
Julian Downward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3511670/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Concomitant KRAS mutations attenuate sensitivity of non-small cell lung cancer cells to KRAS G12C inhibition. Scientific Reports, 2022, 12, 2699.	3.3	4
2	The Potency of a <i>KRAS</i> Silent Variant. New England Journal of Medicine, 2022, 386, 2523-2525.	27.0	1
3	Quantitative Proteomic Analysis in Alveolar Type II Cells Reveals the Different Capacities of RAS and TGF-β to Induce Epithelial–Mesenchymal Transition. Frontiers in Molecular Biosciences, 2021, 8, 595712.	3.5	5
4	Clinical impact of subclonal EGFR T790M mutations in advanced-stage EGFR-mutant non-small-cell lung cancers. Nature Communications, 2021, 12, 1780.	12.8	39
5	Drugging the Undruggable: Advances on RAS Targeting in Cancer. Genes, 2021, 12, 899.	2.4	44
6	Inherited duplications of PPP2R3B predispose to nevi and melanoma via a C21orf91-driven proliferative phenotype. Genetics in Medicine, 2021, 23, 1636-1647.	2.4	5
7	JunD, not c-Jun, is the AP-1 transcription factor required for Ras-induced lung cancer. JCl Insight, 2021, 6, .	5.0	22
8	Repurposed floxacins targeting RSK4 prevent chemoresistance and metastasis in lung and bladder cancer. Science Translational Medicine, 2021, 13, .	12.4	19
9	Bidirectional epithelial–mesenchymal crosstalk provides self-sustaining profibrotic signals in pulmonary fibrosis. Journal of Biological Chemistry, 2021, 297, 101096.	3.4	24
10	Characterisation of tumour microenvironment remodelling following oncogene inhibition in preclinical studies with imaging mass cytometry. Nature Communications, 2021, 12, 5906.	12.8	36
11	WDHD1 is essential for the survival of PTEN-inactive triple-negative breast cancer. Cell Death and Disease, 2020, 11, 1001.	6.3	19
12	IGF1-mediated human embryonic stem cell self-renewal recapitulates the embryonic niche. Nature Communications, 2020, 11, 764.	12.8	41
13	Mutant KRAS at the Heart of Tumor Immune Evasion. Immunity, 2020, 52, 14-16.	14.3	20
14	Development of a cell-free split-luciferase biochemical assay as a tool for screening for inhibitors of challenging protein-protein interaction targets. Wellcome Open Research, 2020, 5, 20.	1.8	14
15	Combined targeting of G proteinâ€coupled receptor and <scp>EGF</scp> receptor signaling overcomes resistance to <scp>PI</scp> 3K pathway inhibitors in <scp>PTEN</scp> â€null triple negative breast cancer. EMBO Molecular Medicine, 2020, 12, e11987.	6.9	17
16	Paracrine signalling during ZEB1-mediated epithelial–mesenchymal transition augments local myofibroblast differentiation in lung fibrosis. Cell Death and Differentiation, 2019, 26, 943-957.	11.2	104
17	Autophagy inhibition-mediated epithelial–mesenchymal transition augments local myofibroblast differentiation in pulmonary fibrosis. Cell Death and Disease, 2019, 10, 591.	6.3	107
18	RAC1P29S Induces a Mesenchymal Phenotypic Switch via Serum Response Factor to Promote Melanoma Development and Therapy Resistance. Cancer Cell, 2019, 36, 68-83.e9.	16.8	104

