Rogier W Sanders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3508551/publications.pdf Version: 2024-02-01

	11651	11939
21,483	70	134
citations	h-index	g-index
233	233	15464
docs citations	times ranked	citing authors
	citations 233	21,483 70 citations h-index 233 233

#	Article	IF	CITATIONS
1	A single mRNA vaccine dose in COVID-19 patients boosts neutralizing antibodies against SARS-CoV-2 and variants of concern. Cell Reports Medicine, 2022, 3, 100486.	6.5	16
2	SARSâ€CoVâ€⊋ infection activates dendritic cells via cytosolic receptors rather than extracellular TLRs. European Journal of Immunology, 2022, 52, 646-655.	2.9	9
3	Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Reports Medicine, 2022, 3, 100528.	6.5	6
4	Diagnostic performance of two serological assays for the detection of SARS-CoV-2 specific antibodies: surveillance after vaccination. Diagnostic Microbiology and Infectious Disease, 2022, 102, 115650.	1.8	3
5	Potent Induction of Envelope-Specific Antibody Responses by Virus-Like Particle Immunogens Based on HIV-1 Envelopes from Patients with Early Broadly Neutralizing Responses. Journal of Virology, 2022, 96, JVI0134321.	3.4	10
6	The Glycan Hole Area of HIV-1 Envelope Trimers Contributes Prominently to the Induction of Autologous Neutralization. Journal of Virology, 2022, 96, JVI0155221.	3.4	13
7	Quantitative analysis of mRNA-1273 COVID-19 vaccination response in immunocompromised adult hematology patients. Blood Advances, 2022, 6, 1537-1546.	5.2	45
8	High thermostability improves neutralizing antibody responses induced by native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 27.	6.0	13
9	Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathogens, 2022, 18, e1010340.	4.7	13
10	Epitope convergence of broadly HIV-1 neutralizing IgA and IgG antibody lineages in a viremic controller. Journal of Experimental Medicine, 2022, 219, .	8.5	14
11	A SARS-CoV-2 Wuhan spike virosome vaccine induces superior neutralization breadth compared to one using the Beta spike. Scientific Reports, 2022, 12, 3884.	3.3	11
12	Computed tomography and [18F]-FDG PET imaging provide additional readouts for COVID-19 pathogenesis and therapies evaluation in non-human primates. IScience, 2022, 25, 104101.	4.1	4
13	Persistent immunogenicity of integrase defective lentiviral vectors delivering membrane-tethered native-like HIV-1 envelope trimers. Npj Vaccines, 2022, 7, 44.	6.0	2
14	Immunogenicity of the mRNA-1273 COVID-19 vaccine in adult patients with inborn errors of immunity. Journal of Allergy and Clinical Immunology, 2022, 149, 1949-1957.	2.9	39
15	Broad and ultra-potent cross-clade neutralization of HIV-1 by a vaccine-induced CD4 binding site bovine antibody. Cell Reports Medicine, 2022, 3, 100635.	6.5	3
16	Anti-HIV-1 Nanobody-IgG1 Constructs With Improved Neutralization Potency and the Ability to Mediate Fc Effector Functions. Frontiers in Immunology, 2022, 13, .	4.8	6
17	Antibody responses against SARS-CoV-2 variants induced by four different SARS-CoV-2 vaccines in health care workers in the Netherlands: A prospective cohort study. PLoS Medicine, 2022, 19, e1003991.	8.4	75
18	B cells expressing IgM B cell receptors of HIV-1 neutralizing antibodies discriminate antigen affinities by sensing binding association rates. Cell Reports, 2022, 39, 111021.	6.4	6

#	Article	IF	CITATIONS
19	Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science, 2021, 371, .	12.6	244
20	Immunofocusing and enhancing autologous Tier-2 HIV-1 neutralization by displaying Env trimers on two-component protein nanoparticles. Npj Vaccines, 2021, 6, 24.	6.0	33
