List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3508777/publications.pdf Version: 2024-02-01

		26567	48187
182	9,130	56	88
papers	citations	h-index	g-index
192	192	192	3261
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Quantifying the non-linear dependence of energetic electron fluxes in the Earth's radiation belts with radial diffusion drivers. Annales Geophysicae, 2022, 40, 37-53.	0.6	7
2	Charge-Exchange Byproduct Cold Protons in the Earth's Magnetosphere. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	2
3	Pitch-Angle Diffusion in the Earth's Magnetosphere Organized by the Mozer-Transformed Coordinate System. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	4
4	The Need for a System Science Approach to Global Magnetospheric Models. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	3
5	Editorial: The Role of Turbulence in the Solar Wind, Magnetosphere, Ionosphere Dynamics. Frontiers in Astronomy and Space Sciences, 2022, 8, .	1.1	Ο
6	Grand Challenge for Space Physics. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	1
7	Noise, Regression Dilution Bias, and Solar-Wind/Magnetosphere Coupling Studies. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	6
8	Is the Solar Wind Electron Strahl a Seed Population for the Earth's Electron Radiation Belt?. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	0
9	Editorial: Topical Collection on Auroral Physics. Space Science Reviews, 2021, 217, 1.	3.7	4
10	Is Our Understanding of Solar-Wind/Magnetosphere Coupling Satisfactory?. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	19
11	Exploring the Properties of the Electron Strahl at 1 AU as an Indicator of the Quality of the Magnetic Connection Between the Earth and the Sun. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	10
12	Do Impulsive Solar-Energetic-Electron (SEE) Events Drive High-Voltage Charging Events on the Nightside of the Moon?. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	3
13	The Electron Structure of the Solar Wind. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	7
14	Solar-Wind Structures That Are Not Destroyed by the Action of Solar-Wind Turbulence. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	7
15	The impact of cold electrons and cold ions in magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 2021, 220, 105599.	0.6	27
16	On the Saturation (or Not) of Geomagnetic Indices. Frontiers in Astronomy and Space Sciences, 2021, 8,	1.1	6
17	Magnetospheric Plasma Systems Science and Solar Wind Plasma Systems Science: The Plasma-Wave Interactions of Multiple Particle Populations. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	2
18	Quiescent Discrete Auroral Arcs: A Review of Magnetospheric Generator Mechanisms. Space Science Reviews, 2020, 216, 1.	3.7	31

#	Article	IF	CITATIONS
19	The Compression of the Heliospheric Magnetic Structure by Interplanetary Shocks: Is the Structure at 1AU a Manifestation of Solar-Wind Turbulence or Is It Fossil Structure From the Sun?. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	6
20	Substorm Current Wedge: Energy Conversion and Current Diversion. Journal of Geophysical Research: Space Physics, 2020, 125, e2020JA028073.	0.8	2
21	Some Similarities and Differences Between the Observed Alfvénic Fluctuations in the Fast Solar Wind and Navier–Stokes Turbulence. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	0
22	A Mission Concept to Determine the Magnetospheric Causes of Aurora. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	8
23	A Statistical Analysis of the Fluctuations in the Upstream and Downstream Plasmas of 109 Strongâ€Compression Interplanetary Shocks at 1ÂAU. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027518.	0.8	10
24	Nine Outstanding Questions of Solar Wind Physics. Journal of Geophysical Research: Space Physics, 2020, 125, e2018JA026005.	0.8	77
25	Solving the auroral-arc-generator question by using an electron beam to unambiguously connect critical magnetospheric measurements to auroral images. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 206, 105310.	0.6	11