#	Article	IF	CITATIONS
19	<i>ATMIN</i> Is a Tumor Suppressor Gene in Lung Adenocarcinoma. Cancer Research, 2019, 79, 5159-5166.	0.9	10
20	Development of combination therapies to maximize the impact of KRAS-G12C inhibitors in lung cancer. Science Translational Medicine, 2019, 11, .	12.4	150
21	SHOC2 phosphatase-dependent RAF dimerization mediates resistance to MEK inhibition in RAS-mutant cancers. Nature Communications, 2019, 10, 2532.	12.8	53
22	SGLT1 is required for the survival of tripleâ€negative breast cancer cells via potentiation of EGFR activity. Molecular Oncology, 2019, 13, 1874-1886.	4.6	22
23	Autophagy inhibition specifically promotes epithelial-mesenchymal transition and invasion in RAS-mutated cancer cells. Autophagy, 2019, 15, 886-899.	9.1	98
24	An oligoclonal antibody durably overcomes resistance of lung cancer to thirdâ€generation <scp>EGFR</scp> inhibitors. EMBO Molecular Medicine, 2018, 10, 294-308.	6.9	46
25	Disruption of the Interaction of RAS with PI 3-Kinase Induces Regression of EGFR-Mutant-Driven Lung Cancer. Cell Reports, 2018, 25, 3545-3553.e2.	6.4	25
26	The glutathione redox system is essential to prevent ferroptosis caused by impaired lipid metabolism in clear cell renal cell carcinoma. Oncogene, 2018, 37, 5435-5450.	5.9	239
27	AKT signalling selectively regulates PINK1 mitophagy in SHSY5Y cells and human iPSC-derived neurons. Scientific Reports, 2018, 8, 8855.	3.3	57
28	Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity, 2017, 47, 1083-1099.e6.	14.3	450
29	HFâ€Free Boc Synthesis of Peptide Thioesters for Ligation and Cyclization. Angewandte Chemie - International Edition, 2016, 55, 13174-13179.	13.8	23
30	HFâ€Free Boc Synthesis of Peptide Thioesters for Ligation and Cyclization. Angewandte Chemie, 2016, 128, 13368-13373.	2.0	3
31	Coincident signals from GPCRs and receptor tyrosine kinases are uniquely transduced by PI3KÎ ² in myeloid cells. Science Signaling, 2016, 9, ra82.	3.6	53
32	Decreased glutathione biosynthesis contributes to EGFR T790M-driven erlotinib resistance in non-small cell lung cancer. Cell Discovery, 2016, 2, 16031.	6.7	26
33	RAS signalling through PI3-Kinase controls cell migration via modulation of Reelin expression. Nature Communications, 2016, 7, 11245.	12.8	52
34	Targeting of Ras-mediated FGF signaling suppresses Pten-deficient skin tumor. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13156-13161.	7.1	12
35	Overview of KRASâ€Driven Genetically Engineered Mouse Models of Non‣mall Cell Lung Cancer. Current Protocols in Pharmacology, 2015, 70, 14.35.1-14.35.16.	4.0	12
36	Efficient Genotyping of KRAS Mutant Non-Small Cell Lung Cancer Using a Multiplexed Droplet Digital PCR Approach. PLoS ONE, 2015, 10, e0139074.	2.5	50

#	Article	IF	CITATIONS
37	Combining three antibodies nullifies feedback-mediated resistance to erlotinib in lung cancer. Science Signaling, 2015, 8, ra53.	3.6	33
38	Fibroblast growth factor-2 induces translational regulation of Bcl-XL and Bcl-2 via a MEK-dependent pathway. CORRELATION WITH RESISTANCE TO ETOPOSIDE-INDUCED APOPTOSIS Journal of Biological Chemistry, 2015, 290, 15390.	3.4	34
39	<i><scp>RAS</scp></i> mutation status and bortezomib therapy for relapsed multiple myeloma. British Journal of Haematology, 2015, 169, 905-908.	2.5	18
40	RAS Synthetic Lethal Screens Revisited: Still Seeking the Elusive Prize?. Clinical Cancer Research, 2015, 21, 1802-1809.	7.0	146
41	Automated segmentation of murine lung tumors in x-ray micro-CT images. Proceedings of SPIE, 2014, , .	0.8	0
42	Chromosomal Instability Selects Gene Copy-Number Variants Encoding Core Regulators of Proliferation in ER+ Breast Cancer. Cancer Research, 2014, 74, 4853-4863.	0.9	66
43	Regulation of polarized morphogenesis by protein kinase C iota in oncogenic epithelial spheroids. Carcinogenesis, 2014, 35, 396-406.	2.8	23
44	Reduced <i>NF1</i> Expression Confers Resistance to EGFR Inhibition in Lung Cancer. Cancer Discovery, 2014, 4, 606-619.	9.4	183
45	HMGA2 functions as a competing endogenous RNA to promote lung cancer progression. Nature, 2014, 505, 212-217.	27.8	253
46	RAS's Cloak of Invincibility Slips at Last?. Cancer Cell, 2014, 25, 5-6.	16.8	21
47	ASPP2 controls epithelial plasticity and inhibits metastasis through β-catenin-dependent regulationÂofÂZEB1. Nature Cell Biology, 2014, 16, 1092-1104.	10.3	129
48	RAS interaction with PI3K p110 \hat{l} ± is required for tumor-induced angiogenesis. Journal of Clinical Investigation, 2014, 124, 3601-3611.	8.2	65
49	SnapShot: Class I PI3K Isoform Signaling. Cell, 2013, 154, 940-940.e1.	28.9	32
50	PI3K Pathway Dependencies in Endometrioid Endometrial Cancer Cell Lines. Clinical Cancer Research, 2013, 19, 3533-3544.	7.0	122
51	Requirement for Interaction of PI3-Kinase p110α with RAS in Lung Tumor Maintenance. Cancer Cell, 2013, 24, 617-630.	16.8	148
52	RAS and RHO Families of GTPases Directly Regulate Distinct Phosphoinositide 3-Kinase Isoforms. Cell, 2013, 153, 1050-1063.	28.9	244
53	Coordinate Direct Input of Both KRAS and IGF1 Receptor to Activation of PI3 kinase in <i>KRAS</i> -Mutant Lung Cancer. Cancer Discovery, 2013, 3, 548-563.	9.4	153
54	Inhibiting the RAS–PI3K Pathway in Cancer Therapy. The Enzymes, 2013, 34 Pt. B, 107-136.	1.7	20

