Vladimir Yarov-Yarovoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3508842/publications.pdf

Version: 2024-02-01

147 papers 8,233 citations

44 h-index

57758

48315 88 g-index

158 all docs

158 docs citations

158 times ranked 7272 citing authors

#	Article	lF	CITATIONS
1	Cardioprotective Effect of Diazoxide and Its Interaction With Mitochondrial ATP-Sensitive K ⁺ Channels. Circulation Research, 1997, 81, 1072-1082.	4.5	889
2	Voltage-gated ion channels and gating modifier toxins. Toxicon, 2007, 49, 124-141.	1.6	560
3	Overview of Molecular Relationships in the Voltage-Gated Ion Channel Superfamily. Pharmacological Reviews, 2005, 57, 387-395.	16.0	436
4	The Mitochondrial K Channel as a Receptor for Potassium Channel Openers. Journal of Biological Chemistry, 1996, 271, 8796-8799.	3.4	413
5	Multipass membrane protein structure prediction using Rosetta. Proteins: Structure, Function and Bioinformatics, 2005, 62, 1010-1025.	2.6	303
6	Closing In on the Resting State of the Shaker K+ Channel. Neuron, 2007, 56, 124-140.	8.1	270
7	Structural mechanism underlying capsaicin binding and activation of the TRPV1 ion channel. Nature Chemical Biology, 2015, 11, 518-524.	8.0	236
8	Molecular Determinants of Voltage-dependent Gating and Binding of Pore-blocking Drugs in Transmembrane Segment IIIS6 of the Na+ Channel \hat{l}_{\pm} Subunit. Journal of Biological Chemistry, 2001, 276, 20-27.	3.4	224
9	State-dependent Inhibition of the Mitochondrial KATP Channel by Glyburide and 5-Hydroxydecanoate. Journal of Biological Chemistry, 1998, 273, 13578-13582.	3.4	224
10	Structural basis for gating charge movement in the voltage sensor of a sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E93-102.	7.1	223
11	Voltage sensor conformations in the open and closed states in ROSETTA structural models of K+ channels. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7292-7297.	7.1	219
12	Role of Amino Acid Residues in Transmembrane Segments IS6 and IIS6 of the Na+ Channel α Subunit in Voltage-dependent Gating and Drug Block. Journal of Biological Chemistry, 2002, 277, 35393-35401.	3.4	209
13	An emerging consensus on voltage-dependent gating from computational modeling and molecular dynamics simulations. Journal of General Physiology, 2012, 140, 587-594.	1.9	179
14	State-dependent inhibition of the mitochondrial KATP channel by glyburide and 5-hydroxydecanoate. Journal of Biological Chemistry, 1998, 273, 13578-82.	3.4	168
15	Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. Journal of Physiology, 2006, 576, 87-102.	2.9	157
16	Calculation of the Gating Charge for the Kv1.2 Voltage-Activated Potassium Channel. Biophysical Journal, 2010, 98, 2189-2198.	0.5	135
17	A Gating Hinge in Na+ Channels. Neuron, 2004, 41, 859-865.	8.1	134
18	Sequential formation of ion pairs during activation of a sodium channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22498-22503.	7.1	133