26	Plasma and Magnetic-Field Structure of the Solar Wind at Inertial-Range Scale Sizes Discerned From Statistical Examinations of the Time-Series Measurements. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	15
27	A survey of geomagnetic and plasma time lags in the solar-wind-driven magnetosphere of earth. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208, 105376.	0.6	9
28	Outstanding questions in magnetospheric plasma physics: The pollenzo view. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208, 105377.	0.6	13
29	On the Motion of the Heliospheric Magnetic Structure Through the Solar Wind Plasma. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027377.	0.8	20
30	Editorial: Active Experiments in Space: Past, Present, and Future. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	2
31	What magnetospheric and ionospheric researchers should know about the solar wind. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 204, 105271.	0.6	35
32	The Magnetic Structure of the Solar Wind: Ionic Composition and the Electron Strahl. Geophysical Research Letters, 2020, 47, e2019GL084586.	1.5	20
33	On the Fourier Contribution of Strong Current Sheets to the Highâ€Frequency Magnetic Power SpectralDensity of the Solar Wind. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027307.	0.8	14
34	Magnetic Connectivity in the Corona as a Source of Structure in the Solar Wind. Journal of Geophysical Research: Space Physics, 2019, 124, 32-49.	0.8	16
35	Patch Size Evolution During Pulsating Aurora. Journal of Geophysical Research: Space Physics, 2019, 124, 4725-4738.	0.8	13
36	Active Experiments in Space: The Future. Frontiers in Astronomy and Space Sciences, 2019, 6, .	1.1	21

#	Article	IF	CITATIONS
37	Some Properties of the Solar Wind Turbulence at 1 AU Statistically Examined in the Different Types of Solar Wind Plasma. Journal of Geophysical Research: Space Physics, 2019, 124, 2406-2424.	0.8	27
38	Compacting the description of a time-dependent multivariable system and its multivariable driver by reducing the state vectors to aggregate scalars: the Earth's solar-wind-driven magnetosphere. Nonlinear Processes in Geophysics, 2019, 26, 429-443.	0.6	14
39	SAMI3 Simulations of a Persistent Plasmasphere Plume. Geophysical Research Letters, 2018, 45, 3374-3381.	1.5	9
40	On the Origins of the Intercorrelations Between Solar Wind Variables. Journal of Geophysical Research: Space Physics, 2018, 123, 20-29.	0.8	22
41	The spatial structure of the oncoming solar wind at Earth and the shortcomings of a solar-wind monitor at L1. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 177, 2-11.	0.6	38
42	Spacecraft harging Mitigation of a Highâ€Power Electron Beam Emitted by a Magnetospheric Spacecraft: Simple Theoretical Model for the Transient of the Spacecraft Potential. Journal of Geophysical Research: Space Physics, 2018, 123, 6424-6442.	0.8	11
43	The Earth's Magnetosphere: A Systems Science Overview and Assessment. Surveys in Geophysics, 2018, 39, 817-859.	2.1	70
44	Looking for Evidence of Windâ€Shear Disconnections of the Earth's Magnetotail: GEOTAIL Measurements and LFM MHD Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 5538-5560.	0.8	5
45	Exploration of a Composite Index to Describe Magnetospheric Activity: Reduction of the Magnetospheric State Vector to a Single Scalar. Journal of Geophysical Research: Space Physics, 2018, 123, 7384-7412.	0.8	14
46	Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research: Space Physics, 2017, 122, 2973-2998.	0.8	54
47	Electrical conductivity channels in the atmosphere produced by relativistic-electron microbursts from the magnetosphere. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 155, 22-26.	0.6	8
48	The response of the inner magnetosphere to the trailing edges of highâ€speed solarâ€wind streams. Journal of Geophysical Research: Space Physics, 2017, 122, 501-516.	0.8	11
49	Timeâ€Integral Correlations of Multiple Variables With the Relativisticâ€Electron Flux at Geosynchronous Orbit: The Strong Roles of Substormâ€Injected Electrons and the Ion Plasma Sheet. Journal of Geophysical Research: Space Physics, 2017, 122, 11,961.	0.8	28