4

#	Article	IF	CITATIONS
55	Genomic Determinants of PI3K Pathway Inhibitor Response in Cancer. Frontiers in Oncology, 2012, 2, 109.	2.8	72
56	Frank-ter Haar Syndrome Protein Tks4 Regulates Epidermal Growth Factor-dependent Cell Migration. Journal of Biological Chemistry, 2012, 287, 31321-31329.	3.4	28
57	Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Research, 2012, 22, 1227-1245.	12.0	155
58	The GATA2 Transcriptional Network Is Requisite for RAS Oncogene-Driven Non-Small Cell Lung Cancer. Cell, 2012, 149, 642-655.	28.9	247
59	CERT depletion predicts chemotherapy benefit and mediates cytotoxic and polyploidâ€specific cancer cell death through autophagy induction. Journal of Pathology, 2012, 226, 482-494.	4.5	48
60	Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. New England Journal of Medicine, 2012, 366, 883-892.	27.0	6,769
61	Assessing Cell Size and Cell Cycle Regulation in Cells with Altered TOR Activity. Methods in Molecular Biology, 2012, 821, 227-237.	0.9	1
62	How to Fool a Wonder Drug: Truncate and Dimerize. Cancer Cell, 2012, 21, 7-9.	16.8	5
63	Flicking the Warburg Switch—Tyrosine Phosphorylation of Pyruvate Dehydrogenase Kinase Regulates Mitochondrial Activity in Cancer Cells. Molecular Cell, 2011, 44, 846-848.	9.7	36
64	Targeting RAF: trials and tribulations. Nature Medicine, 2011, 17, 286-288.	30.7	25
65	RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes and Cancer, 2011, 2, 261-274.	1.9	580
66	Chromosomal Instability Confers Intrinsic Multidrug Resistance. Cancer Research, 2011, 71, 1858-1870.	0.9	391
67	Relationship of Extreme Chromosomal Instability with Long-term Survival in a Retrospective Analysis of Primary Breast Cancer. Cancer Epidemiology Biomarkers and Prevention, 2011, 20, 2183-2194.	2.5	141
68	Role of RAS in the Regulation of PI 3-Kinase. Current Topics in Microbiology and Immunology, 2010, 346, 143-169.	1.1	99
69	PI3-kinase p110α mediates β1 integrin-induced Akt activation and membrane protrusion during cell attachment and initial spreading. Cellular Signalling, 2010, 22, 1838-1848.	3.6	45
70	A Role for p38 Stress-Activated Protein Kinase in Regulation of Cell Growth via TORC1. Molecular and Cellular Biology, 2010, 30, 481-495.	2.3	79
71	Modulation of Cellular Migration and Survival by c-Myc through the Downregulation of Urokinase (uPA) and uPA Receptor. Molecular and Cellular Biology, 2010, 30, 1838-1851.	2.3	30
	TOPC2 The Freeman 2010 20 00 124		