#	Article	lF	Citations
19	Structure and Function of the Voltage Sensor of Sodium Channels Probed by a \hat{I}^2 -Scorpion Toxin. Journal of Biological Chemistry, 2006, 281, 21332-21344.	3.4	128
20	Mapping the receptor site for \hat{l} ±-scorpion toxins on a Na $\langle sup \rangle + \langle sup \rangle$ channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15426-15431.	7.1	125
21	Disulfide locking a sodium channel voltage sensor reveals ion pair formation during activation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15142-15147.	7.1	121
22	Antibodies and venom peptides: new modalities for ion channels. Nature Reviews Drug Discovery, 2019, 18, 339-357.	46.4	119
23	Interdomain Interaction in the FimH Adhesin of Escherichia coli Regulates the Affinity to Mannose. Journal of Biological Chemistry, 2007, 282, 23437-23446.	3.4	115
24	In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2937-E2946.	7.1	106
25	Directed Evolution of a Selective and Sensitive Serotonin Sensor via Machine Learning. Cell, 2020, 183, 1986-2002.e26.	28.9	104
26	Selective disruption of high sensitivity heat activation but not capsaicin activation of TRPV1 channels by pore turret mutations. Journal of General Physiology, 2012, 139, 273-283.	1.9	96
27	A pain-inducing centipede toxin targets the heat activation machinery of nociceptor TRPV1. Nature Communications, 2015, 6, 8297.	12.8	96
28	Differential interactions of lamotrigine and related drugs with transmembrane segment IVS6 of voltage-gated sodium channels. Neuropharmacology, 2003, 44, 413-422.	4.1	92
29	Inhibition of the Mitochondrial KATP Channel by Long-chain Acyl-CoA Esters and Activation by Guanine Nucleotides. Journal of Biological Chemistry, 1996, 271, 32084-32088.	3.4	88
30	Local anesthetic and antiepileptic drug access and binding to a bacterial voltage-gated sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13057-13062.	7.1	87
31	LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural (zâ") agrin. Human Genetics, 2012, 131, 1123-1135.	3.8	86
32	Potassium channels in the heart: structure, function and regulation. Journal of Physiology, 2017, 595, 2209-2228.	2.9	79
33	Structure-Function Map of the Receptor Site for \hat{l}^2 -Scorpion Toxins in Domain II of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 33641-33651.	3.4	76
34	Gating charge interactions with the S1 segment during activation of a Na ⁺ channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18825-18830.	7.1	74
35	Adenylyl Cyclase Subtype–Specific Compartmentalization. Circulation Research, 2013, 112, 1567-1576.	4.5	71
36	Structural basis for antiarrhythmic drug interactions with the human cardiac sodium channel. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2945-2954.	7.1	71

#	Article	IF	Citations
37	The bipolar assembly domain of the mitotic motor kinesin-5. Nature Communications, 2013, 4, 1343.	12.8	69
38	Mapping the Interaction Site for a \hat{l}^2 -Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels. Journal of Biological Chemistry, 2012, 287, 30719-30728.	3.4	67
39	A Computational Pipeline to Predict Cardiotoxicity. Circulation Research, 2020, 126, 947-964.	4.5	60
40	Na ⁺ channel function, regulation, structure, trafficking and sequestration. Journal of Physiology, 2015, 593, 1347-1360.	2.9	59
41	The conformational wave in capsaicin activation of transient receptor potential vanilloid 1 ion channel. Nature Communications, $2018,9,2879.$	12.8	54
42	The nucleotide regulatory sites on the mitochondrial KATP channel face the cytosol1The experimental work was in partial fulfillment of requirements for the Ph.D. degree for Vladimir Yarov-Yarovoy and Martin JabÅ rek1. Biochimica Et Biophysica Acta - Bioenergetics, 1997, 1321, 128-136.	1.0	50
43	Finding Homes for Orphan Cytochrome P450s: CYP4V2 and CYP4F22 in Disease States. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2011, 11, 124-132.	3.4	48
44	Structural refinement of the hERG1 pore and voltageâ€sensing domains with ROSETTAâ€membrane and molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2010, 78, 2922-2934.	2.6	47
45	Functional interaction with filamin A and intracellular Ca ²⁺ enhance the surface membrane expression of a small-conductance Ca ²⁺ -activated K ⁺ (SK2) channel. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9989-9994.	7.1	47
46	Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3657-66.	7.1	47
47	Identification of amino acid determinants in CYP4B1 for optimal catalytic processing of 4-ipomeanol. Biochemical Journal, 2015, 465, 103-114.	3.7	46
48	Interactions of H562 in the S5 Helix with T618 and S621 in the Pore Helix Are Important Determinants of hERG1 Potassium Channel Structure and Function. Biophysical Journal, 2009, 96, 3600-3610.	0.5	40
49	Structural Insights into the Atomistic Mechanisms of Action of Small Molecule Inhibitors Targeting the KCa3.1 Channel Pore. Molecular Pharmacology, 2017, 91, 392-402.	2.3	39
50	Chemoselective tarantula toxins report voltage activation of wild-type ion channels in live cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4789-96.	7.1	38
51	Molecular Interactions in the Voltage Sensor Controlling Gating Properties of Ca V Calcium Channels. Structure, 2016, 24, 261-271.	3.3	36
52	Structural mechanisms underlying activation of TRPV1 channels by pungent compounds in gingers. British Journal of Pharmacology, 2019, 176, 3364-3377.	5 . 4	36
53	Tarantula toxins use common surfaces for interacting with Kv and ASIC ion channels. ELife, 2015, 4, e06774.	6.0	36
54	A distinct structural mechanism underlies TRPV1 activation by piperine. Biochemical and Biophysical Research Communications, 2019, 516, 365-372.	2.1	31