50	Classification of Solar Wind With Machine Learning. Journal of Geophysical Research: Space Physics, 2017, 122, 10,910.	0.8	54
51	Is the <i>Dst</i> Index Sufficient to Define All Geospace Storms?. Journal of Geophysical Research: Space Physics, 2017, 122, 11,543.	0.8	43
52	Systems science of the magnetosphere: Creating indices of substorm activity, of the substormâ€injected electron population, and of the electron radiation belt. Journal of Geophysical Research: Space Physics, 2017, 122, 10,012.	0.8	23
53	The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During Highâ€Speed Streamâ€Driven Storms. Journal of Geophysical Research: Space Physics, 2017, 122, 12,072.	0.8	7
54	Spacecraft-charging Mitigation of a High-Power Electron Beam Emitted by a Magnetospheric Spacecraft. , 2017, , .		0

#	Article	IF	CITATIONS
55	ION Emission Energetics From a Positively Biased Hollow Cathode Contactor. , 2017, , .		0
56	Relationship between the durations of jumps in solar wind time series and the frequency of the spectral break. Journal of Geophysical Research: Space Physics, 2016, 121, 1817-1838.	0.8	11
57	The trailing edges of highâ€speed streams at 1 AU. Journal of Geophysical Research: Space Physics, 2016, 121, 6107-6140.	0.8	29
58	An improved empirical model of electron and ion fluxes at geosynchronous orbit based on upstream solar wind conditions. Space Weather, 2016, 14, 511-523.	1.3	42
59	Compressional perturbations of the dayside magnetosphere during highâ€speedâ€streamâ€driven geomagnetic storms. Journal of Geophysical Research: Space Physics, 2016, 121, 4569-4589.	0.8	18
60	The plasma structure of coronal hole solar wind: Origins and evolution. Journal of Geophysical Research: Space Physics, 2016, 121, 5055-5087.	0.8	64
61	Can an electron gun solve the outstanding problem of magnetosphereâ€ionosphere connectivity?. Journal of Geophysical Research: Space Physics, 2016, 121, 6769-6773.	0.8	21
62	Preface: Unsolved problems of magnetospheric physics. Journal of Geophysical Research: Space Physics, 2016, 121, 10,783.	0.8	23
63	The proton and electron radiation belts at geosynchronous orbit: Statistics and behavior during highâ€speed streamâ€driven storms. Journal of Geophysical Research: Space Physics, 2016, 121, 5449-5488.	0.8	21
64	Relativity and the Solar Wind: The Maxwell-Equation Origins of the Solar-Wind Motional Electric Field. Journal of Electromagnetic Analysis and Applications, 2016, 08, 133-151.	0.1	5
65	Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?. Journal of Geophysical Research: Space Physics, 2015, 120, 3647-3664.	0.8	19
66	An empirical model of electron and ion fluxes derived from observations at geosynchronous orbit. Space Weather, 2015, 13, 233-249.	1.3	44
67	Exploring the effect of current sheet thickness on the highâ€frequency Fourier spectrum breakpoint of the solar wind. Journal of Geophysical Research: Space Physics, 2015, 120, 9256-9268.	0.8	19
68	A new fourâ€plasma categorization scheme for the solar wind. Journal of Geophysical Research: Space Physics, 2015, 120, 70-100.	0.8	95
69	Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes. Journal of Geophysical Research: Space Physics, 2015, 120, 3588-3602.	0.8	19
70	First optical observations of energetic electron precipitation at 4278 Ã caused by a powerful VLF transmitter. Geophysical Research Letters, 2014, 41, 2237-2242.	1.5	2
71	Observations and modeling of magnetic flux tube refilling of the plasmasphere at geosynchronous orbit. Journal of Geophysical Research: Space Physics, 2014, 119, 9246-9255.	0.8	9
72	Feedback of the Magnetosphere. Science, 2014, 343, 1086-1087.	6.0	12

5

#	Article	IF	CITATIONS
73	The solar wind electric field does not control the dayside reconnection rate. Journal of Geophysical Research: Space Physics, 2014, 119, 751-760.	0.8	72
74	Statistically measuring the amount of pitch angle scattering that energetic electrons undergo as they drift across the plasmaspheric drainage plume at geosynchronous orbit. Journal of Geophysical Research: Space Physics, 2014, 119, 1814-1826.	0.8	12
75	Longâ€lived plasmaspheric drainage plumes: Where does the plasma come from?. Journal of Geophysical Research: Space Physics, 2014, 119, 6496-6520.	0.8	31