21	Virus vaccines: proteins prefer prolines. Cell Host and Microbe, 2021, 29, 327-333.	11.0	70
22	Production of HIV-1 Env-Specific Antibodies Mediating Innate Immune Functions Depends on Cognate Interleukin-21- Secreting CD4 ⁺ T Cells. Journal of Virology, 2021, 95, .	3.4	4
23	Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell, 2021, 184, 1188-1200.e19.	28.9	154
24	The effect of spike mutations on SARS-CoV-2 neutralization. Cell Reports, 2021, 34, 108890.	6.4	200
25	Pandemic moves and countermoves: vaccines and viral variants. Lancet, The, 2021, 397, 1326-1327.	13.7	29
26	SARS-CoV-2 can recruit a heme metabolite to evade antibody immunity. Science Advances, 2021, 7, .	10.3	107
27	Enhancing glycan occupancy of soluble HIV-1 envelope trimers to mimic the native viral spike. Cell Reports, 2021, 35, 108933.	6.4	37
28	Structural and functional ramifications of antigenic drift in recent SARS-CoV-2 variants. Science, 2021, 373, 818-823.	12.6	309
29	A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host and Microbe, 2021, 29, 806-818.e6.	11.0	49
30	SARS-CoV-2 variants of concern partially escape humoral but not T cell responses in COVID-19 convalescent donors and vaccine recipients. Science Immunology, 2021, 6, .	11.9	455
31	Human Milk from Previously COVID-19-Infected Mothers: The Effect of Pasteurization on Specific Antibodies and Neutralization Capacity. Nutrients, 2021, 13, 1645.	4.1	54
32	High titers and low fucosylation of early human anti–SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Science Translational Medicine, 2021, 13, .	12.4	166
33	Antibody Responses to SARS-CoV-2 mRNA Vaccines Are Detectable in Saliva. Pathogens and Immunity, 2021, 6, 116-134.	3.1	112
34	Site-Specific Steric Control of SARS-CoV-2 Spike Glycosylation. Biochemistry, 2021, 60, 2153-2169.	2.5	54
35	Stepwise Conformational Stabilization of a HIV-1 Clade C Consensus Envelope Trimer Immunogen Impacts the Profile of Vaccine-Induced Antibody Responses. Vaccines, 2021, 9, 750.	4.4	11
36	Influenza A Virus Hemagglutinin Trimer, Head and Stem Proteins Identify and Quantify Different Hemagglutinin-Specific B Cell Subsets in Humans. Vaccines, 2021, 9, 717.	4.4	13

#	Article	IF	CITATIONS
37	Interplay of diverse adjuvants and nanoparticle presentation of native-like HIV-1 envelope trimers. Npj Vaccines, 2021, 6, 103.	6.0	8
38	Antibody responses induced by SHIV infection are more focused than those induced by soluble native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2021, 17, e1009736.	4.7	18
39	Intramolecular quality control: HIV-1 envelope gp160 signal-peptide cleavage as a functional folding checkpoint. Cell Reports, 2021, 36, 109646.	6.4	7
40	Polyclonal antibody responses to HIV Env immunogens resolved using cryoEM. Nature Communications, 2021, 12, 4817.	12.8	35
41	Convergent HIV-1 Evolution upon Targeted Destabilization of the gp120-gp41 Interface. Journal of Virology, 2021, 95, e0053221.	3.4	0
42	Emerging SARS-CoV-2 variants of concern evade humoral immune responses from infection and vaccination. Science Advances, 2021, 7, eabj5365.	10.3	83
43	Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374, 472-478.	12.6	228
44	Infection and transmission of SARS oVâ€2 depend on heparan sulfate proteoglycans. EMBO Journal, 2021, 40, e106765.	7.8	50
45	Time since SARS-CoV-2 infection and humoral immune response following BNT162b2 mRNA vaccination. EBioMedicine, 2021, 72, 103589.	6.1	16
46	COVA1-18 neutralizing antibody protects against SARS-CoV-2 in three preclinical models. Nature Communications, 2021, 12, 6097.	12.8	38