#	Article	IF	CITATIONS
55	Activity-Dependent Palmitoylation Controls SynDIG1 Stability, Localization, and Function. Journal of Neuroscience, 2016, 36, 7562-7568.	3.6	29
56	A Polybasic Plasma Membrane Binding Motif in the I-II Linker Stabilizes Voltage-gated CaV1.2 Calcium Channel Function. Journal of Biological Chemistry, 2015, 290, 21086-21100.	3.4	27
57	Cooperativity of K _v 7.4 channels confers ultrafast electromechanical sensitivity and emergent properties in cochlear outer hair cells. Science Advances, 2020, 6, eaba1104.	10.3	26
58	Constitutive coupling of a naturally occurring human alpha1a-adrenergic receptor genetic variant to EGFR transactivation pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19796-19801.	7.1	25
59	Allosteric Catch Bond Properties of the FimH Adhesin from Salmonella enterica Serovar Typhimurium. Journal of Biological Chemistry, 2011, 286, 38136-38147.	3.4	25
60	Structural insights into TRPV2 activation by small molecules. Nature Communications, 2022, 13, 2334.	12.8	25
61	Gain-of-function mutation of a voltage-gated sodium channel NaV1.7 associated with peripheral pain and impaired limb development. Journal of Biological Chemistry, 2017, 292, 9262-9272.	3.4	21
62	αâ€Actininâ€1 promotes activity of the Lâ€type Ca ²⁺ channel Ca _v 1.2. EMBO Journal, 2020, 39, e102622.	7.8	20
63	Towards Structure-Guided Development of Pain Therapeutics Targeting Voltage-Gated Sodium Channels. Frontiers in Pharmacology, 2022, 13, 842032.	3.5	20
64	An Unorthodox Mechanism Underlying Voltage Sensitivity of TRPV1 Ion Channel. Advanced Science, 2020, 7, 2000575.	11.2	19
65	Catalytic residues and a predicted structure of tetrahydrobiopterin-dependent alkylglycerol mono-oxygenase. Biochemical Journal, 2012, 443, 279-286.	3.7	18
66	Mechanisms of Calmodulin Regulation of Different Isoforms of Kv7.4 K+ Channels. Journal of Biological Chemistry, 2016, 291, 2499-2509.	3.4	17
67	Sensitivity to the two peptide bacteriocin plantaricin EF is dependent on CorC <i>, </i> a membraneâ€bound, magnesium/cobalt efflux protein. MicrobiologyOpen, 2019, 8, e827.	3.0	17
68	Ensuring scientific reproducibility in bio-macromolecular modeling via extensive, automated benchmarks. Nature Communications, 2021, 12, 6947.	12.8	16
69	Na+/K+-ATPase E960 and phospholemman F28 are critical for their functional interaction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20756-20761.	7.1	15
70	Structural Determinants for the Selectivity of the Positive KCa3.1 Gating Modulator 5-Methylnaphtho $[2,1-\langle i\rangle d\langle i\rangle]$ oxazol-2-amine (SKA-121). Molecular Pharmacology, 2017, 92, 469-480.	2.3	14
71	Opening TRPP2 (<i>PKD2L1</i>) requires the transfer of gating charges. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15540-15549.	7.1	14
72	Characterization of an Additional Splice Acceptor Site Introduced into CYP4B1 in Hominoidae during Evolution. PLoS ONE, 2015, 10, e0137110.	2.5	13

