Anjana Jajoo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3512397/publications.pdf

Version: 2024-02-01

		136950	7	79698
98	5,947	32		73
papers	citations	h-index		g-index
106	106	106		5695
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 2016, 38, 1.	2.1	870
2	Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynthesis Research, 2014, 122, 121-158.	2.9	585
3	Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 116-126.	3.8	516
4	Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 2017, 132, 13-66.	2.9	419
5	Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiology and Biochemistry, 2010, 48, 16-20.	5.8	367
6	Impact of increasing Ultraviolet-B (UV-B) radiation on photosynthetic processes. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 55-66.	3.8	257
7	Analysis of elevated temperatureâ€induced inhibition of photosystem II using chlorophyll <i>a</i> fluorescence induction kinetics in wheat leaves (<i>Triticum aestivum</i>). Plant Biology, 2011, 13, 1-6.	3.8	173
8	Arbuscular Mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research, 2019, 139, 227-238.	2.9	146
9	Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry, 2021, 160, 341-351.	5.8	143
10	Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 2018, 180, 149-154.	3.8	142
11	Towards a critical understanding of the photosystem II repair mechanism and its regulation during stress conditions. FEBS Letters, 2013, 587, 3372-3381.	2.8	140
12	Photodamage of iron–sulphur clusters in photosystem I induces non-photochemical energy dissipation. Nature Plants, 2016, 2, 16035.	9.3	133
13	Investigation of deleterious effects of chromium phytotoxicity and photosynthesis in wheat plant. Photosynthetica, 2016, 54, 185-192.	1.7	129
14	Analysis of high temperature stress on the dynamics of antenna size and reducing side heterogeneity of Photosystem II in wheat leaves (Triticum aestivum). Biochimica Et Biophysica Acta - Bioenergetics, 2011, 1807, 22-29.	1.0	118
15	Photosynthetic efficiency in sun and shade plants. Photosynthetica, 2018, 56, 354-365.	1.7	113
16	Light-harvesting II antenna trimers connect energetically the entire photosynthetic machinery — including both photosystems II and I. Biochimica Et Biophysica Acta - Bioenergetics, 2015, 1847, 607-619.	1.0	108
17	Quality Control of Photosystem II. Journal of Biological Chemistry, 2009, 284, 25343-25352.	3.4	79
18	Characterization of photosystem II heterogeneity in response to high salt stress in wheat leaves (Triticum aestivum). Photosynthesis Research, 2010, 105, 249-255.	2.9	78

#	Article	IF	CITATIONS
19	Effects of dual stress (high salt and high temperature) on the photochemical efficiency of wheat leaves (Triticum aestivum). Physiology and Molecular Biology of Plants, 2013, 19, 179-188.	3.1	58
20	Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 151-155.	3.8	54
21	Fluoranthene, a polycyclic aromatic hydrocarbon, inhibits light as well as dark reactions of photosynthesis in wheat (Triticum aestivum). Ecotoxicology and Environmental Safety, 2014, 109, 110-115.	6.0	47
22	H2O2 signaling regulates seed germination in ZnO nanoprimed wheat (Triticum aestivum L.) seeds for improving plant performance under drought stress. Environmental and Experimental Botany, 2021, 189, 104561.	4.2	47
23	Effects of nitrogen-deficiency on efficiency of light-harvesting apparatus in radish. Plant Physiology and Biochemistry, 2017, 119, 81-92.	5.8	45
24	Seed nanopriming by silicon oxide improves drought stress alleviation potential in wheat plants. Functional Plant Biology, 2021, 48, 905-915.	2.1	43
25	Mechanisms of inhibitory effects of polycyclic aromatic hydrocarbons in photosynthetic primary processes in pea leaves and thylakoid preparations. Plant Biology, 2017, 19, 683-688.	3.8	42
26	Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. Functional Plant Biology, 2018, 45, 668.	2.1	42
27	Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity. Industrial Crops and Products, 2020, 143, 111934.	5.2	41
28	5-Aminolevulinic acid-induced protoporphyrin-IX accumulation and associated phototoxicity in macrophages and oral cancer cell lines. Journal of Photochemistry and Photobiology B: Biology, 2007, 88, 156-162.	3.8	40
29	The Use of Chlorophyll Fluorescence Kinetics Analysis to Study the Performance of Photosynthetic Machinery in Plants. , 2014, , 347-384.		38
30	Changes in PS II heterogeneity in response to osmotic and ionic stress in wheat leaves (Triticum) Tj ETQq0 0 0 rg	gBT_/Qverl	ock ₃ 70 Tf 50 3
31	A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology, 2013, 22, 1313-1318.	2.4	37
32	Analysis of salt stress induced changes in Photosystem II heterogeneity by prompt fluorescence and delayed fluorescence in wheat (Triticum aestivum) leaves. Journal of Photochemistry and Photobiology B: Biology, 2011, 104, 308-313.	3.8	36
33	Canopy Temperature as a Selection Parameter for Grain Yield and Its Components in Durum Wheat Under Terminal Heat Stress in Late Sown Conditions. Agricultural Research, 2015, 4, 238-244.	1.7	36
34	Alteration in PS II heterogeneity under the influence of polycyclic aromatic hydrocarbon (fluoranthene) in wheat leaves (Triticum aestivum). Plant Science, 2013, 209, 58-63.	3.6	31
35	Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growthÂand photosynthetic processes in wheat. Ecotoxicology and Environmental Safety, 2015, 122, 31-36.	6.0	31
36	Role of arbuscular mycorrhizal fungi as an underground saviuor for protecting plants from abiotic stresses. Physiology and Molecular Biology of Plants, 2021, 27, 2589-2603.	3.1	31

