
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/350713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Characterization, and Reaction of Divinylâ€substituted Laddersiloxanes. Silicon, 2022, 14, 2723-2730.	3.3	5
2	Tricyclic 6–8–6 laddersiloxanes derived from all-cis-tetravinylcyclotetrasiloxanolate: Synthesis, characterization and reactivity. Journal of Organometallic Chemistry, 2022, 959, 122213.	1.8	2
3	Synthesis of Octachloro- and Octaazido-Functionalized T ₈ -Cages and Application to Recyclable Palladium Catalyst. Inorganic Chemistry, 2022, 61, 1495-1503.	4.0	2
4	Synthesis of Janus cube containing Si–H moieties. Mendeleev Communications, 2022, 32, 35-36.	1.6	1
5	Synthesis of Tricyclic Laddersiloxane with Various Ring Sizes (Bat Siloxane). Macromolecular Rapid Communications, 2021, 42, 2000608.	3.9	6
6	Synthesis and characterization of tetrathiol-substituted double-decker or ladder silsesquioxane nano-cores. Dalton Transactions, 2021, 50, 3473-3478.	3.3	9
7	Vinyl-Functionalized Janus Ring Siloxane: Potential Precursors to Hybrid Functional Materials. Materials, 2021, 14, 2014.	2.9	10
8	Synthesis of Tetrachloro, Tetraiodo, and Tetraazido Double-Decker Siloxanes. Inorganic Chemistry, 2020, 59, 15478-15486.	4.0	15
9	Janus ring siloxane: a versatile precursor of the extended Janus ring and tricyclic laddersiloxanes. Dalton Transactions, 2020, 49, 13533-13537.	3.3	17
10	Synthesis and properties of dimethylpalladium complex with new PS3-type tripodal tetradentate ligand. Journal of Organometallic Chemistry, 2019, 897, 178-184.	1.8	0
11	Synthesis of a "Butterfly Cage―Based on a Doubleâ€Decker Silsesquioxane. Chemistry - an Asian Journal, 2019, 14, 4179-4182.	3.3	11
12	Lithium-Templated Formation of Polyhedral Oligomeric Silsesquioxanes (POSS). Inorganic Chemistry, 2019, 58, 15110-15117.	4.0	29
13	Synthesis and Characterization of Functionalizable Silsesquioxanes with Ladder-type Structures. Organometallics, 2019, 38, 4373-4376.	2.3	17
14	Synthesis, Characterization, and Functionalization of Tetrafunctional Double-Decker Siloxanes. Inorganic Chemistry, 2019, 58, 4093-4098.	4.0	17
15	Synthesis and Characterization of Unsymmetrical Double-Decker Siloxane (Basket Cage). Molecules, 2019, 24, 4252.	3.8	8
16	Synthesis, Structures, and Thermal Properties of Symmetric and Janus "Lantern Cage―Siloxanes. Chemistry - A European Journal, 2019, 25, 1683-1686.	3.3	15
17	Single-step synthesis of disiloxanetetraols. Journal of Sol-Gel Science and Technology, 2019, 89, 37-44.	2.4	1
18	Synthesis of Double-Decker Silsesquioxanes from Substituted Difluorosilane. Organometallics, 2019, 38, 743-747.	2.3	18

#	Article	IF	CITATIONS
19	Crystal structure of chlorido{tris[2-(isopropylsulfanyl)phenyl]phosphane-l̂° ⁴ <i>P</i> , <i>S</i> , <i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i>,<i>S</i></i>	0.5	0
20	Synthesis and Characterization of the Germathioacid Chloride Coordinated by an N-Heterocyclic Carbene §. Inorganics, 2018, 6, 76.	2.7	2
21	Stereoisomerization of Cyclic Silanols. Chemistry - an Asian Journal, 2017, 12, 1224-1233.	3.3	9
22	Unusual Reactions of Cyclic Fluorosiloxanes. ChemistrySelect, 2017, 2, 2300-2304.	1.5	1
23	Innentitelbild: Janusâ€Cube Octasilsesquioxane: Facile Synthesis and Structure Elucidation (Angew.) Tj ETQq1	1 0.784314 2.0	rgBT /Overlo