#	Article	IF	CITATIONS
73	Veratridine: A Janus-Faced Modulator of Voltage-Gated Sodium Ion Channels. ACS Chemical Neuroscience, 2020, 11, 418-426.	3. 5	13
74	Computational models for predictive cardiac ion channel pharmacology. Drug Discovery Today: Disease Models, 2014, 14, 3-10.	1.2	12
75	The Trials and Tribulations of Structure Assisted Design of KCa Channel Activators. Frontiers in Pharmacology, 2019, 10, 972.	3.5	12
76	Gating Properties of Mutant Sodium Channels and Responses to Sodium Current Inhibitors Predict Mexiletine-Sensitive Mutations of Long QT Syndrome 3. Frontiers in Pharmacology, 2020, 11, 1182.	3.5	11
77	A Large and Phylogenetically Diverse Class of Type 1 Opsins Lacking a Canonical Retinal Binding Site. PLoS ONE, 2016, 11, e0156543.	2.5	11
78	Molecular determinants of pro-arrhythmia proclivity of d- and l-sotalol via a multi-scale modeling pipeline. Journal of Molecular and Cellular Cardiology, 2021, 158, 163-177.	1.9	10
79	New capsaicin analogs as molecular rulers to define the permissive conformation of the mouse TRPV1 ligand-binding pocket. ELife, 2020, 9, .	6.0	10
80	A novel tarantula toxin stabilizes the deactivated voltage sensor of bacterial sodium channel. FASEB Journal, 2017, 31, 3167-3178.	0.5	9
81	Pathogenic effects of agrin V1727F mutation are isoform specific and decrease its expression and affinity for HSPGs and LRP4. Human Molecular Genetics, 2019, 28, 2648-2658.	2.9	7
82	Distinguishing Potassium Channel Resting State Conformations in Live Cells with Environment-Sensitive Fluorescence. ACS Chemical Neuroscience, 2020, 11, 2316-2326.	3.5	7
83	Different arrhythmia-associated calmodulin mutations have distinct effects on cardiac SK channel regulation. Journal of General Physiology, 2020, 152, .	1.9	7
84	Disruption of protein quality control of the human ether-Ã-go-go related gene K+ channel results in profound long QT syndrome. Heart Rhythm, 2022, 19, 281-292.	0.7	7
85	Helical motion of an S4 voltage sensor revealed by gating pore currents. Channels, 2010, 4, 75-77.	2.8	6
86	Toggle switch residues control allosteric transitions in bacterial adhesins by participating in a concerted repacking of the protein core. PLoS Pathogens, 2021, 17, e1009440.	4.7	6
87	De Novo Design of Peptidic Positive Allosteric Modulators Targeting TRPV1 with Analgesic Effects. Advanced Science, 2021, 8, 2101716.	11.2	6
88	The MX-Helix of Muscle nAChR Subunits Regulates Receptor Assembly and Surface Trafficking. Frontiers in Molecular Neuroscience, 2020, 13, 48.	2.9	5
89	Sticking to nooks and crannies. Nature Chemical Biology, 2013, 9, 473-474.	8.0	3
90	Structural Modeling of Local Anesthetic and Antiarrhythmic Drug Binding to the Human Cardiac Voltage Gated Sodium Channel. Biophysical Journal, 2018, 114, 39a.	0.5	2