76	Exploring the cross correlations and autocorrelations of the ULF indices and incorporating the ULF indices into the systems science of the solar windâ€driven magnetosphere. Journal of Geophysical Research: Space Physics, 2014, 119, 4307-4334.	0.8	40
77	Canonical correlation analysis of the combined solar wind and geomagnetic index data sets. Journal of Geophysical Research: Space Physics, 2014, 119, 5364-5381.	0.8	41
78	Evolution of mass density and O+ concentration at geostationary orbit during storm and quiet events. Journal of Geophysical Research: Space Physics, 2014, 119, 6417-6431.	0.8	21
79	How important are the alphaâ€proton relative drift and the electron heat flux for the proton heating of the solar wind in the inner heliosphere?. Journal of Geophysical Research: Space Physics, 2014, 119, 5210-5219.	0.8	30
80	No evidence for the localized heating of solar wind protons at intense velocity shear zones. Journal of Geophysical Research: Space Physics, 2014, 119, 1455-1462.	0.8	13
81	CPIC: A Curvilinear Particle-in-Cell Code for Plasma–Material Interaction Studies. IEEE Transactions on Plasma Science, 2013, 41, 3577-3587.	0.6	80
82	Physicsâ€based solar wind driver functions for the magnetosphere: Combining the reconnectionâ€coupled MHD generator with the viscous interaction. Journal of Geophysical Research: Space Physics, 2013, 118, 7119-7150.	0.8	30
83	Physical improvements to the solar wind reconnection control function for the Earth's magnetosphere. Journal of Geophysical Research: Space Physics, 2013, 118, 2113-2121.	0.8	61
84	Asymmetry of magnetosheath flows and magnetopause shape during low Alfvén Mach number solar wind. Journal of Geophysical Research: Space Physics, 2013, 118, 1089-1100.	0.8	49
85	Estimating the effects of ionospheric plasma on solar wind/magnetosphere coupling via mass loading of dayside reconnection: Ionâ€plasmaâ€sheet oxygen, plasmaspheric drainage plumes, and the plasma cloak. Journal of Geophysical Research: Space Physics, 2013, 118, 5695-5719.	0.8	63
86	The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach. Journal of Geophysical Research: Space Physics, 2013, 118, 1500-1513.	0.8	68
87	The differences between storms driven by helmet streamer CIRs and storms driven by pseudostreamer CIRs. Journal of Geophysical Research: Space Physics, 2013, 118, 5506-5521.	0.8	20
88	The Strong-Double-Layer Model of Auroral Arcs: an Assessment. Geophysical Monograph Series, 2013, , 113-120.	0.1	6
89	Optical Measurements of the Fine Structure of Auroral Arcs. Geophysical Monograph Series, 2013, , 25-30.	0.1	16
90	The role of compressibility in energy release by magnetic reconnection. Physics of Plasmas, 2012, 19, .	0.7	18

#	Article	IF	CITATIONS
91	The effect of sudden wind shear on the Earth's magnetosphere: Statistics of wind shear events and CCMC simulations of magnetotail disconnections. Journal of Geophysical Research, 2012, 117, .	3.3	38
92	Looking for evidence of mixing in the solar wind from 0.31 to 0.98 AU. Journal of Geophysical Research, 2012, 117, .	3.3	27
93	Lowâ€degree structure in Mercury's planetary magnetic field. Journal of Geophysical Research, 2012, 117,	3.3	131
94	Magnetosphere response to highâ€speed solar wind streams: A comparison of weak and strong driving and the importance of extended periods of fast solar wind. Journal of Geophysical Research, 2012, 117, .	3.3	44
95	The velocity and magnetic field fluctuations of the solar wind at 1 AU: Statistical analysis of Fourier spectra and correlations with plasma properties. Journal of Geophysical Research, 2012, 117, .	3.3	80
96	Testing the necessity of transient spikes in the storm time ring current drivers. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	5
97	A survey of the anisotropy of the outer electron radiation belt during high-speed-stream-driven storms. Journal of Geophysical Research, 2011, 116, .	3.3	22
98	Energetic electron precipitation during high-speed solar wind stream driven storms. Journal of Geophysical Research, 2011, 116, .	3.3	110
