Minoru Seki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3509430/publications.pdf

Version: 2024-02-01

190	7,263	43	80
papers	citations	h-index	g-index
193	193	193	5964
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Process simplification and structure design of parallelized microslit isolator for physical property-based capture of tumor cells. Analyst, The, 2022, 147, 1622-1630.	1.7	1
2	Formation of 3D tissues of primary hepatocytes using fibrillized collagen microparticles as intercellular binders. Journal of Bioscience and Bioengineering, 2022, 133, 265-272.	1.1	3
3	Microengineering of Collagen Hydrogels Integrated into Microfluidic Devices for Perfusion Culture of Mammalian Cells. MATEC Web of Conferences, 2021, 333, 07006.	0.1	1
4	Polyanion-induced, microfluidic engineering of fragmented collagen microfibers for reconstituting extracellular environments of 3D hepatocyte culture. Materials Science and Engineering C, 2021, 129, 112417.	3.8	8
5	Preparation of Microporous Hydrogel Sponges for 3D Perfusion Culture of Mammalian Cells. MATEC Web of Conferences, 2021, 333, 07004.	0.1	1
6	Laborless, Automated Microfluidic Tandem Cell Processor for Visualizing Intracellular Molecules of Mammalian Cells. Analytical Chemistry, 2020, 92, 2580-2588.	3.2	2
7	Sacrificial Alginate-Assisted Microfluidic Engineering of Cell-Supportive Protein Microfibers for Hydrogel-Based Cell Encapsulation. ACS Omega, 2020, 5, 21641-21650.	1.6	9
8	Hydrodynamic Microparticle Separation Mechanism Using Three-Dimensional Flow Profiles in Dual-Depth and Asymmetric Lattice-Shaped Microchannel Networks. Micromachines, 2019, 10, 425.	1.4	10
9	Enhanced Immunoadsorption on Imprinted Polymeric Microstructures with Nanoengineered Surface Topography for Lateral Flow Immunoassay Systems. Analytical Chemistry, 2019, 91, 13377-13382.	3.2	10
10	Thermally imprinted microcone structure-assisted lateral-flow immunoassay platforms for detecting disease marker proteins. Analyst, The, 2019, 144, 1519-1526.	1.7	16
11	One-Step Formation of Microporous Hydrogel Sponges Encapsulating Living Cells by Utilizing Bicontinuous Dispersion of Aqueous Polymer Solutions. ACS Applied Bio Materials, 2019, 2, 2237-2245.	2.3	13
12	A numbering-up strategy of hydrodynamic microfluidic filters for continuous-flow high-throughput cell sorting. Lab on A Chip, 2019, 19, 1828-1837.	3.1	20
13	Formation of pressurizable hydrogel-based vascular tissue models by selective gelation in composite PDMS channels. RSC Advances, 2019, 9, 9136-9144.	1.7	4
14	PDMS microstencil plate-supported fabrication of ultra-thin, condensed ECM membranes for separated cell coculture on both surfaces. Sensors and Actuators B: Chemical, 2019, 287, 486-495.	4.0	10
15	Micropassage-embedding composite hydrogel fibers enable quantitative evaluation of cancer cell invasion under 3D coculture conditions. Lab on A Chip, 2018, 18, 1378-1387.	3.1	26
16	Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. Journal of Bioscience and Bioengineering, 2018, 126, 111-118.	1.1	38
17	Multiphase Microfluidic Processes to Produce Alginate-Based Microparticles and Fibers. Journal of Chemical Engineering of Japan, 2018, 51, 318-330.	0.3	17
18	Slanted, asymmetric microfluidic lattices as size-selective sieves for continuous particle/cell sorting. Lab on A Chip, 2017, 17, 304-314.	3.1	54

#	Article	IF	Citations
19	Collagen Microparticle-Mediated 3D Cell Organization: A Facile Route to Bottom-up Engineering of Thick and Porous Tissues. ACS Biomaterials Science and Engineering, 2017, 3, 2144-2154.	2.6	22
