Luisa Martinez-Pomares Luisa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3511504/publications.pdf

Version: 2024-02-01

77 papers

9,108 citations

57758 44 h-index 70 g-index

81 all docs

81 docs citations

81 times ranked

12049 citing authors

#	Article	IF	Citations
1	MACROPHAGE RECEPTORS AND IMMUNE RECOGNITION. Annual Review of Immunology, 2005, 23, 901-944.	21.8	1,137
2	Dectin-1 Is A Major Î ² -Glucan Receptor On Macrophages. Journal of Experimental Medicine, 2002, 196, 407-412.	8.5	902
3	The Î ² -Glucan Receptor, Dectin-1, Is Predominantly Expressed on the Surface of Cells of the Monocyte/Macrophage and Neutrophil Lineages. Journal of Immunology, 2002, 169, 3876-3882.	0.8	580
4	The mannose receptor. Journal of Leukocyte Biology, 2012, 92, 1177-1186.	3.3	419
5	Global Histone Modifications in Breast Cancer Correlate with Tumor Phenotypes, Prognostic Factors, and Patient Outcome. Cancer Research, 2009, 69, 3802-3809.	0.9	417
6	The Mannose Receptor Mediates Dengue Virus Infection of Macrophages. PLoS Pathogens, 2008, 4, e17.	4.7	350
7	Influence of the mannose receptor in host immune responses. Immunobiology, 2009, 214, 554-561.	1.9	339
8	The carbohydrate-recognition domain of Dectin-2 is a C-type lectin with specificity for high mannose. Glycobiology, 2006, 16, 422-430.	2.5	327
9	The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends in Immunology, 2005, 26, 104-110.	6.8	298
10	Mannose Receptor and Its Putative Ligands in Normal Murine Lymphoid and Nonlymphoid Organs: In Situ Expression of Mannose Receptor by Selected Macrophages, Endothelial Cells, Perivascular Microglia, and Mesangial Cells, but not Dendritic Cells. Journal of Experimental Medicine, 1999, 189, 1961-1972.	8.5	253
11	Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nature Immunology, 2010, 11, 427-434.	14.5	235
12	Recognition of Bacterial Capsular Polysaccharides and Lipopolysaccharides by the Macrophage Mannose Receptor. Journal of Biological Chemistry, 2002, 277, 41613-41623.	3.4	188
13	Divergent roles for C-type lectins expressed by cells of the innate immune system. Molecular Immunology, 2004, 41, 1109-1121.	2.2	185
14	CD169+ macrophages at the crossroads of antigen presentation. Trends in Immunology, 2012, 33, 66-70.	6.8	164
15	The Mannose Receptor Mediates the Uptake of Diverse Native Allergens by Dendritic Cells and Determines Allergen-Induced T Cell Polarization through Modulation of IDO Activity. Journal of Immunology, 2010, 185, 1522-1531.	0.8	156
16	Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18587-18592.	7.1	151
17	Physiological roles of macrophages. Pflugers Archiv European Journal of Physiology, 2017, 469, 365-374.	2.8	147
18	A Member of the Dendritic Cell Family That Enters B Cell Follicles and Stimulates Primary Antibody Responses Identified by a Mannose Receptor Fusion Protein. Journal of Experimental Medicine, 1999, 190, 851-860.	8.5	143