5

1.7 0

#	Article	IF	CITATIONS
73	Predictive biomarker discovery through the parallel integration of clinical trial and functional genomics datasets. Genome Medicine, 2010, 2, 53.	8.2	43
74	Praf2 Is a Novel Bcl-xL/Bcl-2 Interacting Protein with the Ability to Modulate Survival of Cancer Cells. PLoS ONE, 2010, 5, e15636.	2.5	36
75	Omi is a mammalian heat-shock protein that selectively binds and detoxifies oligomeric amyloid-β. Journal of Cell Science, 2009, 122, 1917-1926.	2.0	23
76	Enhanced HtrA2/Omi Expression in Oxidative Injury to Retinal Pigment Epithelial Cells and Murine Models of Neurodegeneration. , 2009, 50, 4957.		35
77	Chromosomal instability determines taxane response. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8671-8676.	7.1	244
78	A tumour gene's fatal flaws. Nature, 2009, 462, 44-45.	27.8	21
79	Finding the Weakness in Cancer. New England Journal of Medicine, 2009, 361, 922-924.	27.0	7
80	Genetic and cellular mechanisms of oncogenesis. Current Opinion in Genetics and Development, 2009, 19, 1-3.	3.3	20
81	PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death. Molecular Cell, 2009, 33, 627-638.	9.7	584
82	Translational responses to growth factors and stress. Biochemical Society Transactions, 2009, 37, 284-288.	3.4	28
83	Regulation of Akt(ser473) phosphorylation by Choline kinase in breast carcinoma cells. Molecular Cancer, 2009, 8, 131.	19.2	58
84	Targeting RAS and PI3K in lung cancer. Nature Medicine, 2008, 14, 1315-1316.	30.7	68
85	Many faces of Ras activation. Biochimica Et Biophysica Acta: Reviews on Cancer, 2008, 1786, 178-187.	7.4	149
86	Unraveling the Complexity of Endocrine Resistance in Breast Cancer by Functional Genomics. Cancer Cell, 2008, 13, 83-85.	16.8	12
87	PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons. PLoS ONE, 2008, 3, e2455.	2.5	273
88	Functional genomic analysis of drug sensitivity pathways to guide adjuvant strategies in breast cancer. Breast Cancer Research, 2008, 10, 214.	5.0	20
89	YAP and p73: A Complex Affair. Molecular Cell, 2008, 32, 749-750.	9.7	28
90	SnapShot: Ras Signaling. Cell, 2008, 133, 1292-1292.e1.	28.9	71

#	Article	IF	CITATIONS
91	Concordance of exon array and real-time PCR assessment of gene expression following cancer cell cytotoxic drug exposure. Cell Cycle, 2008, 7, 3947-3948.	2.6	3
92	Accumulation of HtrA2/Omi in Neuronal and Glial Inclusions in Brains With α-Synucleinopathies. Journal of Neuropathology and Experimental Neurology, 2008, 67, 984-993.	1.7	44
93	Intramolecular and Intermolecular Interactions of Protein Kinase B Define Its Activation In Vivo. PLoS Biology, 2007, 5, e95.	5.6	254
94	Ras and Phosphoinositide 3-Kinase: Partners in Development and Tumorigenesis. Cell Cycle, 2007, 6, 2902-2905.	2.6	66
95	Initiation of High Frequency Multi-Drug Resistance Following Kinase Targeting by siRNAs. Cell Cycle, 2007, 6, 2001-2004.	2.6	14
96	Induction of Mxi1-SRα by FOXO3a Contributes to Repression of Myc-Dependent Gene Expression. Molecular and Cellular Biology, 2007, 27, 4917-4930.	2.3	158
97	Binding of Ras to Phosphoinositide 3-Kinase p110α Is Required for Ras- Driven Tumorigenesis in Mice. Cell, 2007, 129, 957-968.	28.9	524
98	The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nature Cell Biology, 2007, 9, 1243-1252.	10.3	441
99	Roles of cortactin in tumor pathogenesis. Biochimica Et Biophysica Acta: Reviews on Cancer, 2007, 1775, 263-273.	7.4	62
100	Regulators of Mitotic Arrest and Ceramide Metabolism Are Determinants of Sensitivity to Paclitaxel and Other Chemotherapeutic Drugs. Cancer Cell, 2007, 11, 498-512.	16.8	351
101	The Extracellular Matrix Protein TGFBI Induces Microtubule Stabilization and Sensitizes Ovarian Cancers to Paclitaxel. Cancer Cell, 2007, 12, 514-527.	16.8	202
102	SIGNAL TRANSDUCTION: Prelude to an Anniversary for the RAS Oncogene. Science, 2006, 314, 433-434.	12.6	45
103	Chromosomal Instability, Colorectal Cancer and Taxane Resistance. Cell Cycle, 2006, 5, 818-823.	2.6	73
104	Exoenzyme S of Pseudomonas aeruginosa is not able to induce apoptosis when cells express activated proteins, such as Ras or protein kinase B/Akt. Cellular Microbiology, 2006, 8, 815-822.	2.1	19
105	Signatures guide drug choice. Nature, 2006, 439, 274-275.	27.8	59
106	Minimizing the risk of reporting false positives in large-scale RNAi screens. Nature Methods, 2006, 3, 777-779.	19.0	417
107	Suppression of Egr-1 transcription through targeting of the serum response factor by oncogenic H-Ras. EMBO Journal, 2006, 25, 1093-1103.	7.8	46
108	FGF-2 protects small cell lung cancer cells from apoptosis through a complex involving PKCÉ›, B-Raf and S6K2. EMBO Journal, 2006, 25, 3078-3088.	7.8	173