20	Assembly of carbon nanotubes into microparticles with tunable morphologies using droplets in a non-equilibrium state. RSC Advances, 2017, 7, 17773-17780.	1.7	6
21	Direct Observation of Splitting in Oil-In-Water-In-Oil Emulsion Droplets via a Microchannel Mimicking Membrane Pores. Langmuir, 2017, 33, 14087-14092.	1.6	17
22	Control of invasion direction of cancer cells using hierarchically patterned hydrogel sheets. , 2017, , .		1
23	Microstructure Formation on Polytetrafluoroethylene (PTFE) and Perfluoroalkoxy (PFA) Bulk Plates by a Magnetron Enhanced Reactive Ion Etching System. Journal of the Vacuum Society of Japan, 2017, 60, 176-181.	0.3	O
24	Microfluidics-based wet spinning of protein microfibers as solid scaffolds for 3D cell cultivation. , 2016, , .		0
25	Microfluidic System Enabling Multistep Tuning of Extraction Time Periods for Kinetic Analysis of Droplet-Based Liquid–Liquid Extraction. Analytical Chemistry, 2016, 88, 5637-5643.	3.2	10
26	Fabrication of multilayered vascular tissues using microfluidic agarose hydrogel platforms. Biotechnology Journal, 2016, 11, 1415-1423.	1.8	36
27	A new method for continuous sorting of cells/particles using lattice-shaped dual-depth microchannels. , 2015, , .		4
28	One-step microfluidic spinning of collagen microfibers and their application to cell cultivation. , 2015, , .		1
29	Morphology control of protein microparticles produced using microfluidic droplets in a non-equilibrium state. , 2015, , .		2
30	Enhancement of osteoblastic differentiation in alginate gel beads with bioactive octacalcium phosphate particles. Biomedical Materials (Bristol), 2015, 10, 065019.	1.7	10
31	On-chip fabrication and magnetic force estimation of peapod-like hybrid microfibers using a microfluidic device. Microfluidics and Nanofluidics, 2015, 18, 1177-1187.	1.0	36
32	Formation of Monodisperse Hierarchical Lipid Particles Utilizing Microfluidic Droplets in a Nonequilibrium State. Langmuir, 2015, 31, 2334-2341.	1.6	21
33	Magnetic assembly of microfluidic spun alginate microfibers for fabricating three-dimensional cell-laden hydrogel constructs. Microfluidics and Nanofluidics, 2015, 19, 1169-1180.	1.0	31
34	High-Throughput Cell Assembly Featuring Heterogeneous Hydrogels Produced by Using Microfluidic Devices., 2015,, 129-150.		0
35	Cell-sized condensed collagen microparticles for preparing microengineered composite spheroids of primary hepatocytes. Lab on A Chip, 2015, 15, 3941-3951.	3.1	71
36	Development of Sheet–shaped/Tubular Biological Materials Using Microfluidics. Membrane, 2015, 40, 137-142.	0.0	0

#	Article	IF	Citations
37	Patterned hydrogel microfibers prepared using multilayered microfluidic devices for guiding network formation of neural cells. Biofabrication, 2014, 6, 035011.	3.7	46
38	In vitro assessment of osteoblastic differentiation of encapsulated stromal cells in alginate/octacalcium phosphate. , 2014, , .		0
39	Shape control of cell-embedding hydrogel microstructures utilizing non-equilibrium aqueous two-phase systems. , 2014, , .		1
40	Facile fabrication processes for hydrogel-based microfluidic devices made of natural biopolymers. Biomicrofluidics, 2014, 8, 024115.	1.2	32
41	Asymmetric lattice-shaped microchannel structures for continuous size-dependent cell sorting. , 2014, , .		0
42	One-step synthesis of spherical/nonspherical polymeric microparticles using non-equilibrium microfluidic droplets. RSC Advances, 2014, 4, 13557.	1.7	20
43	On-chip fabrication of magnetic alginate hydrogel microfibers by multilayered pneumatic microvalves. Microfluidics and Nanofluidics, 2014, 17, 457-468.	1.0	21
