Christie Cherian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3513815/publications.pdf

Version: 2024-02-01

623734 940533 3,442 16 14 16 citations g-index h-index papers 16 16 16 5599 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oilâ \in "water separation. Nature Communications, 2020, 11, 1097.	12.8	89
2	Electrically controlled water permeation through graphene oxide membranes. Nature, 2018, 559, 236-240.	27.8	263
3	Tunable sieving of ions using graphene oxide membranes. Nature Nanotechnology, 2017, 12, 546-550.	31.5	1,364
4	Ultrathin graphene-based membrane with preciseÂmolecular sieving and ultrafast solventÂpermeation. Nature Materials, 2017, 16, 1198-1202.	27.5	549
5	Dynamical spin injection at a quasi-one-dimensional ferromagnet-graphene interface. Applied Physics Letters, 2015, 106, .	3.3	12
6	â€~Bubble-Free' Electrochemical Delamination of CVD Graphene Films. Small, 2015, 11, 189-194.	10.0	85
7	Molten synthesis of ZnO.Fe3O4 and Fe2O3 and its electrochemical performance. Electrochimica Acta, 2014, 118, 75-80.	5.2	73
8	Ultrathin Hexagonal Hybrid Nanosheets Synthesized by Graphene Oxideâ€Assisted Exfoliation of βâ€Co(OH) ₂ Mesocrystals. Chemistry - A European Journal, 2014, 20, 12444-12452.	3.3	18
9	Interconnected Network of CoMoO ₄ Submicrometer Particles As High Capacity Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2013, 5, 918-923.	8.0	194
10	Facile synthesis and Li-storage performance of SnO nanoparticles and microcrystals. RSC Advances, 2013, 3, 3118.	3 . 6	23
11	Morphologically Robust NiFe < sub>2 < /sub>0 < sub>4 < /sub> Nanofibers as High Capacity Li-lon Battery Anode Material. ACS Applied Materials & amp; Interfaces, 2013, 5, 9957-9963.	8.0	278
12	Zn ₂ SnO ₄ Nanowires versus Nanoplates: Electrochemical Performance and Morphological Evolution during Li-Cycling. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6054-6060.	8.0	109
13	(N,F)-Co-doped TiO2: synthesis, anatase–rutile conversion and Li-cycling properties. CrystEngComm, 2012, 14, 978-986.	2.6	53
14	Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries. Journal of Materials Chemistry, 2012, 22, 12198.	6.7	249
15	Li-cycling properties of nano-crystalline (Ni1 â^' x Zn x)Fe2O4 (0 ≠x ≠1). Journal of Solid State Electrochemistry, 2012, 16, 1823-1832.	2.5	70
16	Co2+ doped ZnO nanoflowers grown by hydrothermal method. Journal of the Ceramic Society of Japan, 2010, 118, 333-336.	1.1	13