47	Probing Affinity, Avidity, Anticooperativity, and Competition in Antibody and Receptor Binding to the SARS-CoV-2 Spike by Single Particle Mass Analyses. ACS Central Science, 2021, 7, 1863-1873.	11.3	20
48	Cross-reactive antibodies after SARS-CoV-2 infection and vaccination. ELife, 2021, 10, .	6.0	63
49	Structureâ€guided envelope trimer design in HIVâ€1 vaccine development: a narrative review. Journal of the International AIDS Society, 2021, 24, e25797.	3.0	24
50	A third SARS-CoV-2 spike vaccination improves neutralization of variants-of-concern. Npj Vaccines, 2021, 6, 146.	6.0	14
51	Neutralizing Antibody Responses Induced by HIV-1 Envelope Glycoprotein SOSIP Trimers Derived from Elite Neutralizers. Journal of Virology, 2020, 94, .	3.4	11
52	An Alternative Binding Mode of IGHV3-53 Antibodies to the SARS-CoV-2 Receptor Binding Domain. Cell Reports, 2020, 33, 108274.	6.4	152
53	Cross-Neutralization of a SARS-CoV-2 Antibody to a Functionally Conserved Site Is Mediated by Avidity. Immunity, 2020, 53, 1272-1280.e5.	14.3	185
54	Structural and functional evaluation of de novo-designed, two-component nanoparticle carriers for HIV Env trimer immunogens. PLoS Pathogens, 2020, 16, e1008665.	4.7	52

#	Article	IF	CITATIONS
55	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. PLoS Pathogens, 2020, 16, e1008753.	4.7	61
56	Comparative assessment of multiple COVID-19 serological technologies supports continued evaluation of point-of-care lateral flow assays in hospital and community healthcare settings. PLoS Pathogens, 2020, 16, e1008817.	4.7	105
57	Optimized Hepatitis C Virus (HCV) E2 Glycoproteins and their Immunogenicity in Combination with MVA-HCV. Vaccines, 2020, 8, 440.	4.4	8
58	Diverse HIV-1 escape pathways from broadly neutralizing antibody PGDM1400 in humanized mice. MAbs, 2020, 12, 1845908.	5.2	2
59	Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 2020, 369, 643-650.	12.6	1,104
60	HIV envelope trimer-elicited autologous neutralizing antibodies bind a region overlapping the N332 glycan supersite. Science Advances, 2020, 6, eaba0512.	10.3	18
61	Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody. Cell, 2020, 180, 471-489.e22.	28.9	106
62	Networks of HIV-1 Envelope Glycans Maintain Antibody Epitopes in the Face of Glycan Additions and Deletions. Structure, 2020, 28, 897-909.e6.	3.3	46
63	Autologous Antibody Responses to an HIV Envelope Glycan Hole Are Not Easily Broadened in Rabbits. Journal of Virology, 2020, 94, .	3.4	57
64	Env Exceptionalism: Why Are HIV-1 Env Glycoproteins Atypical Immunogens?. Cell Host and Microbe, 2020, 27, 507-518.	11.0	42
65	Neutralizing Antibody Induction by HIV-1 Envelope Glycoprotein SOSIP Trimers on Iron Oxide Nanoparticles May Be Impaired by Mannose Binding Lectin. Journal of Virology, 2020, 94, .	3.4	29
66	Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. ELife, 2020, 9, .	6.0	123
67	Title is missing!. , 2020, 16, e1008665.		0
68	Title is missing!. , 2020, 16, e1008665.		0
69	Title is missing!. , 2020, 16, e1008665.		0
70	Title is missing!. , 2020, 16, e1008665.		0
71	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		Ο
72	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0

#	Article	IF	CITATIONS
73	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
74	Mapping the immunogenic landscape of near-native HIV-1 envelope trimers in non-human primates. , 2020, 16, e1008753.		0
75	Antibody Responses Elicited by Immunization with BC505 Trimer Immune Complexes. Journal of Virology, 2019, 93, .	3.4	12
76	Similarities and differences between native HIV-1 envelope glycoprotein trimers and stabilized soluble trimer mimetics. PLoS Pathogens, 2019, 15, e1007920.	4.7	61