99	Electron-ion Coulomb scattering and the electron Landau damping of Alfvén waves in the solar wind. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	14
100	Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	105
101	Entropy mapping of the outer electron radiation belt between the magnetotail and geosynchronous orbit. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	31
102	Evolution of the magnetotail energetic-electron population during high-speed-stream-driven storms: Evidence for the leakage of the outer electron radiation belt into the Earth's magnetotail. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	10
103	SPECTRAL SCALING LAWS IN MAGNETOHYDRODYNAMIC TURBULENCE SIMULATIONS AND IN THE SOLAR WIND. Astrophysical Journal Letters, 2011, 741, L19.	3.0	92
104	NO EVIDENCE FOR HEATING OF THE SOLAR WIND AT STRONG CURRENT SHEETS. Astrophysical Journal Letters, 2011, 739, L61.	3.0	30
105	A KINETIC ALFVÉN WAVE CASCADE SUBJECT TO COLLISIONLESS DAMPING CANNOT REACH ELECTRON SCALE IN THE SOLAR WIND AT 1 AU. Astrophysical Journal, 2010, 712, 685-691.	S _{1.6}	73
106	Scaling of asymmetric reconnection in compressible plasmas. Physics of Plasmas, 2010, 17, .	0.7	58
107	Contribution of Strong Discontinuities to the Power Spectrum of the Solar Wind. Physical Review Letters, 2010, 105, 111102.	2.9	83
108	A densityâ€ŧemperature description of the outer electron radiation belt during geomagnetic storms. Journal of Geophysical Research, 2010, 115, .	3.3	31

#	Article	IF	CITATIONS
109	Solar wind turbulence and shear: A superposedâ€epoch analysis of corotating interaction regions at 1 AU. Journal of Geophysical Research, 2010, 115, .	3.3	89
110	On the variations of the solar wind magnetic field about the Parker spiral direction. Journal of Geophysical Research, 2010, 115, .	3.3	73
111	Magnetic field at geosynchronous orbit during highâ€speed streamâ€driven storms: Connections to the solar wind, the plasma sheet, and the outer electron radiation belt. Journal of Geophysical Research, 2010, 115, .	3.3	64
112	On the heating of the outer radiation belt to produce high fluxes of relativistic electrons: Measured heating rates at geosynchronous orbit for highâ€speed streamâ€driven storms. Journal of Geophysical Research, 2010, 115, .	3.3	27
113	SPECTRAL INDICES FOR MULTI-DIMENSIONAL INTERPLANETARY TURBULENCE AT 1 AU. Astrophysical Journal, 2009, 692, 684-693.	1.6	89
114	On shear viscosity and the Reynolds number of magnetohydrodynamic turbulence in collisionless magnetized plasmas: Coulomb collisions, Landau damping, and Bohm diffusion. Physics of Plasmas, 2009, 16, .	0.7	22
115	The superdense plasma sheet in the magnetosphere during high-speed-stream-driven storms: Plasma transport timescales. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71, 1045-1058.	0.6	41
116	Tracing solar wind plasma entry into the magnetosphere using ionâ€ŧoâ€electron temperature ratio. Geophysical Research Letters, 2009, 36, .	1.5	24
117	Polar cap potential saturation, dayside reconnection, and changes to the magnetosphere. Journal of Geophysical Research, 2009, 114, .	3.3	54
118	Electron loss rates from the outer radiation belt caused by the filling of the outer plasmasphere: The calm before the storm. Journal of Geophysical Research, 2009, 114, .	3.3	40
119	Relativisticâ€electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind. Journal of Geophysical Research, 2009, 114, .	3.3	85
120	What determines the reconnection rate at the dayside magnetosphere?. Journal of Geophysical Research, 2008, 113, .	3.3	127
121	The rudiments of a theory of solar wind/magnetosphere coupling derived from first principles. Journal of Geophysical Research, 2008, 113, .	3.3	83
122	Flux tube texture of the solar wind: Strands of the magnetic carpet at 1 AU?. Journal of Geophysical Research, 2008, 113, .	3.3	282
123	A statistical look at plasmaspheric drainage plumes. Journal of Geophysical Research, 2008, 113, .	3.3	110
124	Superposed epoch analysis of highâ€speedâ€stream effects at geosynchronous orbit: Hot plasma, cold plasma, and the solar wind. Journal of Geophysical Research, 2008, 113, .	3.3	56