#	Article	lF	Citations
19	Macrophage lectins in host defence. Microbes and Infection, 2000, 2, 279-288.	1.9	141
20	Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. European Journal of Immunology, 2006, 36, 1074-1082.	2.9	130
21	Pattern recognition receptors and differentiation antigens define murine myeloid cell heterogeneity <i>ex vivo</i> . European Journal of Immunology, 2003, 33, 2090-2097.	2.9	111
22	Analysis of mannose receptor regulation by IL-4, IL-10, and proteolytic processing using novel monoclonal antibodies. Journal of Leukocyte Biology, 2003, 73, 604-613.	3.3	110
23	A role for exposed mannosylations in presentation of human therapeutic self-proteins to CD4+ T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8965-8970.	7.1	110
24	Stage-Specific Sampling by Pattern Recognition Receptors during Candida albicans Phagocytosis. PLoS Pathogens, 2008, 4, e1000218.	4.7	110
25	Intracellular replication of Streptococcus pneumoniae inside splenic macrophages serves as a reservoir for septicaemia. Nature Microbiology, 2018, 3, 600-610.	13.3	110
26	B Cells Control the Migration of a Subset of Dendritic Cells into B Cell Follicles Via CXC Chemokine Ligand 13 in a Lymphotoxin-Dependent Fashion. Journal of Immunology, 2002, 168, 5117-5123.	0.8	107
27	Aldehyde-mannan antigen complexes target the MHC class I antigen-presentation pathway. European Journal of Immunology, 2000, 30, 1714-1723.	2.9	101
28	Mannose Receptor Expression and Function Define a New Population of Murine Dendritic Cells. Journal of Immunology, 2007, 178, 4975-4983.	0.8	100
29	Macrophage mannose receptor on lymphatics controls cell trafficking. Blood, 2008, 112, 64-72.	1.4	90
30	The Stem Cell Marker CD133 Associates with Enhanced Colony Formation and Cell Motility in Colorectal Cancer. PLoS ONE, 2010, 5, e10714.	2.5	79
31	Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. European Journal of Immunology, 2001, 31, 1857-1866.	2.9	76
32	Structural Model for the Mannose Receptor Family Uncovered by Electron Microscopy of Endo180 and the Mannose Receptor. Journal of Biological Chemistry, 2006, 281, 8780-8787.	3.4	76
33	Uptake of blood coagulation factor VIII by dendritic cells is mediated via its C1 domain. Journal of Allergy and Clinical Immunology, 2012, 129, 501-509.e5.	2.9	74
34	The Mannose Receptor (CD206) is an important pattern recognition receptor (PRR) in the detection of the infective stage of the helminth Schistosoma mansoni and modulates IFN \hat{I}^3 production. International Journal for Parasitology, 2011, 41, 1335-1345.	3.1	70
35	Mannose Receptor and Scavenger Receptor: Two Macrophage Pattern Recognition Receptors with Diverse Functions in Tissue Homeostasis and Host Defense. , 2000, 479, 1-14.		69
36	Glycosylation Influences the Lectin Activities of the Macrophage Mannose Receptor. Journal of Biological Chemistry, 2005, 280, 32811-32820.	3.4	69

#	Article	IF	Citations
37	The follicular dendritic cell restricted epitope, FDC-M2, is complement C4; localization of immune complexes in mouse tissues. European Journal of Immunology, 2002, 32, 1883.	2.9	68
38	Binding Properties of the Mannose Receptor. Immunobiology, 2001, 204, 527-535.	1.9	67
39	Antigen Presentation the Macrophage Way. Cell, 2007, 131, 641-643.	28.9	65
40	Recognition of the Major Cat Allergen Fel d 1 through the Cysteine-rich Domain of the Mannose Receptor Determines Its Allergenicity. Journal of Biological Chemistry, 2011, 286, 13033-13040.	3.4	60
41	Mannose receptor interacts with Fc receptors and is critical for the development of crescentic glomerulonephritis in mice. Journal of Clinical Investigation, 2010, 120, 1469-1478.	8.2	54
42	IL-4 Receptor Signaling Is Required for Mannose Receptor Expression by Macrophages Recruited to Granulomata but not Resident Cells in Mice Infected with Schistosoma mansoni. Laboratory Investigation, 2003, 83, 1223-1231.	3.7	53
43	Fungal Recognition Enhances Mannose Receptor Shedding through Dectin-1 Engagement. Journal of Biological Chemistry, 2011, 286, 7822-7829.	3.4	53
44	Antigen targeting reveals splenic CD169 ⁺ macrophages as promoters of germinal center B ell responses. European Journal of Immunology, 2015, 45, 747-757.	2.9	50
45	Mapping and investigation of the role in pathogenesis of the major unique secreted 35-kDa protein of rabbitpox virus. Virology, 1995, 206, 591-600.	2.4	49
46	The macrophage mannose receptor promotes uptake of ADAMTS13 by dendritic cells. Blood, 2012, 119, 3828-3835.	1.4	44
47	Development of a specific system for targeting protein to metallophilic macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1963-1968.	7.1	41
48	Expression of mannose receptor and ligands for its cysteine-rich domain in venous sinuses of human spleen. Laboratory Investigation, 2005, 85, 1238-1249.	3.7	39
49	The mannose receptor binds <i>Trichuris muris</i> excretory/secretory proteins but is not essential for protective immunity. Immunology, 2009, 126, 246-255.	4.4	38
50	Characterization of the African Swine Fever Virus Structural Protein p14.5: A DNA Binding Protein. Virology, 1997, 229, 201-211.	2.4	26
51	Nuclear trafficking, histone cleavage and induction of apoptosis by the meningococcal App and MspA autotransporters. Cellular Microbiology, 2015, 17, 1008-1020.	2.1	26
52	Engulfment, persistence and fate of Bdellovibrio bacteriovorus predators inside human phagocytic cells informs their future therapeutic potential. Scientific Reports, 2019, 9, 4293.	3.3	24
53	Macrophage heterogeneity in lymphoid tissues. Seminars in Immunopathology, 2013, 35, 541-552.	6.1	20
54	Development of dual anti-biofilm and anti-bacterial medical devices. Biomaterials Science, 2020, 8, 3926-3934.	5 . 4	19