44	Microfluidic counterflow centrifugal elutriation system for sedimentation-based cell separation. Microfluidics and Nanofluidics, 2013, 14, 1049-1057.	1.0	17
45	Magnetophoresis-Integrated Hydrodynamic Filtration System for Size- and Surface Marker-Based Two-Dimensional Cell Sorting. Analytical Chemistry, 2013, 85, 7666-7673.	3.2	59
46	Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts. Journal of Bioscience and Bioengineering, 2013, 116, 761-767.	1.1	68
47	Microfabricated complex hydrogel fibers for quantitative evaluation of cancer cell invasion in in vivo tissue-like environments. , 2013, , .		0
48	Cell encapsulation into alginate/octacalcium phosphate hydrogel beads for bone regenerative therapy. , 2013, , .		0
49	Size dependent cell sorting systems and characteristic of cell groups. , 2013, , .		0
50	Magnetic manipulation for spatially patternel alginate hydrogel microfibers., 2013,,.		1
51	A droplet-based microfluidic process to produce yarn-ball-shaped hydrogel microbeads. RSC Advances, 2013, 3, 12299.	1.7	12
52	Assembly techniques for artificial small diameter blood vessel structures. , 2013, , .		0
53	Low-pressure plasma-etching of bulk polymer materials using gas mixture of CF4 and O2. AIP Advances, 2013, 3, 112105.	0.6	17
54	Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent. Biomicrofluidics, 2013, 7, 54120.	1.2	35

#	Article	IF	Citations
55	Controlled patterning of magnetic hydrogel microfibers under magnetic tweezers. , 2013, , .		O
56	Preparation and characterization of magnetic PEGDA beads for enhanced construction of hydrogel assembly, , 2013, , .		0
57	Automated Construction System for 3D Lattice Structure Based on Alginate Gel Fiber Containing Living Cells. Journal of Robotics and Mechatronics, 2013, 25, 665-672.	0.5	5
58	Formation of Cell Aggregates Using Microfabricated Hydrogel Chambers for Assembly into Larger Tissues. Journal of Robotics and Mechatronics, 2013, 25, 682-689.	0.5	9
59	Fabrication of Complex Hydrogel Materials by Utilizing Microfluidics and Micromolding. Materials Research Society Symposia Proceedings, 2012, 1415, 157.	0.1	0
60	Manipulation of cells and cell spheroids using collagen hydrogel microbeads prepared by microfluidic devices. , 2012 , , .		2
61	Fabrication of vascular tissue models by assembling multiple cell types inside hydrogel microchannels., 2012,,.		5
62	Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter, 2012, 8, 3122.	1.2	158
63	Micropatterning of Hydrogels on Locally Hydrophilized Regions on PDMS by Stepwise Solution Dipping and in Situ Gelation. Langmuir, 2012, 28, 14073-14080.	1.6	17
64	Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials, 2012, 33, 8304-8315.	5.7	227
65	Fluidic preparation of patterned hydrogel fibers using micronozzle-array devices for neural cell guidance., 2012,,.		0
66	Isolation of cell nuclei in microchannels by short-term chemical treatment via two-step carrier medium exchange. Biomedical Microdevices, 2012, 14, 751-757.	1.4	16
67	Fluidic shear-assisted formation of actuating multilamellar lipid tubes using microfabricated nozzle array device. Chemical Communications, 2011, 47, 8433.	2.2	10
68	Fabrication of functional hydrogel microbeads utilizing non-equilibrium microfluidics for biological applications. , $2011, \ldots$		1
69	Size-dependent sorting of corneal limbal epithelial cell with microfluidic chip. , 2011, , .		O
70	Formation of self-actuating lipid tubes using microfabricated picoliter nozzle array. , 2011, , .		0