#	Article	IF	CITATIONS
109	CUTL1: A Key Mediator of TGFβ-Induced Tumor Invasion. Cell Cycle, 2006, 5, 132-134.	2.6	32
110	CUTL1 Is Phosphorylated by Protein Kinase A, Modulating Its Effects on Cell Proliferation and Motility. Journal of Biological Chemistry, 2006, 281, 15138-15144.	3.4	24
111	Phosphoinositide 3-Kinase C2β Regulates Cytoskeletal Organization and Cell Migration via Rac-dependent Mechanisms. Molecular Biology of the Cell, 2006, 17, 3729-3744.	2.1	78
112	PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene, 2005, 24, 6465-6481.	5.9	383
113	CUTL1 is a target of TGFÎ ² signaling that enhances cancer cell motility and invasiveness. Cancer Cell, 2005, 7, 521-532.	16.8	161
114	Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Human Molecular Genetics, 2005, 14, 2099-2111.	2.9	514
115	The Tumor Suppressor RASSF1A and MAP-1 Link Death Receptor Signaling to Bax Conformational Change and Cell Death. Molecular Cell, 2005, 18, 637-650.	9.7	166
116	Involvement of MINK, a Ste20 Family Kinase, in Ras Oncogene-Induced Growth Arrest in Human Ovarian Surface Epithelial Cells. Molecular Cell, 2005, 20, 673-685.	9.7	96
117	RNA Interference Libraries Prove Their Worth in Hunt for Tumor Suppressor Genes. Cell, 2005, 121, 813-815.	28.9	16
118	RNA interference. BMJ: British Medical Journal, 2004, 328, 1245-1248.	2.3	86
119	The Transcriptional Response to Raf Activation Is Almost Completely Dependent on Mitogen-activated Protein Kinase Kinase Activity and Shows a Major Autocrine Component. Molecular Biology of the Cell, 2004, 15, 3450-3463.	2.1	63
120	Neuroprotective Role of the Reaper-Related Serine Protease HtrA2/Omi Revealed by Targeted Deletion in Mice. Molecular and Cellular Biology, 2004, 24, 9848-9862.	2.3	367
121	RASSF1A Interacts with Microtubule-Associated Proteins and Modulates Microtubule Dynamics. Cancer Research, 2004, 64, 4112-4116.	0.9	127
122	Role of Bim in the survival pathway induced by Raf in epithelial cells. Oncogene, 2004, 23, 2431-2441.	5.9	108
123	Use of RNA interference libraries to investigate oncogenic signalling in mammalian cells. Oncogene, 2004, 23, 8376-8383.	5.9	54
124	RNA interference-based functional genomics in cancer research – an introduction. Oncogene, 2004, 23, 8334-8335.	5.9	6
125	PI 3-kinase, Akt and cell survival. Seminars in Cell and Developmental Biology, 2004, 15, 177-182.	5.0	698
126	RNA interference, DNA methylation, and gene silencing: a bright future for cancer therapy?. Lancet Oncology, The, 2004, 5, 653-654.	10.7	11