24	Janusâ€Cube Octasilsesquioxane: Facile Synthesis and Structure Elucidation. Angewandte Chemie, 2016, 128, 9482-9485.	2.0	8
25	Synthesis of Hydrosilyl-substituted Cyclic Siloxane: New Building Block for Materials. Chemistry Letters, 2016, 45, 738-739.	1.3	6
26	Cyclic Silanols with Long Alkyl Chains. Chemistry Letters, 2016, 45, 309-311.	1.3	10
27	Activation of C–S Bond by Group 10 Metal Complexes: Reaction of Phosphine Ligand Tethered with Three <i>tert</i> -Butylthiophenyl Groups with Group 10 Metal Compounds. Bulletin of the Chemical Society of Japan, 2016, 89, 922-930.	3.2	5
28	Janus ube Octasilsesquioxane: Facile Synthesis and Structure Elucidation. Angewandte Chemie - International Edition, 2016, 55, 9336-9339.	13.8	57
29	Facile Synthesis of Cyclic Fluorosiloxanes. Chemistry Letters, 2015, 44, 1506-1508.	1.3	9
30	Refractive Indices of Silsesquioxanes with Various Structures. Silicon, 2015, 7, 127-132.	3.3	20
31	Synthesis and Structures of Extended Cyclic Siloxanes. Heteroatom Chemistry, 2014, 25, 525-532.	0.7	19
32	Synthesis, Reactivities, and Coordination Chemistry of Tris(2â€isopropoxyphenyl)phosphine. Heteroatom Chemistry, 2014, 25, 628-635.	0.7	3
33	Synthesis and Properties of Phenylsilsesquioxanes with Ladder and Double-Decker Structures. Organometallics, 2014, 33, 4148-4151.	2.3	44
34	Synthesis and photophysical properties of 2,2′-binaphthalene-based receptor bearing trimethylsilyl groups to improve the solubility. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2013, 75, 31-38.	1.6	1
35	CHAPTER 3. Compounds Having Both a Single Bond and a Double Bond (Heavy Ketones) between Si, Ge, or Sn and Chalcogens (S, Se, and Te). , 2013, , 160-190.		2
36	Catalytic Activities for Olefin Polymerization: Titanium(III), Titanium(IV), Zirconium(IV), and Hafnium(IV) β-Diketiminato, 1-Aza-1,3-butadienyl–Imido, and 1-Aza-2-butenyl–Imido Complexes Bearing an Extremely Bulky Substituent, the Tbt Group (Tbt =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 57 Td (2,4,6-[(Me _{3Macromolecules, 2012, 45, 1758-1769.}	>Si)< ≰u8 b>2∢	CH] <su< td=""></su<>

#	Article	IF	CITATIONS
37	Synthesis and Characterization of Octakis(3-propyl ethanethioate)octasilsesquioxane. Organometallics, 2011, 30, 4475-4478.	2.3	23
38	Synthesis and reactivities of dihydrosilanes tethered with two thioether moieties. Heteroatom Chemistry, 2011, 22, 438-445.	0.7	6
39	Synthesis and Structure of Group 10 Metal Complexes with New Tripodal Tetradentate Ligand Bearing One Phosphine and Three Thioether Moieties. Bulletin of the Chemical Society of Japan, 2010, 83, 157-164.	3.2	8
40	Synthesis and properties of group 9 metal complexes bearing a β-ketophosphenato ligand. Journal of Organometallic Chemistry, 2010, 695, 1019-1025.	1.8	1
41	Synthesis and Complexation of a New Tripodal Tetradentate Ligand, a Silyl Ligand Tethered with Three Thioether Moieties. Organometallics, 2010, 29, 2839-2841.	2.3	24
42	An Efficient Approach to Monophenyl-Functionalized Octasilsesquioxanes. European Journal of Inorganic Chemistry, 2009, 2009, 1317-1319.	2.0	14
43	Syntheses and structures of overcrowded silanedichalcogenols and their applications to the syntheses of silanedichalcogenolato complexes. Journal of Organometallic Chemistry, 2009, 694, 353-365.	1.8	11