125	High-Speed Solar Wind Streams: A Call for Key Research. Eos, 2008, 89, 62.	0.1	22
126	Altered solar windâ€magnetosphere interaction at low Mach numbers: Coronal mass ejections. Journal of Geophysical Research, 2008, 113, .	3.3	126

#	Article	IF	CITATIONS
127	Influence of epoch time selection on the results of superposed epoch analysis using ACE and MPA data. Journal of Geophysical Research, 2008, 113, .	3.3	27
128	Damping of longâ€wavelength kinetic Alfvén fluctuations: Linear theory. Journal of Geophysical Research, 2008, 113, .	3.3	25
129	Properties of asymmetric magnetic reconnection. Physics of Plasmas, 2008, 15, .	0.7	71
130	The reconnection of magnetic fields between plasmas with different densities: Scaling relations. Physics of Plasmas, 2007, 14, .	0.7	64
131	Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?. Geophysical Research Letters, 2007, 34, .	1.5	61
132	The freestream turbulence effect in solar-wind/magnetosphere coupling: Analysis through the solar cycle and for various types of solar wind. Geophysical Monograph Series, 2006, , 59-76.	0.1	14
133	The "calm before the storm―in CIR/magnetosphere interactions: Occurrence statistics, solar wind statistics, and magnetospheric preconditioning. Journal of Geophysical Research, 2006, 111, .	3.3	104
134	Geomagnetic storms driven by ICME- and CIR-dominated solar wind. Journal of Geophysical Research, 2006, 111, .	3.3	199
135	Differences between CME-driven storms and CIR-driven storms. Journal of Geophysical Research, 2006, 111, .	3.3	443
136	A statistical comparison of hot-ion properties at geosynchronous orbit during intense and moderate geomagnetic storms at solar maximum and minimum. Journal of Geophysical Research, 2006, 111, .	3.3	19
137	Magnetosphere preconditioning under northward IMF: Evidence from the study of coronal mass ejection and corotating interaction region geoeffectiveness. Journal of Geophysical Research, 2006, 111, .	3.3	72
138	Effect of plasmaspheric drainage plumes on solar-wind/magnetosphere coupling. Geophysical Research Letters, 2006, 33, .	1.5	88
139	Eddy viscosity and flow properties of the solar wind: Co-rotating interaction regions, coronal-mass-ejection sheaths, and solar-wind/magnetosphere coupling. Physics of Plasmas, 2006, 13, 056505.	0.7	43
140	Nonequilibrium Phenomena in the Magnetosphere. , 2005, , 3-22.		8
141	Alfvén-cyclotron fluctuations: Linear Vlasov theory. Journal of Geophysical Research, 2004, 109, .	3.3	84
142	Role of solar wind turbulence in the coupling of the solar wind to the Earth's magnetosphere. Journal of Geophysical Research, 2003, 108, .	3.3	130
143	MHD turbulence in the Earth's plasma sheet: Dynamics, dissipation, and driving. Journal of Geophysical Research, 2003, 108, .	3.3	163
144	Periodic magnetospheric substorms and their relationship with solar wind variations. Journal of Geophysical Research, 2003, 108, .	3.3	73

#	Article	IF	CITATIONS
145	MultistepDstdevelopment and ring current composition changes during the 4-6 June 1991 magnetic storm. Journal of Geophysical Research, 2002, 107, SMP 33-1-SMP 33-22.	3.3	108
146	The dc electrical coupling of flow vortices and flow channels in the magnetosphere to the resistive ionosphere. Journal of Geophysical Research, 2001, 106, 28967-28994.	3.3	26
147	A linkage between polar patches and plasmaspheric drainage plumes. Geophysical Research Letters, 2001, 28, 111-113.	1.5	45
148	Dominant role of the asymmetric ring current in producing the stormtimeDst*. Journal of Geophysical Research, 2001, 106, 10883-10904.	3.3	288
149	A comprehensive survey of plasmasphere refilling at geosynchronous orbit. Journal of Geophysical Research, 2001, 106, 25615-25629.	3.3	37
150	Plasmaspheric material on high-latitude open field lines. Journal of Geophysical Research, 2001, 106, 6085-6095.	3.3	28
151	Plasmaspheric observations at geosynchronous orbit. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63, 1185-1197.	0.6	9
152	Particle acceleration in the dynamic magnetotail. Physics of Plasmas, 2000, 7, 2149-2156.	0.7	20
153	Plasmaspheric material at the reconnecting magnetopause. Journal of Geophysical Research, 2000, 105, 7591-7600.	3.3	49