#	Article	lF	CITATIONS
91	Assessing the Structural Basis of \hat{l} /4-Conotoxin KIIIA Inhibition of the Voltage-Gated Sodium Channel Nav1.7. Biophysical Journal, 2018, 114, 635a.	0.5	2
92	Structural and Functional Characterization of a Novel Scorpion Toxin that Inhibits NaV1.8 via Interactions With the DI Voltage Sensor and DII Pore Module. Frontiers in Pharmacology, 2022, 13, .	3.5	2
93	Common Structural Pattern for Flecainide Binding in Atrial-Selective Kv1.5 and Nav1.5 Channels: A Computational Approach. Pharmaceutics, 2022, 14, 1356.	4.5	2
94	Modeling Temperature-Dependent Ion Channel Protein Structural Changes with Rosetta. Biophysical Journal, 2013, 104, 229a-230a.	0.5	1
95	First insights into structure-function relationships of alkylglycerol monooxygenase. Pteridines, 2013, 24, 99-103.	0.5	1
96	Structural Modeling of Toxin Interactions with the Human Voltage-Gated Sodium Channel Pore. Biophysical Journal, 2014, 106, 130a.	0.5	1
97	Validation of KCa3.1 Channel Nifedipine Interaction Site Predicted by Rosetta Modeling Method. Biophysical Journal, 2015, 108, 582a-583a.	0.5	1
98	An Open State Model of the Navab Channel Explored by Rosetta and Molecular Dynamics Simulation. Biophysical Journal, 2017, 112, 105a.	0.5	1
99	Structural Modeling of hERG Channel Interactions with Drugs using Rosetta. Biophysical Journal, 2018, 114, 486a.	0.5	1
100	The Sodium Channel Voltage Sensor Slides to Rest. Trends in Pharmacological Sciences, 2019, 40, 718-720.	8.7	1
101	Structural Modeling of Drug Interactions with hERG Channel in Open and Closed States. Biophysical Journal, 2019, 116, 249a-250a.	0.5	1
102	Structural Modeling of a Human Voltage-Gated Sodium Channel. Biophysical Journal, 2012, 102, 603a.	0.5	О
103	Mapping the Receptor Sites for a Î ² -Scorpion Toxin on the Pore Module in Domain III of Voltage-Gated Sodium Channels. Biophysical Journal, 2012, 102, 325a.	0.5	0
104	Structural Modeling of the Human Nav1.7 Sodium Channel Pore. Biophysical Journal, 2013, 104, 137a.	0.5	0
105	Fluorescently Labeled Tarantula Toxin Reveals Voltage Dependent Adhesion to K+ Channels. Biophysical Journal, 2013, 104, 197a.	0.5	0
106	The PLM Homotetramer has a Structural Basis that Parallels that of PLB: The Leucine Zipper. Biophysical Journal, 2013, 104, 407a.	0.5	0
107	Residues Critical for Voltage-Sensor Transitions Determining Gating Properties of Cav1.1. Biophysical Journal, 2014, 106, 136a.	0.5	0
108	A Structural Framework for the Polymodal Pain Sensor TRPV1. Biophysical Journal, 2014, 106, 756a.	0.5	0

#	Article	IF	CITATIONS
109	Common Interaction Surfaces for Tarantula Toxins Targeting Kv and ASIC Channels. Biophysical Journal, 2014, 106, 737a-738a.	0.5	O
110	Rosetta Structural Modeling of Tarantula Toxin Binding to Voltage Sensors. Biophysical Journal, 2014, 106, 737a.	0.5	0
111	Functional Interaction with Filamin a Enhances Atrial-Specific Small Conductance Ca2 Activated K+Channel (SK2) Surface Membrane Expression. Biophysical Journal, 2014, 106, 118a.	0.5	0
112	Structural Modeling of Hexameric and Tetrameric Ion Conduction Pathways of Orai1 Channel. Biophysical Journal, 2014, 106, 314a.	0.5	0
113	Structural Modeling of KCa3.1 Channel Interaction with Small Molecules. Biophysical Journal, 2014, 106, 542a.	0.5	О
114	Understanding the State Dependence of Voltage Sensor Toxin Action on Voltage Gated Sodium Channels. Biophysical Journal, 2015, 108, 574a.	0.5	0
115	Sodium Selective Conduction, Inactivation and Inhibition Mechanisms using the Bacterial NavAb Channel. Biophysical Journal, 2015, 108, 574a.	0.5	О
116	Tarantula Toxins use Common Surfaces for Interacting with Kv and ASIC Ion Channels. Biophysical Journal, 2015, 108, 82a.	0.5	0
117	Positive KCa Channel Gating Modulators with Selectivity for KCa3.1. Biophysical Journal, 2015, 108, 20a.	0.5	О
118	Molecular Mechanism of TRPV1 Activation by Capsaicin. Biophysical Journal, 2015, 108, 124a.	0.5	0
119	Small Molecule Modulation of Voltage-Gated Ion Channels. Biophysical Journal, 2015, 108, 177a.	0.5	0
120	Design Principles of Membrane Protein Structures. Biophysical Journal, 2016, 110, 56a.	0.5	0
121	Structural Determinants for Selectivity of the Positive KCa Channel Gating Modulator, SKA-121. Biophysical Journal, 2016, 110, 114a.	0.5	О
122	Exploring Structural Interactions of Tarantula Toxins with Lipid Membranes using Rosetta and Molecular Dynamics Simulation. Biophysical Journal, 2016, 110, 447a.	0.5	0
123	Validation of KCa3.1 Channel Small Molecules Interaction Sites Predicted by Rosetta. Biophysical Journal, 2016, 110, 447a.	0.5	0
124	What Determines the Charybdotoxin Specificity Among Kv1 Potassium Channels?. Biophysical Journal, 2016, 110, 106a-107a.	0.5	0
125	Molecular Scale Prediction of Lidocaine Interaction with the Pore Domain of Human Nav1.5. Biophysical Journal, 2016, 110, 107a.	0.5	0
126	Mapping the Nav1.7 Channel Interaction with the Conotoxin KIIIA. Biophysical Journal, 2016, 110, 437a.	0.5	0