44	Intramolecular Si-C and C-H Bond Activation in a Platinum Complex Leading to the Formation of the Platinacycles. Heterocycles, 2009, 79, 311.	0.7	9
45	Synthesis of Alkali Metal Salts of Borylsilyl Anions Utilizing Highly Crowded Silylboranes and Their Properties. Organometallics, 2008, 27, 880-893.	2.3	18
46	Synthesis of Octacarboxy Spherosilicate. Journal of the American Chemical Society, 2008, 130, 10074-10075.	13.7	68
47	Syntheses and Structures of Platinum Siloxides Bridged by a Sulfur or Selenium Atom and a Unique 1,3-Aryl Migration from Silicon to Platinum through the Siâ^Oâ^Pt Linkages. Organometallics, 2008, 27, 2156-2158.	2.3	8
48	Synthesis and Characterization of the First Stable Stannanetelone. Phosphorus, Sulfur and Silicon and the Related Elements, 2008, 183, 948-955.	1.6	3
49	Synthesis of Stable <i>cis</i> -Dichloro- and <i>cis</i> -Dimethylplatinum(II) Complexes Bearing Bulky Primary Phosphines and Introduction of an Alkyl Group on the Primary Phosphine Ligand. Chemistry Letters, 2008, 37, 1192-1193.	1.3	3
50	A Bulky Silylene Generated under Mild Conditions: Its Application to the Synthesis of Organosilicon Compounds. Synlett, 2007, 2007, 2483-2491.	1.8	8
51	Synthesis and Structure of a Kinetically Stabilized Stannanethione. Bulletin of the Chemical Society of Japan, 2007, 80, 1202-1204.	3.2	9
52	Synthesis and Properties of a Rhodium Complex Having a Novel β-Ketophosphenato Ligand, a Heavier Congener of a β-Ketoiminato Ligand. Organometallics, 2007, 26, 3621-3623.	2.3	15
53	Synthesis and Properties of a Kinetically Stabilized 9-Silaphenanthrene. Organometallics, 2007, 26, 4048-4053.	2.3	38
54	Nucleophilic Attack toward Group 4 Metal Complexes Bearing Reactive 1-Aza-1,3-butadienyl and Imido Moieties. Inorganic Chemistry, 2007, 46, 1795-1802.	4.0	14

#	Article	IF	CITATIONS
55	Coordination Chemistry of a Kinetically Stabilized Germabenzene: Syntheses and Properties of Stable η6-Germabenzene Complexes Coordinated to Transition Metals. Chemistry - A European Journal, 2007, 13, 1856-1862.	3.3	26
56	First Structural Characterization of Silanedithiol and Its Application toward the Synthesis of Silanedithiolato Complexes. European Journal of Inorganic Chemistry, 2007, 2007, 1225-1228.	2.0	16
57	Synthesis of an acyclic diselenodithioether ligand tethered with bulky substituents and its application to the synthesis of a distorted octahedral palladium(II) complex. Heteroatom Chemistry, 2007, 18, 549-556.	0.7	3
58	Synthesis and properties of alkaline metal complexes with new overcrowded β-diketiminato ligands. Journal of Organometallic Chemistry, 2007, 692, 44-54.	1.8	30
59	Synthesis of mono- and trinuclear palladium(II) complexes via oxidative addition of a bulky hexathioether containing a disulfide bond to palladium(0). Journal of Organometallic Chemistry, 2007, 692, 2716-2728.	1.8	14
60	[1,2-Bis(phenylseleno)benzene]dichloridopalladium(II). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2546-m2546.	0.2	2
61	Synthesis of Bis(germacyclopropa)benzenes and Structures of Their Annelated Benzene Rings. Organometallics, 2006, 25, 230-235.	2.3	35
62	Unusual carbon–sulfur bond cleavage in the reaction of a new type of bulky hexathioether with a zerovalent palladium complex. Chemical Communications, 2006, , 177-179.	4.1	33