154	Measurements of early and late time plasmasphere refilling as observed from geosynchronous orbit. Journal of Geophysical Research, 1999, 104, 14691-14704.	3.3	61
155	Solar wind density as a driver for the ring current in mild storms. Geophysical Research Letters, 1999, 26, 1797-1800.	1.5	31
156	Inner edge of the electron plasma sheet: Empirical models of boundary location. Journal of Geophysical Research, 1999, 104, 22679-22693.	3.3	30
157	Plasma sheet access to geosynchronous orbit. Journal of Geophysical Research, 1999, 104, 25047-25061.	3.3	176
158	Substorm electron injections: Geosynchronous observations and test particle simulations. Journal of Geophysical Research, 1998, 103, 9235-9248.	3.3	172
159	The driving of the plasma sheet by the solar wind. Journal of Geophysical Research, 1998, 103, 17617-17639.	3.3	324
160	Magnetospheric dynamics and mass flow during the November 1993 storm. Journal of Geophysical Research, 1998, 103, 26373-26394.	3.3	57
161	The transport of plasma sheet material from the distant tail to geosynchronous orbit. Journal of Geophysical Research, 1998, 103, 20297-20331.	3.3	123
162	Variability of the ring current source population. Geophysical Research Letters, 1998, 25, 3481-3484.	1.5	67

#	Article	IF	CITATIONS
163	The morphological evolution and internal convection of E×B-drifting plasma clouds: Theory, dielectric-in-cell simulations, and N-body dielectric simulations. Physics of Plasmas, 1998, 5, 3195-3223.	0.7	8
164	The Earth's plasma sheet as a laboratory for flow turbulence in high-β MHD. Journal of Plasma Physics, 1997, 57, 1-34.	0.7	265
165	The fate of the outer plasmasphere. Geophysical Research Letters, 1997, 24, 365-368.	1.5	74
166	The superdense plasma sheet: Plasmaspheric origin, solar wind origin, or ionospheric origin?. Journal of Geophysical Research, 1997, 102, 22089-22097.	3.3	80
167	Substorm ion injections: Geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields. Journal of Geophysical Research, 1997, 102, 2325-2341.	3.3	145
168	Time dependence of substorm recurrence: An information-theoretic analysis. Journal of Geophysical Research, 1996, 101, 15359-15369.	3.3	27
169	Auroral arc thicknesses as predicted by various theories. Journal of Geophysical Research, 1993, 98, 6101-6138.	3.3	306
170	The occurrence rate of magnetosphericâ€substorm onsets: Random and periodic substorms. Journal of Geophysical Research, 1993, 98, 3807-3813.	3.3	215
171	Breaking of the first adiabatic invariants of charged particles in time-dependent magnetic fields: Computer simulations and theory. Physical Review A, 1991, 43, 5605-5627.	1.0	11
172	The magnetic pumping of plasmas with sawtooth waveforms. Physics of Fluids B, 1990, 2, 1114-1127.	1.7	5
173	Induced absorption of extraordinary (Z-mode) waves via electron pumping. Physics of Fluids, 1988, 31, 700.	1.4	2
174	The electrostatic two-stream instability driven by slab-shaped and cylindrical beams injected into plasmas. Physics of Fluids, 1988, 31, 857.	1.4	16
175	Magnetic pumping by magnetosonic waves in the presence of noncompressive electromagnetic fluctuations. Physics of Fluids, 1986, 29, 3245.	1.4	17
176	A study of the stochastic energization of charged particles with and without synchrotron energy loss. Astrophysical Journal, 1986, 308, 929.	1.6	30
177	The production of ion conics by oblique double layers. Journal of Geophysical Research, 1984, 89, 2251-2266.	3.3	115
178	The simulation of plasma double-layer structures in two dimensions. Journal of Plasma Physics, 1983, 29, 45-84.	0.7	42
179	Magnetic pumping of particles in the outer Jovian magnetosphere. Journal of Geophysical Research, 1981, 86, 3481-3495.	3.3	27
180	The Direct Production of Ion Conics by Plasma Double Layers. Geophysical Monograph Series, 0, , 317-322.	0.1	6

#	Article	IF	CITATIONS
181	The Triple Dusk-Dawn Aberration of the Solar Wind at Earth. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	4
182	Heliospheric Structure Analyzer (HSA): A Simple 1-AU Mission Concept Focusing on Large-Geometric-Factor Measurements. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	2