77	Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nature Communications, 2019, 10, 4272.	12.8	149
78	HIV-1 anchor inhibitors and membrane fusion inhibitors target distinct but overlapping steps in virus entry. Journal of Biological Chemistry, 2019, 294, 5736-5746.	3.4	24
79	Structure and immunogenicity of a stabilized HIV-1 envelope trimer based on a group-M consensus sequence. Nature Communications, 2019, 10, 2355.	12.8	116
80	Conformational Plasticity in the HIV-1 Fusion Peptide Facilitates Recognition by Broadly Neutralizing Antibodies. Cell Host and Microbe, 2019, 25, 873-883.e5.	11.0	42
81	Broadly neutralising antibodies in post-treatment control. Lancet HIV,the, 2019, 6, e271-e272.	4.7	3
82	Lower Broadly Neutralizing Antibody Responses in Female Versus Male HIV-1 Infected Injecting Drug Users. Viruses, 2019, 11, 384.	3.3	6
83	Developability Assessment of Physicochemical Properties and Stability Profiles of HIV-1 BC505 SOSIP.664 and BC505 SOSIP.v4.1-GT1.1 gp140 Envelope Glycoprotein Trimers as Candidate Vaccine Antigens. Journal of Pharmaceutical Sciences, 2019, 108, 2264-2277.	3.3	16
84	Stabilization of the V2 loop improves the presentation of V2 loop–associated broadly neutralizing antibody epitopes on HIV-1 envelope trimers. Journal of Biological Chemistry, 2019, 294, 5616-5631.	3.4	16
85	Capturing the inherent structural dynamics of the HIV-1 envelope glycoprotein fusion peptide. Nature Communications, 2019, 10, 763.	12.8	30
86	Presentation of HIV-1 envelope glycoprotein trimers on diverse nanoparticle platforms. Current Opinion in HIV and AIDS, 2019, 14, 302-308.	3.8	27
87	The Envelope-Based Fusion Antigen GP120C14K Forming Hexamer-Like Structures Triggers T Cell and Neutralizing Antibody Responses Against HIV-1. Frontiers in Immunology, 2019, 10, 2793.	4.8	2
88	Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity, 2019, 50, 241-252.e6.	14.3	153
89	Closing and Opening Holes in the Glycan Shield of HIV-1 Envelope Glycoprotein SOSIP Trimers Can Redirect the Neutralizing Antibody Response to the Newly Unmasked Epitopes. Journal of Virology, 2019, 93, .	3.4	66
90	Integrity of Glycosylation Processing of a Glycan-Depleted Trimeric HIV-1 Immunogen Targeting Key B-Cell Lineages. Journal of Proteome Research, 2018, 17, 987-999.	3.7	23

#	Article	IF	CITATIONS
91	Immunogenicity in Rabbits of HIV-1 SOSIP Trimers from Clades A, B, and C, Given Individually, Sequentially, or in Combination. Journal of Virology, 2018, 92, .	3.4	66
92	Stabilization of the gp120 V3 loop through hydrophobic interactions reduces the immunodominant V3-directed non-neutralizing response to HIV-1 envelope trimers. Journal of Biological Chemistry, 2018, 293, 1688-1701.	3.4	40
93	cGMP production and analysis of BG505 SOSIP.664, an extensively glycosylated, trimeric HIVâ€1 envelope glycoprotein vaccine candidate. Biotechnology and Bioengineering, 2018, 115, 885-899.	3.3	75
94	Inference of the HIV-1 VRC01 Antibody Lineage Unmutated Common Ancestor Reveals Alternative Pathways to Overcome a Key Glycan Barrier. Immunity, 2018, 49, 1162-1174.e8.	14.3	61
95	Stabilizing HIV-1 envelope glycoprotein trimers to induce neutralizing antibodies. Retrovirology, 2018, 15, 63.	2.0	34
96	Harnessing post-translational modifications for next-generation HIV immunogens. Biochemical Society Transactions, 2018, 46, 691-698.	3.4	5
97	Structural and immunologic correlates of chemically stabilized HIV-1 envelope glycoproteins. PLoS Pathogens, 2018, 14, e1006986.	4.7	28
98	Variable Domain N-Linked Glycans Acquired During Antigen-Specific Immune Responses Can Contribute to Immunoglobulin G Antibody Stability. Frontiers in Immunology, 2018, 9, 740.	4.8	35