71	Microfluidics and microfabrication technology for highly precise cell manipulation and cultivation. , 2011, , .		1
72	Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluidics and Nanofluidics, 2011, 11, 105-110.	1.0	90

#	Article	IF	Citations
73	Generation of uniform-size droplets by multistep hydrodynamic droplet division in microfluidic circuits. Microfluidics and Nanofluidics, 2011, 11, 601-610.	1.0	26
74	Blood cell classification utilizing hydrodynamic filtration. Electronics and Communications in Japan, 2011, 94, 1-6.	0.3	20
75	Observation of nonspherical particle behaviors for continuous shape-based separation using hydrodynamic filtration. Biomicrofluidics, 2011, 5, 24103.	1.2	56
76	Editorial: Asia Pacific Biochemical engineering. Biotechnology Journal, 2010, 5, 436-437.	1.8	3
77	Sol–gel based fabrication of hybrid microfluidic devices composed of PDMS and thermoplastic substrates. Sensors and Actuators B: Chemical, 2010, 148, 323-329.	4.0	33
78	Development of microfluidic cell nucleus separator employing rapid chemical treatment. , 2010, , .		1
79	Key role for transketolase activity in erythritol production by Trichosporonoides megachiliensis SN-G42. Journal of Bioscience and Bioengineering, 2009, 108, 385-390.	1.1	57
80	In-channel focusing of flowing microparticles utilizing hydrodynamic filtration. Microfluidics and Nanofluidics, 2009, 6, 571-576.	1.0	49
81	Microfabrication of Transparent Thermoplastic Resin Plates by Dry Etching. Journal of the Vacuum Society of Japan, 2009, 52, 138-140.	0.3	0
82	Continuous and precise particle separation by electroosmotic flow control in microfluidic devices. Electrophoresis, 2008, 29, 1423-1430.	1.3	45
83	Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis. Journal of Colloid and Interface Science, 2008, 321, 401-407.	5.0	88
84	Polymer surface morphology control by reactive ion etching for microfluidic devices. Sensors and Actuators B: Chemical, 2008, 132, 637-643.	4.0	31
85	Continuous and Size-Dependent Sorting of Emulsion Droplets Using Hydrodynamics in Pinched Microchannels. Langmuir, 2008, 24, 4405-4410.	1.6	100
86	Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Lab on A Chip, 2008, 8, 772.	3.1	43
87	Patterning Reactive Microdomains inside Polydimethylsiloxane Microchannels by Trapping and Melting Functional Polymer Particles. Journal of the American Chemical Society, 2008, 130, 14044-14045.	6.6	10
88	Blood Cell Classification Utilizing Hydrodynamic Filtration. IEEJ Transactions on Sensors and Micromachines, 2008, 128, 396-401.	0.0	1
89	Rapid quantification of bacterial cells in potable water using a simplified microfluidic device. Journal of Microbiological Methods, 2007, 68, 643-647.	0.7	36
90	Polymer Surface Morphology Control for Microfluidic Devices. , 2007, , .		1

#	Article	IF	CITATIONS
91	Microfluidic devices for size-dependent separation of liver cells. Biomedical Microdevices, 2007, 9, 637-645.	1.4	110
92	A microfluidic flow distributor generating stepwise concentrations for high-throughput biochemical processing. Lab on A Chip, 2006, 6, 179.	3.1	50
93	Rapid enumeration of bacterial cells in drinking water using a microfluidic device. , 2006, , .		0
94	Phenylpropanoid metabolite supports cell aggregate formation in strawberry cell suspension culture. Journal of Bioscience and Bioengineering, 2006, 102, 8-13.	1.1	36
95	Microfluidic Particle Sorter Employing Flow Splitting and Recombining. Analytical Chemistry, 2006, 78, 1357-1362.	3.2	165
96	Continuous separation of particles using a microfluidic device equipped with flow rate control valves. Journal of Chromatography A, 2006, 1127, 214-220.	1.8	66