#	Article	IF	CITATIONS
127	Identification of the E1A-Regulated Transcription Factor p120E4F as an Interacting Partner of the RASSF1A Candidate Tumor Suppressor Gene. Cancer Research, 2004, 64, 102-107.	0.9	67
128	RNAi and 2DE, a promising combination for analysis of phospho-signalling and substrate identification. International Journal of Peptide Research and Therapeutics, 2003, 10, 437-445.	0.1	0
129	Metabolism meets death. Nature, 2003, 424, 896-897.	27.8	37
130	Targeting RAS signalling pathways in cancer therapy. Nature Reviews Cancer, 2003, 3, 11-22.	28.4	2,800
131	Akt Phosphorylates the Yes-Associated Protein, YAP, to Induce Interaction with 14-3-3 and Attenuation of p73-Mediated Apoptosis. Molecular Cell, 2003, 11, 11-23.	9.7	723
132	Monitoring conformational changes of proteins in cells by fluorescence lifetime imaging microscopy. Biochemical Journal, 2003, 372, 33-40.	3.7	111
133	Mechanism of Epidermal Growth Factor Regulation of Vav2, a Guanine Nucleotide Exchange Factor for Rac. Journal of Biological Chemistry, 2003, 278, 5163-5171.	3.4	100
134	Epithelial to Mesenchymal Transition in Madin-Darby Canine Kidney Cells Is Accompanied by Down-regulation of Smad3 Expression, Leading to Resistance to Transforming Growth Factor-β-induced Growth Arrest. Journal of Biological Chemistry, 2003, 278, 3251-3256.	3.4	65
135	Fibroblast Growth Factor 2-Mediated Translational Control of IAPs Blocks Mitochondrial Release of Smac/DIABLO and Apoptosis in Small Cell Lung Cancer Cells. Molecular and Cellular Biology, 2003, 23, 7600-7610.	2.3	105
136	Binding Specificity and Regulation of the Serine Protease and PDZ Domains of HtrA2/Omi. Journal of Biological Chemistry, 2003, 278, 49417-49427.	3.4	116
137	Role of receptor tyrosine kinases in G-protein-coupled receptor regulation of Ras: transactivation or parallel pathways?. Biochemical Journal, 2003, 376, e9-e10.	3.7	32
138	Vav1 Transduces T Cell Receptor Signals to the Activation of Phospholipase C-γ1 via Phosphoinositide 3-Kinase-dependent and -independent Pathways. Journal of Experimental Medicine, 2002, 195, 1103-1114.	8.5	199
139	Fibroblast Growth Factor-2 Induces Translational Regulation of Bcl-XL and Bcl-2 via a MEK-dependent Pathway. Journal of Biological Chemistry, 2002, 277, 12040-12046.	3.4	146
140	Ras and TGFÎ ² cooperatively regulate epithelial cell plasticity and metastasis. Journal of Cell Biology, 2002, 156, 299-314.	5.2	684
141	Involvement of survival motor neuron (SMN) protein in cell death. Human Molecular Genetics, 2002, 11, 2751-2764.	2.9	45
142	Identification of Novel Isoforms of the BH3 Domain Protein Bim Which Directly Activate Bax To Trigger Apoptosis. Molecular and Cellular Biology, 2002, 22, 3577-3589.	2.3	267
143	Vav3 Modulates B Cell Receptor Responses by Regulating Phosphoinositide 3-Kinase Activation. Journal of Experimental Medicine, 2002, 195, 189-200.	8.5	130
144	The Serine Protease Omi/HtrA2 Regulates Apoptosis by Binding XIAP through a Reaper-like Motif. Journal of Biological Chemistry, 2002, 277, 439-444.	3.4	470

#	Article	IF	CITATIONS
145	Oncogenic Ras/Her-2 mediate hyperproliferation of polarized epithelial cells in 3D cultures and rapid tumor growth via the PI3K pathway. Oncogene, 2002, 21, 5148-5159.	5.9	67
146	Ras induces NBT-II epithelial cell scattering through the coordinate activities of Rac and MAPK pathways. Journal of Cell Science, 2002, 115, 2591-2601.	2.0	73
147	Navigating gene expression using microarrays — a technology review. Nature Cell Biology, 2001, 3, E190-E195.	10.3	460
148	Trachealess—A New Transcription Factor Target for PKB/Akt. Developmental Cell, 2001, 1, 726-728.	7.0	2
149	Ras activation of phosphatidylinositol 3-kinase and akt. Methods in Enzymology, 2001, 333, 37-44.	1.0	15
150	Ras activation revisited. Signal Transduction, 2001, 1, 11-24.	0.4	4
151	The ins and outs of signalling. Nature, 2001, 411, 759-762.	27.8	213
152	Regulation ofMUC1Expression in Human Mammary Cell Lines by the c-ErbB2 and Ras Signaling Pathways. DNA and Cell Biology, 2001, 20, 265-274.	1.9	19
153	Analysis of the transcriptional program induced by Raf in epithelial cells. Genes and Development, 2001, 15, 981-994.	5.9	222
154	Matrix detachment induces caspase-dependent cytochrome c release from mitochondria: inhibition by PKB/Akt but not Raf signalling. Oncogene, 2000, 19, 4461-4468.	5.9	135
155	The effector loop and prenylation site of R-Ras are involved in the regulation of integrin function. Oncogene, 2000, 19, 4961-4969.	5.9	45
156	Full Oncogenic Activities of v-Src Are Mediated by Multiple Signaling Pathways. Journal of Biological Chemistry, 2000, 275, 24096-24105.	3.4	59
157	Activated R-Ras, Rac1, Pi 3-Kinase and Pkcl̃μ Can Each Restore Cell Spreading Inhibited by Isolated Integrin β1 Cytoplasmic Domains. Journal of Cell Biology, 2000, 151, 1549-1560.	5.2	130
158	Raf induces TGFÎ ² production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes and Development, 2000, 14, 2610-2622.	5.9	270
159	Distinct Mechanisms of $\hat{I}\pm5\hat{I}^21$ Integrin Activation by Ha-Ras and R-Ras. Journal of Biological Chemistry, 2000, 275, 22590-22596.	3.4	51
160	The Small GTP-binding Protein R-Ras Can Influence Integrin Activation by Antagonizing a Ras/Raf-initiated Integrin Suppression Pathway. Molecular Biology of the Cell, 1999, 10, 1799-1809.	2.1	89
161	Multiple Ras Effector Pathways Contribute to G1Cell Cycle Progression. Journal of Biological Chemistry, 1999, 274, 22033-22040.	3.4	368
162	Heregulin Induces Phosphorylation of BRCA1 through Phosphatidylinositol 3-Kinase/AKT in Breast Cancer Cells. Journal of Biological Chemistry, 1999, 274, 32274-32278.	3.4	112