63	Reduction of Tetravalent Group 4 Metal Complexes Supported by an Extremely Bulky, Unsymmetrically Substituted β-Diketiminato Ligand Leading to the Regioselective CN Bond Cleavage Giving Ring-Contracted Metal-Imido Complexes. Organometallics, 2006, 25, 2457-2464.	2.3	64
64	A Stable Neutral Stannaaromatic Compound:Â Synthesis, Structure and Complexation of a Kinetically Stabilized 2-Stannanaphthalene. Journal of the American Chemical Society, 2006, 128, 1050-1051.	13.7	84
65	A Kinetically Stabilized Stannanetellone, a Tinâ^'Tellurium Double-Bonded Compound. Organometallics, 2006, 25, 3552-3553.	2.3	50
66	Synthesis and Spectroscopic Properties of Novel Silacyclic Compounds Containing a Titanium and Some Chalcogen Atoms. Bulletin of the Chemical Society of Japan, 2006, 79, 1573-1579.	3.2	5
67	Bis[2-(phenylsulfanyl)benzenethiolato]palladium(II). Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m166-m167.	0.2	2
68	Generation of 9-Stannaphenanthrene and Its Reactivities ChemInform, 2006, 37, no.	0.0	0
69	Systematic Studies on Redox Behavior of Homonuclear Double-bond Compounds of Heavier Group 15 Elements. Chemistry Letters, 2005, 34, 166-167.	1.3	32
70	Generation of 9-Stannaphenanthrene and Its Reactivities. Chemistry Letters, 2005, 34, 1088-1089.	1.3	20
71	Synthesis of Kinetically Stabilized 1-Silanaphthalenes and Their Properties. Bulletin of the Chemical Society of Japan, 2005, 78, 977-987.	3.2	23
72	Generation and Reactions of Overcrowded Diaryldilithiostannane and Diaryldipotassiostannane. European Journal of Inorganic Chemistry, 2005, 2005, 4291-4300.	2.0	14

#	Article	IF	CITATIONS
73	Telluradistibirane and Telluradibismirane: Three-Membered Heterocycles of Heavier Main Group Elements. Angewandte Chemie - International Edition, 2005, 44, 3717-3720.	13.8	40
74	Reactivities of germacyclopropabenzene toward some transition metal carbonyl complexes. Applied Organometallic Chemistry, 2005, 19, 570-577.	3.5	9
75	Synthesis of Kinetically Stabilized 1-Silanaphthalenes and Their Properties ChemInform, 2005, 36, no.	0.0	Ο
76	[1,2-Bis(phenylsulfanyl)benzene]dichloropalladium(II). Acta Crystallographica Section E: Structure Reports Online, 2005, 61, m1408-m1410.	0.2	4
77	Syntheses of Polythioethers Tethered with Bulky Aryl Groups and Their Complexation with Late-Transition Metals. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1241-1245.	1.6	2
78	Synthesis and properties of a stable 6-stannapentafulvene. Chemical Communications, 2005, , 5876.	4.1	36
79	Structure and Properties of an Overcrowded 1,2-Dibromodigermene. Organometallics, 2005, 24, 3309-3314.	2.3	54
80	Synthesis and Properties of η6-Silabenzeneâ^'M(CO)3 Complexes (M = Cr, Mo). Organometallics, 2005, 24, 6141-6146.	2.3	43
81	Reactions of a Germacyclopropabenzene with Elemental Chalcogens:Â Syntheses and Structures of a Series of Stable 2H-Benzo[c][1,2]chalcogenagermetes. Organometallics, 2005, 24, 612-618.	2.3	9
82	Synthesis and Structure of a Stable 1,3-Dihydrotriphosphane and Its Thermal Decomposition Leading to the Formation of the Corresponding Phosphine and Diphosphene. Organometallics, 2005, 24, 3074-3080.	2.3	17
83	Synthesis and Structure of a Distorted Octahedral Palladium(II) Complex Coordinated with a Tetrathioether Ligand Tethered with Bulky Substituents. Inorganic Chemistry, 2005, 44, 8561-8568.	4.0	19