97	ãfžã,≅, ãfæµè. ã, 'ç'" ã,ãŸç²'åã®å^†ç´š. Shinku/Journal of the Vacuum Society of Japan, 2006, 49, 404-408.	0.2	1
98	Control-free Air Vent System for Ultra-low Volume Sample Injection on a Microfabricated Device. Analytical Sciences, 2005, 21, 465-468.	0.8	13
99	Hydrogen Production from Glucose by Anaerobes. Biotechnology Progress, 2005, 21, 1786-1788.	1.3	18
100	Separation of cultured strawberry cells producing anthocyanins in aqueous two-phase system. Journal of Bioscience and Bioengineering, 2005, 100, 449-454.	1.1	26
101	Development of a passive micromixer based on repeated fluid twisting and flattening, and its application to DNA purification. Analytical and Bioanalytical Chemistry, 2005, 383, 776-782.	1.9	45
102	Enhanced accumulation of anthocyanin in cultured strawberry cells by repetitive feeding of l-Phenylalanine into the medium. Journal of Bioscience and Bioengineering, 2005, 99, 43-47.	1.1	62
103	Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab on A Chip, 2005, 5, 778.	3.1	297
104	Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab on A Chip, 2005, 5, 1233.	3.1	448
105	Cultivation of yeast and plant cells entrapped in the low-viscous liquid-core of an alginate membrane capsule prepared using polyethylene glycol. Journal of Bioscience and Bioengineering, 2004, 97, 111-118.	1.1	43
106	Evaluation of mass-transfer characteristics in alginate-membrane liquid-core capsules prepared using polyethylene glycol. Journal of Bioscience and Bioengineering, 2004, 98, 114-121.	1.1	24
107	Preparation characteristics of water-in-oil-in-water multiple emulsions using microchannel emulsification. Journal of Colloid and Interface Science, 2004, 270, 221-228.	5.0	99
108	Continuous cell partitioning using an aqueous two-phase flow system in microfluidic devices. Biotechnology and Bioengineering, 2004, 88, 489-494.	1.7	85

#	Article	IF	Citations
109	Effect of interfacial tension on the dynamic behavior of droplet formation during microchannel emulsification. Journal of Colloid and Interface Science, 2004, 269, 178-185.	5.0	69
110	Prediction of Droplet Diameter for Microchannel Emulsification:Â Prediction Model for Complicated Microchannel Geometries. Industrial & Engineering Chemistry Research, 2004, 43, 8233-8238.	1.8	27
111	Nanoliter-Sized Liquid Dispenser Array for Multiple Biochemical Analysis in Microfluidic Devices. Analytical Chemistry, 2004, 76, 895-899.	3.2	77
112	Pinched Flow Fractionation:Â Continuous Size Separation of Particles Utilizing a Laminar Flow Profile in a Pinched Microchannel. Analytical Chemistry, 2004, 76, 5465-5471.	3.2	634
113	Pressure-Driven Sample Injection with Quantitative Liquid Dispensing for On-Chip Electrophoresis. Analytical Sciences, 2004, 20, 483-487.	0.8	37
114	Can lipases hydrolyze a peptide bond?. Enzyme and Microbial Technology, 2003, 32, 655-657.	1.6	19
115	Stimulatory Effect of an Indirectly Attached RNA Helicase-Recruiting Sequence on the Suppression of Gene Expression by Antisense Oligonucleotides. Oligonucleotides, 2003, 13, 9-17.	4.4	3
116	ãfžã,¤, ãfæμ뽓ãf‡ãfã,¤,¹ã•ãfžã,¤, ãfãfãfªã,¢ã, ã, ¿ãf⅓. Nippon Nogeikagaku Kaishi, 2003, 77, 865-867.	0.0	1
117	Induction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Symposium Series, 2002, 2, 251-252.	0.3	31
118	Isolation and Characterization of Polyhydroxyalkanoates Inclusions and Their Associated Proteins in Pseudomonassp. 61-3. Biomacromolecules, 2002, 3, 787-792.	2.6	31