99	Short Communication: Protective Efficacy of Broadly Neutralizing Antibody PGDM1400 Against HIV-1 Challenge in Humanized Mice. AIDS Research and Human Retroviruses, 2018, 34, 790-793.	1.1	7
100	Hitting HIV's Harpoon. Immunity, 2018, 49, 14-15.	14.3	4
101	Site-Specific Clycosylation of Virion-Derived HIV-1 Env Is Mimicked by a Soluble Trimeric Immunogen. Cell Reports, 2018, 24, 1958-1966.e5.	6.4	120
102	Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. PLoS Pathogens, 2018, 14, e1006913.	4.7	111
103	Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller. Science Translational Medicine, 2017, 9, .	12.4	128
104	Nativeâ€like Env trimers as a platform for <scp>HIV</scp> â€1 vaccine design. Immunological Reviews, 2017, 275, 161-182.	6.0	221
105	Vaccine Elicitation of High Mannose-Dependent Neutralizing Antibodies against the V3-Glycan Broadly Neutralizing Epitope in Nonhuman Primates. Cell Reports, 2017, 18, 2175-2188.	6.4	69
106	Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches. Immunity, 2017, 46, 1073-1088.e6.	14.3	286
107	Reducing V3 Antigenicity and Immunogenicity on Soluble, Native-Like HIV-1 Env SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	57
108	Improving the Expression and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers by Targeted Sequence Changes. Journal of Virology, 2017, 91, .	3.4	27

#	Article	IF	CITATIONS
109	Improving the Immunogenicity of Native-like HIV-1 Envelope Trimers by Hyperstabilization. Cell Reports, 2017, 20, 1805-1817.	6.4	171
110	Design and crystal structure of a native-like HIV-1 envelope trimer that engages multiple broadly neutralizing antibody precursors in vivo. Journal of Experimental Medicine, 2017, 214, 2573-2590.	8.5	151
111	High-Throughput Protein Engineering Improves the Antigenicity and Stability of Soluble HIV-1 Envelope Glycoprotein SOSIP Trimers. Journal of Virology, 2017, 91, .	3.4	22
112	The microanatomic segregation of selection by apoptosis in the germinal center. Science, 2017, 358, .	12.6	204
113	Opposites attract in bispecific antibody engineering. Journal of Biological Chemistry, 2017, 292, 14718-14719.	3.4	2
114	A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to humanâ€ŧype receptors. EMBO Molecular Medicine, 2017, 9, 1314-1325.	6.9	44
115	An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability. Nature Microbiology, 2017, 2, 16199.	13.3	144
116	Three mutations switch H7N9 influenza to human-type receptor specificity. PLoS Pathogens, 2017, 13, e1006390.	4.7	83
117	HIV-1-neutralizing antibody induced by simian adenovirus- and poxvirus MVA-vectored BG505 native-like envelope trimers. PLoS ONE, 2017, 12, e0181886.	2.5	16
118	Structure and topology around the cleavage site regulate post-translational cleavage of the HIV-1 gp160 signal peptide. ELife, 2017, 6, .	6.0	41
119	The Neutralizing Antibody Response in an Individual with Triple HIV-1 Infection Remains Directed at the First Infecting Subtype. AIDS Research and Human Retroviruses, 2016, 32, 1135-1142.	1.1	11
120	D-101 HIV-1 neutralizing antibodies induced by native-like envelope trimers. Journal of Acquired Immune Deficiency Syndromes (1999), 2016, 71, 52.	2.1	7
121	Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6639-E6648.	7.1	286
122	Holes in the Glycan Shield of the Native HIV Envelope Are a Target of Trimer-Elicited Neutralizing Antibodies. Cell Reports, 2016, 16, 2327-2338.	6.4	216
123	Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Reports, 2016, 17, 2195-2209.	6.4	150
124	HIV-1 escapes from N332-directed antibody neutralization in an elite neutralizer by envelope glycoprotein elongation and introduction of unusual disulfide bonds. Retrovirology, 2016, 13, 48.	2.0	20