#	Article	IF	CITATIONS
163	Farnesylation of Ras is important for the interaction with phosphoinositide 3-kinase gamma. FEBS Journal, 1999, 266, 70-82.	0.2	47
164	How BAD phosphorylation is good for survival. Nature Cell Biology, 1999, 1, E33-E35.	10.3	201
165	The selective and inducible activation of endogenous PI 3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth. Oncogene, 1999, 18, 4586-4597.	5.9	85
166	Requirement of multiple SH3 domains of Nck for ligand binding. Cellular Signalling, 1999, 11, 253-262.	3.6	36
167	Apoptosis:. Current Biology, 1999, 9, R176-R179.	3.9	15
168	Identification of the Ras GTPase-activating protein GAP1m as a phosphatidylinositol-3,4,5-trisphosphate-binding protein in vivo. Current Biology, 1999, 9, 265-269.	3.9	77
169	Akt/PKB localisation and 3′ phosphoinositide generation at sites of epithelial cell–matrix and cell–cell interaction. Current Biology, 1999, 9, 433-436.	3.9	295
170	Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Current Biology, 1999, 9, 1043-S2.	3.9	193
171	Association of Nck with tyrosine-phosphorylated SLP-76 in activated T lymphocytes. European Journal of Immunology, 1999, 29, 1068-1075.	2.9	95
172	Role of Phosphoinositide 3-Kinase in Activation of Ras and Mitogen-Activated Protein Kinase by Epidermal Growth Factor. Molecular and Cellular Biology, 1999, 19, 4279-4288.	2.3	258
173	New exchange, new target. Nature, 1998, 396, 416-417.	27.8	42
174	Nerve growth factor induced stimulation of Ras requires Trk interaction with Shc but does not involve phosphoinositide 3-OH kinase. Oncogene, 1998, 17, 691-697.	5.9	48
175	Mechanisms and consequences of activation of protein kinase B/Akt. Current Opinion in Cell Biology, 1998, 10, 262-267.	5.4	1,222
176	Ras signalling and apoptosis. Current Opinion in Genetics and Development, 1998, 8, 49-54.	3.3	508
177	Lipid-Regulated Kinases: Some Common Themes at Last. Science, 1998, 279, 673-674.	12.6	189
178	Human Phosphoinositide 3-Kinase C2β, the Role of Calcium and the C2 Domain in Enzyme Activity. Journal of Biological Chemistry, 1998, 273, 33082-33090.	3.4	116
179	Phosphoinositide 3-Kinase Induces Scattering and Tubulogenesis in Epithelial Cells through a Novel Pathway. Journal of Biological Chemistry, 1998, 273, 18793-18801.	3.4	199
180	Protein Kinase B Activation and Lamellipodium Formation Are Independent Phosphoinositide 3-Kinase-Mediated Events Differentially Regulated by Endogenous Ras. Molecular and Cellular Biology, 1998, 18, 1802-1811.	2.3	133