119	Characterization of Spontaneous Transformation-Based Droplet Formation during Microchannel Emulsification. Journal of Physical Chemistry B, 2002, 106, 9405-9409.	1.2	186
120	Preparation of Monodispersed Polymeric Microspheres over 50 $\hat{l}\frac{1}{4}$ m Employing Microchannel Emulsification. Industrial & Employing Chemistry Research, 2002, 41, 4043-4047.	1.8	71
121	Effect of Channel Structure on Microchannel Emulsification. Langmuir, 2002, 18, 5708-5712.	1.6	145
122	Prediction of Droplet Diameter for Microchannel Emulsification. Langmuir, 2002, 18, 3854-3859.	1.6	134
123	Interesterification and hydrolysis catalyzed by fatty acid-modified lipases. European Journal of Lipid Science and Technology, 2002, 104, 255-261.	1.0	8
124	Preparation of monodispersed emulsion with large droplets using microchannel emulsification. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 515-519.	0.8	61
125	Screening for transgenic plant cells that highly express a target gene from genetically mixed cells. Biochemical Engineering Journal, 2002, 10, 175-182.	1.8	5
126	Development of Electrophoretic Analysis System Using Multiple Channel Microchips. , 2002, , 664-666.		1

#	Article	IF	Citations
127	Small-Angle X-Ray Scattering Analysis of Stearic Acid Modified Lipase. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1003-1006.	0.6	20
128	Biosynthesis of Poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) Copolymer from Sugars by RecombinantRalstoniaeutrophaHarboring thephaC1Psand thephaGPsGenes ofPseudomonassp. 61-3. Biomacromolecules, 2001, 2, 934-939.	2.6	50
129	Cloning and Characterization of thePseudomonassp. 61-3phaGGene Involved in Polyhydroxyalkanoate Biosynthesis. Biomacromolecules, 2001, 2, 142-147.	2.6	33
130	Interfacial Tension Driven Monodispersed Droplet Formation from Microfabricated Channel Array. Langmuir, 2001, 17, 5562-5566.	1.6	417
131	Preparation Characteristics of Monodispersed Water-in-Oil Emulsions Using Microchannel Emulsification Journal of Chemical Engineering of Japan, 2001, 34, 757-765.	0.3	74
132	Structural study of lipase modified with fatty acids. Biochemical Engineering Journal, 2001, 9, 185-191.	1.8	7
133	Formation and Characterization of Reversed Micelles Composed of Phospholipids and Fatty Acids. Journal of Colloid and Interface Science, 2001, 240, 566-572.	5.0	15
134	Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip. Electrophoresis, 2001, 22, 328-333.	1.3	166
135	Synthesis of Polymeric Microspheres with Narrow Size Distributions Employing Microchannel Emulsification. Macromolecular Rapid Communications, 2001, 22, 773-778.	2.0	97
136	Microfabricated Polymer Chip for Capillary Gel Electrophoresis. Biotechnology Progress, 2001, 17, 958-962.	1.3	39
137	Effect of hydrocarbon-water interfaces on synthetic and hydrolytic activities of lipases. Journal of Bioscience and Bioengineering, 2001, 92, 242-247.	1.1	12
138	Integration of gene amplification and capillary gel electrophoresis on a polydimethylsiloxane-glass hybrid microchip., 2001, 22, 328.		19
139	Monodispersed Droplet Formation Caused by Interfacial Tension from Microfabricated Channel Array. , 2001, , 252-261.		4
140	Novel Liquid Injection Method with Wedge-Shaped Microchannel on a PDMS Microchip System for Diagnostic Analyses., 2001,, 1204-1207.		8
141	Chromatographic Separation of Proteins on A Pdms-Polymer Chip by Pressure Flow. , 2001, , 48-50.		5
142	Separation and Collection of a Specified DNA Fragment by Chip-Based CE System., 2001, , 113-114.		3
143	Diagnostic Analyses by Biochemical Reactions and Separations on a Chip., 2001,, 542-551.		0
