Ionas Erb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3511908/publications.pdf Version: 2024-02-01

IONAS FDR

#	Article	IF	CITATIONS
1	Understanding sequencing data as compositions: an outlook and review. Bioinformatics, 2018, 34, 2870-2878.	4.1	224
2	A field guide for the compositional analysis of any-omics data. GigaScience, 2019, 8, .	6.4	187
3	Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biology, 2016, 17, 32.	8.8	166
4	Multiple sequence alignment modeling: methods and applications. Briefings in Bioinformatics, 2016, 17, 1009-1023.	6.5	153
5	Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biology, 2016, 17, 251.	8.8	131
6	SwissRegulon: a database of genome-wide annotations of regulatory sites. Nucleic Acids Research, 2007, 35, D127-D131.	14.5	123
7	MotEvo: integrated Bayesian probabilistic methods for inferring regulatory sites and motifs on multiple alignments of DNA sequences. Bioinformatics, 2012, 28, 487-494.	4.1	114
8	The functional importance of telomere clustering: Global changes in gene expression result from SIR factor dispersion. Genome Research, 2009, 19, 611-625.	5.5	110
9	Alignathon: a competitive assessment of whole-genome alignment methods. Genome Research, 2014, 24, 2077-2089.	5.5	102
10	Third Report on Chicken Genes and Chromosomes 2015. Cytogenetic and Genome Research, 2015, 145, 78-179.	1.1	97
11	Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nature Protocols, 2011, 6, 1669-1682.	12.0	87
12	How should we measure proportionality on relative gene expression data?. Theory in Biosciences, 2016, 135, 21-36.	1.4	77
13	T-Coffee: Tree-Based Consistency Objective Function for Alignment Evaluation. Methods in Molecular Biology, 2014, 1079, 117-129.	0.9	56
14	Principal Component Analysis of the Effects of Environmental Enrichment and (-)-epigallocatechin-3-gallate on Age-Associated Learning Deficits in a Mouse Model of Down Syndrome. Frontiers in Behavioral Neuroscience, 2015, 9, 330.	2.0	44
15	Combined Treatment With Environmental Enrichment and (-)-Epigallocatechin-3-Gallate Ameliorates Learning Deficits and Hippocampal Alterations in a Mouse Model of Down Syndrome. ENeuro, 2016, 3, ENEURO.0103-16.2016.	1.9	42
16	Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiology of Disease, 2019, 127, 210-222.	4.4	35
17	Transcription Factor Binding Site Positioning in Yeast: Proximal Promoter Motifs Characterize TATA-Less Promoters. PLoS ONE, 2011, 6, e24279.	2.5	30
18	Genome-wide Expression Profiling, In Vivo DNA Binding Analysis, and Probabilistic Motif Prediction Reveal Novel Abf1 Target Genes during Fermentation, Respiration, and Sporulation in Yeast. Molecular Biology of the Cell, 2008, 19, 2193-2207.	2.1	29

Ionas Erb

#	Article	IF	CITATIONS
19	BlastR—fast and accurate database searches for non-coding RNAs. Nucleic Acids Research, 2011, 39, 6886-6895.	14.5	28
20	Large multiple sequence alignments with a root-to-leaf regressive method. Nature Biotechnology, 2019, 37, 1466-1470.	17.5	25
21	Use of ChIP-Seq data for the design of a multiple promoter-alignment method. Nucleic Acids Research, 2012, 40, e52-e52.	14.5	23
22	Amalgams: data-driven amalgamation for the dimensionality reduction of compositional data. NAR Genomics and Bioinformatics, 2020, 2, lqaa076.	3.2	19
23	Interpretable Log Contrasts for the Classification of Health Biomarkers: a New Approach to Balance Selection. MSystems, 2020, 5, .	3.8	16
24	Partial correlations in compositional data analysis. Applied Computing and Geosciences, 2020, 6, 100026.	2.2	15
25	Examining microbe–metabolite correlations by linear methods. Nature Methods, 2021, 18, 37-39.	19.0	15
26	Multi-Information in the Thermodynamic Limit. Journal of Statistical Physics, 2004, 115, 949-976.	1.2	13
27	Timeâ€course and dynamics of obesityâ€related behavioral changes induced by energyâ€dense foods in mice. Addiction Biology, 2018, 23, 531-543.	2.6	13
28	On a Notion of Linear Replicator Equations. Journal of Dynamics and Differential Equations, 2005, 17, 427-451.	1.9	12
29	Extinction and reinstatement of an operant responding maintained by food in different models of obesity. Addiction Biology, 2018, 23, 544-555.	2.6	11
30	Editorial:ÂCompositional data analysis and related methods applied to genomics—a first special issue from <i>NAR Genomics and Bioinformatics</i> . NAR Genomics and Bioinformatics, 2020, 2, Iqaa103.	3.2	10
31	Efficient and Interpretable Prediction of Protein Functional Classes by Correspondence Analysis and Compact Set Relations. PLoS ONE, 2013, 8, e75542.	2.5	7
32	Multiple Sequence Alignment Computation Using the T-Coffee Regressive Algorithm Implementation. Methods in Molecular Biology, 2021, 2231, 89-97.	0.9	6
33	Pergola: Boosting Visualization and Analysis of Longitudinal Data by Unlocking Genomic Analysis Tools. IScience, 2018, 9, 244-257.	4.1	5
34	The Information-Geometric Perspective of Compositional Data Analysis. , 2021, , 21-43.		5
35	Pergola-web: a web server for the visualization and analysis of longitudinal behavioral data using repurposed genomics tools and standards. Nucleic Acids Research, 2019, 47, W600-W604.	14.5	2
36	Protocol for Measuring Compulsive-like Feeding Behavior in Mice. Bio-protocol, 2019, 9, e3308.	0.4	1