#	Article	IF	CITATIONS
55	Modulation of the immune response to Mycobacterium tuberculosis during malaria/ M. tuberculosis coâ€infection. Clinical and Experimental Immunology, 2017, 187, 259-268.	2.6	18
56	Interaction of Klebsiella pneumoniae with tissue macrophages in a mouse infection model and ex-vivo pig organ perfusions: an exploratory investigation. Lancet Microbe, The, 2021, 2, e695-e703.	7.3	18
57	Carbohydrates from Pseudomonas aeruginosa biofilms interact with immune C-type lectins and interfere with their receptor function. Npj Biofilms and Microbiomes, 2021, 7, 87.	6.4	16
58	Detailed N-glycan analysis of mannose receptor purified from murine spleen indicates tissue specific sialylation. Biochemical and Biophysical Research Communications, 2009, 384, 436-443.	2.1	15
59	Identification of the ovine mannose receptor and its possible role in Visna/Maedi virus infection. Veterinary Research, 2011, 42, 28.	3.0	15
60	Granulocyte-Macrophage Colony Stimulatory Factor Enhances the Pro-Inflammatory Response of Interferon-Î ³ -Treated Macrophages to Pseudomonas aeruginosa Infection. PLoS ONE, 2015, 10, e0117447.	2.5	14
61	Targeted Delivery of Antigen Processing Inhibitors to Antigen Presenting Cells <i>via</i> Mannose Receptors. ACS Chemical Biology, 2010, 5, 461-476.	3.4	12
62	Contribution of the Alkylquinolone Quorum-Sensing System to the Interaction of Pseudomonas aeruginosa With Bronchial Epithelial Cells. Frontiers in Microbiology, 2018, 9, 3018.	3.5	12
63	TLR4, but Neither Dectin-1 nor Dectin-2, Participates in the Mollusk Hemocyanin-Induced Proinflammatory Effects in Antigen-Presenting Cells From Mammals. Frontiers in Immunology, 2019, 10, 1136.	4.8	11
64	Gamma Interferon and Interleukin-17A Differentially Influence the Response of Human Macrophages and Neutrophils to Pseudomonas aeruginosa Infection. Infection and Immunity, 2019, 87, .	2.2	10
65	The Mannose Receptor, a Bi-Functional Lectin with Roles in Homeostasis and Immunity Trends in Glycoscience and Glycotechnology, 2002, 14, 273-283.	0.1	10
66	Splenic macrophages as the source of bacteraemia during pneumococcal pneumonia. EBioMedicine, 2021, 72, 103601.	6.1	10
67	Câ€type lectin receptors MR and DCâ€SIGN are involved in recognition of hemocyanins, shaping their immunostimulatory effects on human dendritic cells. European Journal of Immunology, 2021, 51, 1715-1731.	2.9	6
68	Exploiting Fc Chimaeric Proteins for the Identification of Ligands Specific for the Mannose Receptor. Methods in Molecular Biology, 2009, 531, 103-122.	0.9	6
69	Glycosylation Influences the Ligand Binding Activities of Mannose Receptor. Advances in Experimental Medicine and Biology, 2005, 564, 25-26.	1.6	4
70	Murine Macrophages. , 2008, 415, 255-272.		4
71	Editorial: Immune Response to Biofilms. Frontiers in Immunology, 2021, 12, 696356.	4.8	2
72	Phagocytes and Immunoglobulins. , 2014, , 95-113.		1

#	Article	IF	CITATIONS
73	Effect of O-linked glycosylation on the antigenicity, cellular uptake and trafficking in dendritic cells of recombinant Ber e 1. PLoS ONE, 2021, 16, e0249876.	2.5	1
74	Diurnal Differences in Intracellular Replication Within Splenic Macrophages Correlates With the Outcome of Pneumococcal Infection. Frontiers in Immunology, 0, 13, .	4.8	1
75	Analysis of the Targeting Properties of Fc Chimeric Proteins and Antibodies in Mice In Vivo. Current Protocols in Immunology, 2012, 97, Unit 18.18.1-12.	3.6	O
76	Macrophages and Autoimmunity. , 2020, , 191-212.		0
77	C-Type Lectin Receptor Mediated Immune Recognition of ADAMTS13 Promotes HLA-DRB1*11 Dependent Presentation of CUB1-2 Derived Peptides by Dendritic Cells. Blood, 2011, 118, 196-196.	1.4	0