144	Microfabricated Structures for Bioseparation. Progress in Biotechnology, 2000, , 69-74.	0.2	2

#	Article	IF	Citations
145	Analysis of pigment accumulation heterogeneity in plant cell population by image-processing system., 2000, 67, 493-497.		20
146	Preparation of Monodispersed Solid Lipid Microspheres Using a Microchannel Emulsification Technique. Journal of Colloid and Interface Science, 2000, 227, 95-103.	5.0	204
147	Intermittent light irradiation with second- or hour-scale periods controls anthocyanin production by strawberry cellsa~†. Enzyme and Microbial Technology, 2000, 26, 621-629.	1.6	29
148	Quantitative determination of cultured strawberry-cell heterogeneity by image analysis: effects of medium modification on anthocyanin accumulation. Biochemical Engineering Journal, 2000, 5, 201-207.	1.8	19
149	Formation of biocompatible reversed micellar systems using phospholipids. Biochemical Engineering Journal, 2000, 6, 193-199.	1.8	27
150	Glucocorticoid-induced expression of a foreign gene by the GVG system in transformed tobacco BY-2 cells. Biochemical Engineering Journal, 2000, 6, 185-191.	1.8	16
151	Analysis of pigmentation in individual cultured plant cells using an image processing system. Biotechnology Letters, 2000, 22, 977-981.	1.1	9
152	Oil-water interfacial activation of lipase for interesterification of triglyceride and fatty acid. JAOCS, Journal of the American Oil Chemists' Society, 2000, 77, 1121.	0.8	69
153	Mathematical model analyzes light-controlled expression of the CHS promoter in BY-2 cells. Biochemical Engineering Journal, 1999, 4, 65-72.	1.8	2
154	High anthocyanin accumulation in the dark by strawberry (Fragaria ananassa) callus. Biotechnology Letters, 1999, 21, 695-699.	1,1	41
155	Medium Recycling as an Operational Strategy to Increase Plant Secondary Metabolite Formation. , 1999, , 157-163.		2
156	Plant Cell Immobilization in Loofa Sponge Using Two-Way Bubble Circular System Journal of Chemical Engineering of Japan, 1999, 32, 8-14.	0.3	7
157	Anthocyanin synthesis, growth and nutrient uptake in suspension cultures of strawberry cells. Journal of Bioscience and Bioengineering, 1998, 86, 72-78.	0.9	19
158	Characteristics of loofa (Luffa cylindrica) sponge as a carrier for plant cell immobilization. Journal of Bioscience and Bioengineering, 1998, 85, 416-421.	0.9	41
159	Metabolic responses of plant cell culture to hydrodynamic stress. Canadian Journal of Chemical Engineering, 1998, 76, 267-275.	0.9	25
160	Enhanced Anthocyanin Methylation by Growth Limitation in Strawberry Suspension Culture. Enzyme and Microbial Technology, 1998, 22, 404-408.	1.6	22
161	Kinetic analysis of cell growth and vitamin e production in plant cell culture of carthamus tinctorius using a structured model. Biochemical Engineering Journal, 1998, 1, 233-242.	1.8	10
162	Influence of Conditioned Medium on Cyanidin and Peonidin Synthesis Journal of Chemical Engineering of Japan, 1997, 30, 951-953.	0.3	4

#	Article	IF	Citations
163	Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Science, 1997, 127, 207-214.	1.7	68
164	Taxol (paclitaxel) production using free and immobilized cells of Taxus cuspidata., 1997, 53, 214-219.		75
165	Evaluation of Co-Immobilized Lactobacillus Delbrueckii with Porous Particles for Lactic Acid Production Journal of Chemical Engineering of Japan, 1996, 29, 37-43.	0.3	2
166	Changes of anthocyanin composition by conditioned medium and cell inoculum size using strawberry suspension culture. Biotechnology Letters, 1996, 18, 1149-1154.	1.1	24