#	Article	IF	CITATIONS
181	Stimulation of gene expression in neonatal rat ventricular myocytes by Ras is mediated by Ral guanine nucleotide dissociation stimulator (Ral.GDS) and phosphatidylinositol 3-kinase in addition to Raf. Biochemical Journal, 1998, 335, 241-246.	3.7	23
182	Lack of Correlation between Activation of Jun–NH2-terminal Kinase and Induction of Apoptosis after Detachment of Epithelial Cells. Journal of Cell Biology, 1997, 139, 1017-1023.	5.2	114
183	Interaction of Ras with phosphoinositide 3-kinase <i>γ</i> . Biochemical Journal, 1997, 326, 891-895.	3.7	88
184	Role of Phosphoinositide 3-OH Kinase in Cell Transformation and Control of the Actin Cytoskeleton by Ras. Cell, 1997, 89, 457-467.	28.9	1,007
185	EGF induced SOS phosphorylation in PC12 cells involves P90 RSK-2. Oncogene, 1997, 15, 373-383.	5.9	143
186	Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature, 1997, 385, 544-548.	27.8	1,114
187	R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Current Biology, 1997, 7, 63-71.	3.9	211
188	Cell cycle: Routine role for Ras. Current Biology, 1997, 7, R258-R260.	3.9	114
189	PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends in Biochemical Sciences, 1997, 22, 355-358.	7.5	650
190	Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO Journal, 1997, 16, 2783-2793.	7.8	936
191	1 Role of phosphoinositide-3-OH kinase in ras signaling. Advances in Second Messenger and Phosphoprotein Research, 1997, 31, 1-10.	4.5	50
192	Interactions of Cbl with Two Adaptor Proteins, Grb2 and Crk, upon T Cell Activation. Journal of Biological Chemistry, 1996, 271, 6159-6163.	3.4	128
193	[11] Measurement of nucleotide exchange and hydrolysis activities in immunoprecipitates. Methods in Enzymology, 1995, 255, 110-117.	1.0	16
194	[17] Measurements of GTP/GDP exchange in permeabilized fibroblasts. Methods in Enzymology, 1995, 255, 156-161.	1.0	13
195	The Grb2 binding domain of mSos1 is not required for downstream signal transduction. Nature Genetics, 1995, 10, 294-300.	21.4	59
196	A target for PI(3) kinase. Nature, 1995, 376, 553-554.	27.8	89
197	KSR: A novel player in the RAS pathway. Cell, 1995, 83, 831-834.	28.9	51
198	Phosphatidylinositol-3-OH kinase direct target of Ras. Nature, 1994, 370, 527-532.	27.8	1,886

#	Article	IF	CITATIONS
199	Regulating 56 kinase. Nature, 1994, 371, 378-379.	27.8	70
200	The GRB2/Sem-5 adaptor protein. FEBS Letters, 1994, 338, 113-117.	2.8	160
201	Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature, 1993, 364, 352-355.	27.8	723
202	Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell, 1993, 73, 611-620.	28.9	1,082
203	Regulation of p21ras by GTPase activating proteins and guanine nucleotide exchange proteins. Current Opinion in Genetics and Development, 1992, 2, 13-18.	3.3	52
204	Aberrant regulation of ras proteins in malignant tumour cells from type 1 neurofibromatosis patients. Nature, 1992, 356, 713-715.	27.8	653
205	Exchange rate mechanisms. Nature, 1992, 358, 282-283.	27.8	24
206	Rac and Rho in tune. Nature, 1992, 359, 273-274.	27.8	43
207	The regulation and function of p21ras in T cells. Trends in Immunology, 1992, 13, 89-92.	7.5	95
208	Ras regulation: putting back the GTP. Current Biology, 1992, 2, 329-331.	3.9	23
209	Regulatory mechanisms forras proteins. BioEssays, 1992, 14, 177-184.	2.5	130
210	Interleukin (IL)-2 activation of p21ras in murine myeloid cells transfected with human IL-2 receptor \hat{I}^2 chain. European Journal of Immunology, 1992, 22, 817-821.	2.9	27
211	Expression cloning and characterization of the TGF-1 ² type III receptor. Cell, 1991, 67, 797-805.	28.9	625
212	Plugging the GAPs. Current Biology, 1991, 1, 353-355.	3.9	6
213	Stimulation of p21ras upon T-cell activation. Nature, 1990, 346, 719-723.	27.8	907
214	The ras superfamily of small GTP-binding proteins. Trends in Biochemical Sciences, 1990, 15, 469-472.	7.5	165
215	Transfer of functional EGF receptors to an IL3-dependent cell line. Journal of Cellular Physiology, 1988, 137, 293-298.	4.1	52
216	Antibodies to the ATP-binding site of the human epidermal growth factor (EGF) receptor as specific inhibitors of EGF-stimulated protein-tyrosine kinase activity. FEBS Journal, 1986, 158, 245-253.	0.2	23

#	Article	IF	CITATIONS
217	Close similarity of epidermal growth factor receptor and v-erb-B oncogene protein sequences. Nature, 1984, 307, 521-527.	27.8	2,604
218	Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. Nature, 1984, 309, 418-425.	27.8	2,759
219	Autophosphorylation sites on the epidermal growth factor receptor. Nature, 1984, 311, 483-485.	27.8	703
220	Development of a cell-free split-luciferase biochemical assay as a tool for screening for inhibitors of challenging protein-protein interaction targets. Wellcome Open Research, 0, 5, 20.	1.8	0