125	Chemical Cross-Linking Stabilizes Native-Like HIV-1 Envelope Glycoprotein Trimer Antigens. Journal of Virology, 2016, 90, 813-828.	3.4	34
126	Cytokine-Independent Detection of Antigen-Specific Germinal Center T Follicular Helper Cells in Immunized Nonhuman Primates Using a Live Cell Activation-Induced Marker Technique. Journal of Immunology, 2016, 197, 994-1002.	0.8	130

#	Article	IF	CITATIONS
127	HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Expert Review of Vaccines, 2016, 15, 349-365.	4.4	44
128	HIV-1 Envelope Trimer Design and Immunization Strategies To Induce Broadly Neutralizing Antibodies. Trends in Immunology, 2016, 37, 221-232.	6.8	96
129	Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein. Cell Reports, 2016, 14, 2695-2706.	6.4	250
130	Sequential and Simultaneous Immunization of Rabbits with HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. PLoS Pathogens, 2016, 12, e1005864.	4.7	138
131	Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12, 82.	2.0	156
132	Engineering and Characterization of a Fluorescent Native-Like HIV-1 Envelope Glycoprotein Trimer. Biomolecules, 2015, 5, 2919-2934.	4.0	12
133	Gp120/CD4 Blocking Antibodies Are Frequently Elicited in ART-NaÃ ⁻ ve Chronically HIV-1 Infected Individuals. PLoS ONE, 2015, 10, e0120648.	2.5	5
134	Colorectal Mucus Binds DC-SIGN and Inhibits HIV-1 Trans-Infection of CD4+ T-Lymphocytes. PLoS ONE, 2015, 10, e0122020.	2.5	11
135	Incomplete Neutralization and Deviation from Sigmoidal Neutralization Curves for HIV Broadly Neutralizing Monoclonal Antibodies. PLoS Pathogens, 2015, 11, e1005110.	4.7	78
136	A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo. PLoS Pathogens, 2015, 11, e1005238.	4.7	43
137	Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. Cell, 2015, 163, 1702-1715.	28.9	341
138	Affinity Maturation of a Potent Family of HIV Antibodies Is Primarily Focused on Accommodating or Avoiding Glycans. Immunity, 2015, 43, 1053-1063.	14.3	200
139	Structural Constraints Determine the Glycosylation of HIV-1 Envelope Trimers. Cell Reports, 2015, 11, 1604-1613.	6.4	135
140	Antibody potency relates to the ability to recognize the closed, pre-fusion form of HIV Env. Nature Communications, 2015, 6, 6144.	12.8	130
141	HIV-1 neutralizing antibodies induced by native-like envelope trimers. Science, 2015, 349, aac4223.	12.6	482
142	Short Communication: Virion Aggregation by Neutralizing and Nonneutralizing Antibodies to the HIV-1 Envelope Glycoprotein. AIDS Research and Human Retroviruses, 2015, 31, 1160-1165.	1.1	14
143	What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure?. Journal of Virology, 2015, 89, 5981-5995.	3.4	25
144	Comprehensive Antigenic Map of a Cleaved Soluble HIV-1 Envelope Trimer. PLoS Pathogens, 2015, 11, e1004767.	4.7	100

#	Article	IF	CITATIONS
145	Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice. Cell, 2015, 161, 1505-1515.	28.9	239
146	A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B <i>env</i> Gene. Journal of Virology, 2015, 89, 3380-3395.	3.4	247
147	Immunosilencing a Highly Immunogenic Protein Trimerization Domain. Journal of Biological Chemistry, 2015, 290, 7436-7442.	3.4	62
148	Complete epitopes for vaccine design derived from a crystal structure of the broadly neutralizing antibodies PGT128 and 8ANC195 in complex with an HIV-1 Env trimer. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2099-2108.	2.5	69
149	Antibodies to a conformational epitope on gp41 neutralize HIV-1 by destabilizing the Env spike. Nature Communications, 2015, 6, 8167.	12.8	87