167	Effect of CO2 concentration of growth and carbon fixation rate of pleurochrysis carterae Journal of Chemical Engineering of Japan, 1995, 28, 474-476.	0.3	1
168	Continuous production of taxol by cell culture of taxus cuspidata Journal of Chemical Engineering of Japan, 1995, 28, 488-490.	0.3	27
169	Characteristics of immobilized Lactobacillus delbrueckii in a liquid-solid fluidized bed bioreactor for lactic acid production Journal of Chemical Engineering of Japan, 1995, 28, 198-203.	0.3	9
170	Mass transfer behavior in lactic acid fermentation using immobilized Lactobacillus delbrueckii Journal of Chemical Engineering of Japan, 1995, 28, 480-482.	0.3	7
171	Mathematical model for analysis of mass transfer for immobilized cells in lactic acid fermentation. Biotechnology Progress, 1995, 11, 558-564.	1.3	34
172	Use of auxin and cytokinin to regulate anthocyanin production and composition in suspension cultures of strawberry cell. Journal of the Science of Food and Agriculture, 1994, 65, 271-276.	1.7	46
173	Effects of conditioning factor on anthocyanin production in strawberry suspension cultures. Journal of the Science of Food and Agriculture, 1994, 66, 381-388.	1.7	35
174	Increased alkaloid production in a suspension culture of Coffea arabica cells using an adsorption column for product removal. Journal of Bioscience and Bioengineering, 1994, 78, 117-119.	0.9	13
175	Hydrodynamic damage of cultured cells of Carthamus tinctorius in a stirred tank reactor Journal of Chemical Engineering of Japan, 1994, 27, 466-471.	0.3	37
176	Light Effect to Promote Secondary Metabolite Production of Plant Cell Culture., 1994,, 103-133.		4
177	Factors Affecting Vitamin E Production Using Plant Cell Culture of Carthamus Tinctorius Journal of Chemical Engineering of Japan, 1993, 26, 470-474.	0.3	7
178	Effect of Co-immobilization of Microporous Particles on the Overall Reaction Rate of Immobilized Cell Biocatalysts Journal of Chemical Engineering of Japan, 1993, 26, 662-668.	0.3	9
179	Growth and Carbon Fixation Rate of Calcareous Algae Cricosphaera carterae Kagaku Kogaku Ronbunshu, 1993, 19, 893-900.	0.1	1
180	Influence of light irradiation rates and irradiation modes on caffeine production and cell growth in suspension culture of Coffea arabica cells Journal of Chemical Engineering of Japan, 1991, 24, 783-788.	0.3	10

#	Article	lF	CITATIONS
181	Cell Growth and Reaction Characteristics of Immobilized Zymomonas mobilis. Annals of the New York Academy of Sciences, 1990, 613, 290-300.	1.8	10
182	Effect of Light on Caffeine Production by Plant Cells of Coffea arabicaa. Annals of the New York Academy of Sciences, 1990, 613, 538-541.	1.8	3
183	Microbial production of cis, cis-muconic acid from benzoic acid. Applied Microbiology and Biotechnology, 1988, 28, 20.	1.7	60
184	Effect of intraparticle mass transfer resistance on reactivity of immobilized yeast cells Journal of Chemical Engineering of Japan, 1985, 18, 389-393.	0.3	57
185	Effect of intraparticle diffusion on reaction by immobilized growing yeast Journal of Chemical Engineering of Japan, 1985, 18, 461-463.	0.3	22
186	Reaction characteristics of an immobilized yeast producing ethanol. Biotechnology and Bioengineering, 1983, 25, 2921-2928.	1.7	32
187	Multiple diagnostic analyses by enzymatic and chemical reaction on a PDMS microchip. , 0, , .		11
188	Formation of monodispersed microspheres from microfabricated channel array. , 0, , .		0
189	PDMS (polydimethylsiloxane)-glass hybrid microchip for gene amplification. , 0, , .		5
190	Nanomechanics of ultrathin silicon beams and carbon nanotubes. , 0, , .		1