#	Article	IF	CITATIONS
37	Alterations in photochemical efficiency of photosystem II in wheat plant on hot summer day. Physiology and Molecular Biology of Plants, 2014, 20, 527-531.	3.1	27
38	Assessment of phytotoxicity of anthracene in soybean (<i>Glycine max</i>) with a quick method of chlorophyll fluorescence. Plant Biology, 2015, 17, 870-876.	3.8	27
39	Enzymatic pathway involved in the degradation of fluoranthene by microalgae Chlorella vulgaris. Ecotoxicology, 2021, 30, 268-276.	2.4	26
40	Low pHâ€induced regulation of excitation energy between the two photosystems. FEBS Letters, 2014, 588, 970-974.	2.8	24
41	Inorganic anions induce state changes in spinach thylakoid membranes. FEBS Letters, 1998, 434, 193-196.	2.8	23
42	Low pH induced structural reorganization in thylakoid membranes. Biochimica Et Biophysica Acta - Bioenergetics, 2012, 1817, 1388-1391.	1.0	22
43	Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress. Russian Journal of Plant Physiology, 2016, 63, 210-215.	1.1	21
44	Assessment of hydrocarbon degradation potentials in a plant–microbe interaction system with oil sludge contamination: A sustainable solution. International Journal of Phytoremediation, 2017, 19, 1085-1092.	3.1	21
45	Computational analysis of fluorescence induction curves in intact spinach leaves treated at different pH. BioSystems, 2011, 103, 158-163.	2.0	19
46	A quick method to screen high and low yielding wheat cultivars exposed to high temperature. Physiology and Molecular Biology of Plants, 2014, 20, 533-537.	3.1	19
47	Effects of Heat Stress on Growth and Crop Yield of Wheat (Triticum aestivum). , 2014, , 163-191.		18
48	Investigating deleterious effects of ultraviolet (UV) radiations on wheat by a quick method. Acta Physiologiae Plantarum, 2015, 37, 1.	2.1	18
49	PSI becomes more tolerant to fluoranthene through the initiation of cyclic electron flow. Functional Plant Biology, 2017, 44, 978.	2.1	18
50	Behind the scene: Critical role of reactive oxygen species and reactive nitrogen species in salt stress tolerance. Journal of Agronomy and Crop Science, 2021, 207, 577-588.	3.5	18
51	Chloroplasts and mitochondria have multiple heat tolerant isozymes of SOD and APX in leaf and inflorescence in Chenopodium album. Biochemical and Biophysical Research Communications, 2011, 412, 522-525.	2.1	17
52	Evidence that pH can drive state transitions in isolated thylakoid membranes from spinach. Photochemical and Photobiological Sciences, 2010, 9, 830-837.	2.9	16
53	Heat-induced changes in photosystem I activity as measured with different electron donors in isolated spinach thylakoid membranes. Photochemical and Photobiological Sciences, 2008, 7, 485-491.	2.9	15
54	Changes in Photosystem II in Response to Salt Stress. , 2013, , 149-168.		15

#	Article	IF	CITATIONS
55	EPR characteristics of chloride-depleted photosystem II membranes in the presence of other anions. Photochemical and Photobiological Sciences, 2005, 4, 459.	2.9	14
56	Prasanna K. Mohanty (1934–2013): a great photosynthetiker and a wonderful human being who touched the hearts of many. Photosynthesis Research, 2014, 122, 235-260.	2.9	13
57	Low-pH induced reversible reorganizations of chloroplast thylakoid membranes — As revealed by small-angle neutron scattering. Biochimica Et Biophysica Acta - Bioenergetics, 2017, 1858, 360-365.	1.0	13
58	Optimization of various encapsulation systems for efficient immobilization of actinobacterial glucose isomerase. Biocatalysis and Agricultural Biotechnology, 2020, 29, 101766.	3.1	13
59	Evaluation of the Specific Roles of Anions in Electron Transport and Energy Transfer Reactions in Photosynthesis. Photosynthetica, 2001, 39, 321-337.	1.7	12
60	Tapping Into Actinobacterial Genomes for Natural Product Discovery. Frontiers in Microbiology, 2021, 12, 655620.	3.5	12
61	Mg2+-Induced Lipid-Phase Transition in Thylakoid Membranes Is Reversed by Anions. Biochemical and Biophysical Research Communications, 1994, 202, 1724-1730.	2.1	11
62			