150	Murine Antibody Responses to Cleaved Soluble HIV-1 Envelope Trimers Are Highly Restricted in Specificity. Journal of Virology, 2015, 89, 10383-10398.	3.4	148
151	Reactivation of Neutralized HIV-1 by Dendritic Cells Is Dependent on the Epitope Bound by the Antibody. Journal of Immunology, 2015, 195, 3759-3768.	0.8	4
152	Design and structure of two HIV-1 clade C SOSIP.664 trimers that increase the arsenal of native-like Env immunogens. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11947-11952.	7.1	127
153	Influences on the Design and Purification of Soluble, Recombinant Native-Like HIV-1 Envelope Glycoprotein Trimers. Journal of Virology, 2015, 89, 12189-12210.	3.4	88
154	Binding of inferred germline precursors of broadly neutralizing HIV-1 antibodies to native-like envelope trimers. Virology, 2015, 486, 116-120.	2.4	42
155	Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17624-17629.	7.1	324
156	A Recombinant HIV Envelope Trimer Selects for Quaternary Dependent Antibodies Targeting the Trimer Apex. AIDS Research and Human Retroviruses, 2014, 30, A7-A8.	1.1	3
157	Early development of broadly reactive HIV-1 neutralizing activity in elite neutralizers. Aids, 2014, 28, 1237-1240.	2.2	19
158	Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers. Immunity, 2014, 40, 657-668.	14.3	342
159	Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.	27.8	681
160	Structural Delineation of a Quaternary, Cleavage-Dependent Epitope at the gp41-gp120 Interface on Intact HIV-1 Env Trimers. Immunity, 2014, 40, 669-680.	14.3	323
161	ADS-J1 inhibits HIV-1 infection and membrane fusion by targeting the highly conserved pocket in the gp41 NHR-trimer. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1296-1305.	2.6	27
162	Bypass of Quality Control in Protein Folding Pathways Induces Specific Misfolding of HIV Envelope V2 Loop: Implications for Iminosugars as Antivirals. AIDS Research and Human Retroviruses, 2014, 30, A49-A49.	1.1	0

#	Article	IF	CITATIONS
163	A stamp on the envelope. Nature, 2014, 514, 437-438.	27.8	29
164	Differential binding of neutralizing and non-neutralizing antibodies to native-like soluble HIV-1 Env trimers, uncleaved Env proteins, and monomeric subunits. Retrovirology, 2014, 11, 41.	2.0	139
165	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	27.8	400
166	In vivo protection by broadly neutralizing HIV antibodies. Trends in Microbiology, 2014, 22, 550-551.	7.7	43
167	CD4-Induced Activation in a Soluble HIV-1 Env Trimer. Structure, 2014, 22, 974-984.	3.3	108
168	Enhanced Immunogenicity of HIV-1 Envelope gp140 Proteins Fused to APRIL. PLoS ONE, 2014, 9, e107683.	2.5	3
169	Crystal Structure of a Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1477-1483.	12.6	793
170	Cryo-EM Structure of a Fully Glycosylated Soluble Cleaved HIV-1 Envelope Trimer. Science, 2013, 342, 1484-1490.	12.6	662
171	HIV-1 envelope glycoprotein signatures that correlate with the development of cross-reactive neutralizing activity. Retrovirology, 2013, 10, 102.	2.0	39
172	Broadly neutralizing antibodies against HIV-1: Templates for a vaccine. Virology, 2013, 435, 46-56.	2.4	104
173	Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nature Structural and Molecular Biology, 2013, 20, 796-803.	8.2	314
174	Broadly Neutralizing Antibody PGT121 Allosterically Modulates CD4 Binding via Recognition of the HIV-1 gp120 V3 Base and Multiple Surrounding Glycans. PLoS Pathogens, 2013, 9, e1003342.	4.7	267
175	A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies. PLoS Pathogens, 2013, 9, e1003618.	4.7	835
176	Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4351-4356.	7.1	236
