells. Biological Chemistry Hoppe-Seyler, 1987, 368, 413-418.	1.4	16
106	Stabilization of Mutant 46-kDa Mannose 6-Phosphate Receptors by Proteasomal Inhibitor Lactacystin. Journal of Biological Chemistry, 1998, 273, 33254-33258.	3.4	16
107	Post-translational Modifications of the γ-Subunit Affect Intracellular Trafficking and Complex Assembly of GlcNAc-1-phosphotransferase. Journal of Biological Chemistry, 2011, 286, 5311-5318.	3.4	16
108	MDCK cells secrete neutral proteases cleaving insulin-like growth factor-binding protein-2 to -6. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E1221-E1229.	3.5	15

#	Article	IF	CITATIONS
109	Proteolytic Processing of the γ-Subunit Is Associated with the Failure to Form GlcNAc-1-phosphotransferase Complexes and Mannose 6-Phosphate Residues on Lysosomal Enzymes in Human Macrophages. Journal of Biological Chemistry, 2010, 285, 23936-23944.	3.4	15
110	Mannose 6-phosphate-dependent targeting of lysosomal enzymes is required for normal craniofacial and dental development. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1570-1580.	3.8	15
111	Insulin-like growth factor II overexpression does not affect sorting of lysosomal enzymes in NIH-3T3 cells. Biochemical and Biophysical Research Communications, 1991, 179, 108-115.	2.1	14
112	Disease-causing mutations affecting surface residues of mitochondrial glutaryl-CoA dehydrogenase impair stability, heteromeric complex formation and mitochondria architecture. Human Molecular Genetics, 2017, 26, ddw411.	2.9	14
113	Low Temperature Blocks Transport and Sorting of Cathepsin D in Fibroblasts. Biological Chemistry Hoppe-Seyler, 1988, 369, 441-450.	1.4	13
114	Transport of Lysosomal Enzymes. , 2005, , 17-26.		13
115	Residual activity and proteasomal degradation of p.Ser298Pro sulfamidase identified in patients with a mild clinical phenotype of Sanfilippo A syndrome. American Journal of Medical Genetics, Part A, 2011, 155, 1634-1639.	1.2	13
116	Mannose 6-phosphate receptor-dependent endocytosis of lysosomal enzymes is increased in sulfatide-storing kidney cells. Biological Chemistry, 2009, 390, 41-48.	2.5	12
117	Inhibition of IGF II-induced redistribution of mannose 6-phosphate receptors by the phosphatidylinositol 3-kinase inhibitor, wortmannin. Molecular and Cellular Endocrinology, 1996, 118, 201-205.	3.2	11
118	Mono-allelic expression of the IGF-I receptor does not affect IGF responses in human fibroblasts. European Journal of Endocrinology, 2004, 151, 521-529.	3.7	11
119	High expression of diseaseâ€related <i>Cln6</i> in the cerebral cortex, purkinje cells, dentate gyrus, and hippocampal ca1 neurons. Journal of Neuroscience Research, 2012, 90, 568-574.	2.9	11
120	Identification of the interaction domains between α―and γâ€subunits of Glc <scp>NA</scp> câ€1â€phosphotransferase. FEBS Letters, 2016, 590, 4287-4295.	2.8	11
121	GNPTAB missense mutations cause loss of GlcNAc-1-phosphotransferase activity in mucolipidosis type II through distinct mechanisms. International Journal of Biochemistry and Cell Biology, 2017, 92, 90-94.	2.8	11
122	Developmental Patterns of Galactosyltransferase Activity in Various Regions of Rat Brain. Journal of Neurochemistry, 1981, 36, 1289-1291.	3.9	9
123	Mutations Affecting Transport and Stability of Lysosomal Enzymes. Enzyme, 1987, 38, 144-153.	0.7	9
124	Mannose 6-phosphate specific receptors: structure and function. Biochemical Society Transactions, 1989, 17, 15-16.	3.4	9
125	Evaluation of butyrateâ€induced production of a mannoseâ€6â€phosphorylated therapeutic enzyme using parallel bioreactors. Biotechnology and Applied Biochemistry, 2014, 61, 184-192.	3.1	9
126	Mannose 6-phosphate/insulin-like growth factor II receptor and I-cell disease fibroblasts: increased synthesis and defective regulation of cell surface expression. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1992, 1138, 334-342.	3.8	8

#	Article	IF	CITATIONS
127	Single-chain antibody-fragment M6P-1 possesses a mannose 6-phosphate monosaccharide-specific binding pocket that distinguishes <i>N</i> -glycan phosphorylation in a branch-specific manner. Glycobiology, 2016, 26, 181-192.	2.5	8
128	Distinct Modes of Balancing Glomerular Cell Proteostasis in Mucolipidosis Type II and III Prevent Proteinuria. Journal of the American Society of Nephrology: JASN, 2020, 31, 1796-1814.	6.1	7
129	Brefeldin A affects the cellular distribution of endocytic receptors differentially. Biochemical and Biophysical Research Communications, 1992, 185, 719-727.	2.1	6
130	In vivo processed fragments of IGF binding protein-2 copurified with bioactive IGF-II. Biochemical and Biophysical Research Communications, 2003, 304, 708-713.	2.1	6
131	Site-1 protease-activated formation of lysosomal targeting motifs is independent of the lipogenic transcription control. Journal of Lipid Research, 2015, 56, 1625-1632.	4.2	6
132	Ultrastructural Analysis of Neuronal and Non-neuronal Lysosomal Storage in Mucolipidosis Type II Knock-in Mice. Ultrastructural Pathology, 2013, 37, 366-372.	0.9	5
133	IGF-binding protein-3 fragments in plasma of a child with acute renal failure. Pediatric Nephrology, 2004, 19, 1418-1425.	1.7	4
134	In vitro sulfation of N-acetyllactosaminide by soluble recombinant human β-Gal-3′-sulfotransferase. Carbohydrate Research, 2006, 341, 918-924.	2.3	4
135	Ligand blotting: iodinated vs biotinylated IGF. Growth Hormone and IGF Research, 2000, 10, 294.	1.1	3
136	Lysosomes. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 603-604.	4.1	3
137	Brain-Specific Interaction of a 91-kDa Membrane-Bound Protein with the Cytoplasmic Tail of the 300-kDa Mannose 6-Phosphate Receptor. Biochemical and Biophysical Research Communications, 1996, 221, 525-530.	2.1	2
138	Pathogenic variants in GNPTAB and GNPTG encoding distinct subunits of GlcNAc-1-phosphotransferase differentially impact bone resorption in patients with mucolipidosis type II and III. Genetics in Medicine, 2021, 23, 2369-2377.	2.4	2
139	DEFECTIVE PROCESSING OF LYSOSOMAL ENZYMES. Pediatric Research, 1986, 20, 1030-1030.	2.3	1
140	A Novel Mannose 6-phosphate Specific Antibody Fragment for Diagnosis of Mucolipidosis type II and III. , 2012, , 307-325.		1
141	Glycostructures in Biological Systems – Synthesis and Function. European Journal of Cell Biology, 2010. 89. 1.	3.6	0