84	SYNTHESIS AND PROPERTIES OF THE FIRST DISULFUR AND DISELENIUM COMPLEXES OF PLATINUM. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 915-927.	1.6	6
85	REDUCTION OF BIS(BROMO(MESITYL)-{2,4,6-TRIS[BIS(TRIMETHYLSILYL)METHYL]- PHENYL}SILYL)BUTADIYNE WITH POTASSIUM GRAPHITE: UNEXPECTED FORMATION OF 2-ALLENYL-1-BENZOSILOLE. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 947-948.	1.6	0
86	Generation of 1,6-Disilahexapentaene in the Reduction of an Overcrowded Bis(bromodiaryl)butadiyne Leading to the Unexpected Formation of 2-Allenyl-1-benzosilole ChemInform, 2004, 35, no.	0.0	0
87	A Kinetically Stabilized Ferrocenyl Diphosphene: Synthesis, Structure, Properties, and Redox Behavior. Chemistry - A European Journal, 2004, 10, 6146-6151.	3.3	51
88	Thermal reactions of an overcrowded germacyclopropabenzene with group 6 metal hexacarbonyl complexes [M(CO)6] (M = Cr, Mo, and W): a novel mode of CO insertion leading to the formation of cyclic germoxycarbene metal complexes. Chemical Communications, 2004, , 402-403.	4.1	7
89	SYNTHESIS OF A CHELATE RING COMPOUND CONTAINING A LITHIUM ATOM BY TAKING ADVANTAGE OF A NEW UNSYMMETRICAL Î ² -DIKETIMINATE LIGAND BEARING BULKY SUBSTITUENTS. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 727-728.	1.6	1
90	Insertion of an Overcrowded Silylene into Hydro- and Haloboranes:Â A Novel Synthesis of Silylborane Derivatives and Their Properties. Organometallics, 2004, 23, 4723-4734.	2.3	49

#	Article	IF	CITATIONS
91	Unprecedented insertion reaction of a silylene into a B–B bond and generation of a novel borylsilyl anion by boron–metal exchange reaction of the resultant diborylsilane. Chemical Communications, 2004, , 2218-2219.	4.1	22
92	Generation of 1,6-Disilahexapentaene in the Reduction of an Overcrowded Bis(bromodiaryl)butadiyne Leading to the Unexpected Formation of 2-Allenyl-1-benzosilole. Chemistry Letters, 2004, 33, 420-421.	1.3	1
93	Reaction of an Overcrowded Distibene with Elemental Sulfur and Crystallographic Analysis of the Sulfurization Products. Chemistry Letters, 2004, 33, 104-105.	1.3	24
94	A Monomeric, Donor-free Lithium Complex with a New Overcrowded β-Diketiminato Ligand. Chemistry Letters, 2004, 33, 134-135.	1.3	12
95	Î-6-Germabenzene Complexes of Chromium and Molybdenum. Angewandte Chemie, 2003, 115, 119-121.	2.0	8
96	Systematic Studies on Homo- and Heteronuclear Doubly Bonded Compounds of Heavier Group 15 Elements. ChemInform, 2003, 34, no.	0.0	0
97	The First Examples of Stable Benzenes Fused with Two Three-Membered Rings: Synthesis and Structures of the Two Stereoisomers of Bis(silacyclopropa)benzenes (III)/(IV) ChemInform, 2003, 34, no.	0.0	0
98	Synthesis and Properties of the First Stable Silylene–Isocyanide Complexes. Chemistry - A European Journal, 2003, 9, 3530-3543.	3.3	89
99	Î-6-Germabenzene Complexes of Chromium and Molybdenum. Angewandte Chemie - International Edition, 2003, 42, 115-117.	13.8	55
100	Reaction of a stable germabenzene with chalcogens: synthesis and structure of a novel germanium analog of pentathiepane, 1,2,3,4,5,6-pentathiagermepane. Journal of Organometallic Chemistry, 2003, 672, 66-71.	1.8	29
101	Syntheses and structures of silicon analogues of cyclopropabenzenes. Journal of Organometallic Chemistry, 2003, 686, 118-126.	1.8	22