177	How Can HIV-Type-1-Env Immunogenicity Be Improved to Facilitate Antibody-Based Vaccine Development?. AIDS Research and Human Retroviruses, 2012, 28, 1-15.	1.1	69
178	HIV takes double hit before entry. BMC Biology, 2012, 10, 99.	3.8	3
179	A Potent and Broad Neutralizing Antibody Recognizes and Penetrates the HIV Glycan Shield. Science, 2011, 334, 1097-1103.	12.6	644
180	Lack of complex N-glycans on HIV-1 envelope glycoproteins preserves protein conformation and entry function. Virology, 2010, 401, 236-247.	2.4	72

#	Article	IF	CITATIONS
181	Detailed Mechanistic Insights into HIV-1 Sensitivity to Three Generations of Fusion Inhibitors. Journal of Biological Chemistry, 2009, 284, 26941-26950.	3.4	71
182	Optimization of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins with V1/V2 Deleted, Using Virus Evolution. Journal of Virology, 2009, 83, 368-383.	3.4	43
183	Enzymatic removal of mannose moieties can increase the immune response to HIV-1 gp120 in vivo. Virology, 2009, 389, 108-121.	2.4	50
184	The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion. Retrovirology, 2008, 5, 10.	2.0	42
185	Only Five of 10 Strictly Conserved Disulfide Bonds Are Essential for Folding and Eight for Function of the HIV-1 Envelope Glycoprotein. Molecular Biology of the Cell, 2008, 19, 4298-4309.	2.1	44
186	Evolution Rescues Folding of Human Immunodeficiency Virus-1 Envelope Glycoprotein GP120 Lacking a Conserved Disulfide Bond. Molecular Biology of the Cell, 2008, 19, 4707-4716.	2.1	12
187	HIV-1 gp120 Mannoses Induce Immunosuppressive Responses from Dendritic Cells. PLoS Pathogens, 2007, 3, e169.	4.7	135
188	Protein Promiscuity: Drug Resistance and Native Functions—HIV-1 Case. Journal of Biomolecular Structure and Dynamics, 2005, 22, 615-624.	3.5	22
189	Evolutionary Repair of HIV Type 1 gp41 with a Kink in the N-Terminal Helix Leads to Restoration of the Six-Helix Bundle Structure. AIDS Research and Human Retroviruses, 2004, 20, 742-749.	1.1	21
190	Evolution of the HIV-1 envelope glycoproteins with a disulfide bond between gp120 and gp41. Retrovirology, 2004, 1, 3.	2.0	33
191	Stabilization of the Soluble, Cleaved, Trimeric Form of the Envelope Glycoprotein Complex of Human Immunodeficiency Virus Type 1. Journal of Virology, 2002, 76, 8875-8889.	3.4	424
192	The Mannose-Dependent Epitope for Neutralizing Antibody 2G12 on Human Immunodeficiency Virus Type 1 Glycoprotein gp120. Journal of Virology, 2002, 76, 7293-7305.	3.4	528
193	Oligomeric and Conformational Properties of a Proteolytically Mature, Disulfide-Stabilized Human Immunodeficiency Virus Type 1 gp140 Envelope Glycoprotein. Journal of Virology, 2002, 76, 7760-7776.	3.4	150
194	Enhancing the Proteolytic Maturation of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins. Journal of Virology, 2002, 76, 2606-2616.	3.4	133
195	Differential Transmission of Human Immunodeficiency Virus Type 1 by Distinct Subsets of Effector Dendritic Cells. Journal of Virology, 2002, 76, 7812-7821.	3.4	144
196	A Recombinant Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Complex Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits Is an Antigenic Mimic of the Trimeric Virion-Associated Structure. Journal of Virology, 2000, 74, 627-643.	3.4	503
197	Variable-Loop-Deleted Variants of the Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Can Be Stabilized by an Intermolecular Disulfide Bond between the gp120 and gp41 Subunits. Journal of Virology, 2000, 74, 5091-5100.	3.4	9
198	Modelling the response to vaccine in non-human primates to define SARS-CoV-2 mechanistic correlates of protection. ELife, 0, 11, .	6.0	7