#	Article	IF	CITATIONS
127	Tarantula Toxin SGTx-1 alters Gating Kinetics of Human Voltage-Gated Sodium Channel Nav1.7. Biophysical Journal, 2017, 112, 240a.	0.5	О
128	Rational Design of K Ca 2 Channel Activators. Biophysical Journal, 2017, 112, 412a-413a.	0.5	0
129	State-Dependent Structural Modeling and Atomistic Simulations of the hERG Potassium Channel. Biophysical Journal, 2017, 112, 542a.	0.5	0
130	Rational Design and Validation of a Vanilloid-Sensitive TRPV2 Ion Channel. Biophysical Journal, 2017, 112, 114a.	0.5	0
131	Rational Engineering and Rosetta Design of a Genetically Encoded Fluorescent Reporter of Protein Conformational Change. Biophysical Journal, 2018, 114, 408a.	0.5	0
132	Ring Finger Protein 207 Degrades T613M Kv11.1 Channel. Biophysical Journal, 2018, 114, 625a.	0.5	0
133	Structural Modeling of Full-Length KCa Channels using Rosetta. Biophysical Journal, 2018, 114, 307a.	0.5	0
134	Molecular Determinants of Steroid Hormone and Drug Induced Arrhythmogenesis via hERG Channel Block. Biophysical Journal, 2018, 114, 486a.	0.5	0
135	Structural Modeling of the HERG Channel in an Inactivated State and its Drug Interactions. Biophysical Journal, 2019, 116, 104a.	0.5	0
136	The Conformational Wave in Capsaicin Activation of Transient Receptor Potential Vanilloid 1 Ion Channel. Biophysical Journal, 2019, 116, 452a.	0.5	0
137	The Molecular Mechanisms of State Dependent hERG Blockade by Dofetilide. Biophysical Journal, 2019, 116, 245a.	0.5	0
138	Editorial. Neuroscience Letters, 2019, 700, 1-2.	2.1	0
139	Demonstration of a Predictive Multiscale Model for Drug-Induced Arrhythmogenic Risk. Biophysical Journal, 2020, 118, 325a.	0.5	0
140	Atomistic Modeling of Neuro-cardiovascular Coupling Modulation. Biophysical Journal, 2020, 118, 161a.	0.5	0
141	Mechanisms of Cardiac Arrhythmias and Sudden Cardiac Death in Human Calmodulinopathy. Biophysical Journal, 2020, 118, 195a.	0.5	0
142	Structural Modeling of Ion Channel - Small Molecule Interactions using Rosetta's Galiganddock. Biophysical Journal, 2020, 118, 587a.	0.5	0
143	Elucidating the Molecular Determinants of Pro-arrhythmic Proclivities of Beta-blocking Drugs. Biophysical Journal, 2020, 118, 115a-116a.	0.5	0
144	Observation of Multiple Potassium Channel Closed State Structures by Voltage Clamp Spectroscopy. Biophysical Journal, 2020, 118, 262a.	0.5	0

#	Article	IF	CITATIONS
145	Structural Modeling of the hERG Channel in an Inactivated State and Associated Drug Interactions. Biophysical Journal, 2020, 118, 212a.	0.5	0
146	Predicting Arrhythmogenicity: Structural Modeling of Safe and Unsafe hERG Blockers. Biophysical Journal, 2020, 118, 117a.	0.5	0
147	Rosetta modeling of the inner KCa3.1 pore, a hotspot for small molecule modulation. FASEB Journal, 2013, 27, 913.23.	0.5	0