#	Article	IF	Citations
73	Differential response of chloride binding sites to elevated temperature: a comparative study in spinach thylakoids and PSII-enriched membranes. Photosynthesis Research, 2007, 93, 123-132.	2.9	8
74	On the participation of chloride in bicarbonate-induced reversal of anion inhibition of photosystem II electron transport in spinach thylakoids. Physiologia Plantarum, 1993, 88, 78-84.	5.2	7
75	Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants. Journal of Bioenergetics and Biomembranes, 2011, 43, 195-202.	2.3	7
76	Photosynthetic response in wheat plants caused by the phototoxicity of fluoranthene. Functional Plant Biology, 2019, 46, 725.	2.1	7
77	Effects of Environmental Pollutants Polycyclic Aromatic Hydrocarbons (PAH) on Photosynthetic Processes., 2017,, 249-259.		7
78	A thermoluminescence study of the effects of nitrite on photosystem II in spinach thylakoids. Luminescence, 2006, 21, 143-147.	2.9	6
79	Study of microbial diversity in plant–microbe interaction system with oil sludge contamination. International Journal of Phytoremediation, 2018, 20, 789-795.	3.1	6
80	Effect of Anions on Photosystem 1-Mediated Electron Transport in Spinach Chloroplasts. Journal of Experimental Botany, 1993, 44, 785-790.	4.8	5
81	Elucidating the site of action of oxalate in photosynthetic electron transport chain in spinach thylakoid membranes. Photosynthesis Research, 2008, 97, 177-184.	2.9	5
82	Proton concentration in the thylakoid membranes can regulate energy distribution between the two photosystems. Photosynthetica, 2014, 52, 636-640.	1.7	5
83	Cyclic electron flow around photosystem I is enhanced at low pH. Plant Physiology and Biochemistry, 2014, 83, 194-199.	5.8	5
84	Investigating role of Triton X-100 in ameliorating deleterious effects of anthracene in wheat plants. Photosynthetica, 2018, 56, 652-659.	1.7	5
85	An EPR study ofÂtheÂpH dependence ofÂformate effects onÂPhotosystem II. Plant Physiology and Biochemistry, 2006, 44, 186-192.	5.8	4
86	Anion effects on the structural organization of spinach thylakoid membranes. Biologia Plantarum, 2006, 50, 444-446.	1.9	4
87	High salt stress in coupled and uncoupled thylakoid membranes: A comparative study. Biochemistry (Moscow), 2009, 74, 620-624.	1.5	4
88	Effects of high temperature and low pH on photosystem 2 photochemistry in spinach thylakoid membranes. Biologia Plantarum, 2011, 55, .	1.9	4
89	Characterization of upstream sequences of the peroxidase gene, Atprx18 of Arabidopsis thaliana. Journal of Plant Biochemistry and Biotechnology, 2012, 21, 121-127.	1.7	4
90	A part of the upstream promoter region of SHN2 gene directs trichome specific expression in Arabidopsis thaliana and heterologous plants. Plant Science, 2017, 264, 138-148.	3 . 6	4

#	Article	lF	CITATIONS
91	Decay Kinetics of Tyrosine Radical (Y _Z [*]) in Chloride Anion-Depleted Photosystem 2 Studied by Time-Resolved EPR. Photosynthetica, 2004, 42, 59-64.	1.7	3
92	Stress and Photosynthesis. Journal of Photochemistry and Photobiology B: Biology, 2014, 137, 1-3.	3.8	3
93	Characterization of an rpoN mutant of Mesorhizobium ciceri. Journal of Applied Microbiology, 2007, 103, 1798-1807.	3.1	2
94	Investigating changes in the redox state of Photosystem I at low pH. Journal of Photochemistry and Photobiology B: Biology, 2015, 151, 25-30.	3.8	1
95	Investigating primary sites of damage in photosystem II in response to high temperature. Indian Journal of Plant Physiology, 2015, 20, 304-309.	0.8	1
96	On the participation of chloride in bicarbonate-induced reversal of anion inhibition of photosystem II electron transport in spinach thylakoids. Physiologia Plantarum, 1993, 88, 78-84.	5.2	1
97	Shielding of Photosynthetic Apparatus by Consortia of Bacterial Endophytes in Tomato Plants Suffering From Fusarium Wilt. Frontiers in Agronomy, 2022, 4, .	3.3	1
98	Study on the effects of chloride depletion on photosystem II using different chloride depletion methods. Journal of Bioenergetics and Biomembranes, 2010, 42, 47-53.	2.3	0