102	Synthesis and reactions of new diphosphenes bearing extremely bulky substituents. Journal of Physical Organic Chemistry, 2003, 16, 450-462.	1.9	77
103	Polysulfido Complexes of Main Group and Transition Metals. Topics in Current Chemistry, 2003, , 153-202.	4.0	29
104	Synthesis and Properties of the First Stable Neutral Germaaromatic Compound, 2-{2,4,6-Tris- [bis-(trimethylsilyl)methyl]phenyl}-2-germanaphthalene. Organometallics, 2003, 22, 481-489.	2.3	38
105	Photochemical and Thermal Reactions of a Kinetically Stabilized 9-Silaanthracene:Â The First Spectroscopic Observation of a 9,10-Dewar-9-silaanthracene Isomer. Journal of the American Chemical Society, 2003, 125, 10804-10805.	13.7	28
106	The First Examples of Stable Benzenes Fused with Two Three-membered Rings: Synthesis and Structures of the Two Stereoisomers of Bis(silacyclopropa)benzenes. Chemistry Letters, 2003, 32, 220-221.	1.3	16
107	Synthesis, Structure, and Properties of the First Disulfur and Diselenium Complexes of Platinum. Bulletin of the Chemical Society of Japan, 2003, 76, 1577-1587.	3.2	12
108	Unusual Oxidation of Dichalcogenido Complexes of Platinum. Chemistry Letters, 2003, 32, 170-171.	1.3	9

#	Article	IF	CITATIONS
109	Systematic Studies on Homo- and Heteronuclear Doubly Bonded Compounds of Heavier Group 15 Elements. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1473-1476.	1.6	2
110	Synthesis of Novel Platinum Dichalcogenido-Complexes by Taking Advantage of Bulky Phosphine Ligands. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 1859-1862.	1.6	2
111	Synthesis and Properties of the First 1-Silanaphthalene. Organometallics, 2002, 21, 4024-4026.	2.3	54
112	Synthesis and Reactions of the First Stable Phosphabismuthene, a Novel Compound with Phosphorus-Bismuth Double Bond. Phosphorus, Sulfur and Silicon and the Related Elements, 2002, 177, 2003-2004.	1.6	1
113	Syntheses, Structures and Properties of Kinetically Stabilized Distibenes and Dibismuthenes, Novel Doubly Bonded Systems between Heavier Group 15 Elements Bulletin of the Chemical Society of Japan, 2002, 75, 661-675.	3.2	97
114	Synthesis of Kinetically Stabilized Silaneselone and Silanetellone. Chemistry Letters, 2002, 31, 34-35.	1.3	58
115	Reactions of 2-Germanaphthalene with Elemental Sulfur and Selenium: Synthesis of Novel Cyclic Polychalcogenides Containing a Germanium, Trichalcogenagermolanes. Chemistry Letters, 2002, 31, 818-819.	1.3	25
116	Synthesis and Isolation of the First Germacyclopropabenzene:Â A Study to Elucidate the Intrinsic Factor for the Ring Deformation of Cyclopropabenzene Skeletons. Organometallics, 2002, 21, 4309-4311.	2.3	35
117	Synthesis and Properties of the First Stable Germabenzene. Journal of the American Chemical Society, 2002, 124, 6914-6920.	13.7	113
118	The First Stable 9-Silaanthracene. Organometallics, 2002, 21, 256-258.	2.3	72
119	The First Disulfur and Diselenium Complexes of Platinum: Syntheses and Crystal Structures. Angewandte Chemie - International Edition, 2002, 41, 136-138.	13.8	31
120	Synthesis and Structure of the First Stable Phosphabismuthene. Angewandte Chemie - International Edition, 2002, 41, 139-141.	13.8	42
121	Synthesis and characterization of an extremely hindered tetraaryl-substituted digermene and its unique properties in the solid state and in solution. Polyhedron, 2002, 21, 563-577.	2.2	58
122	Stable 2H-azasilirene and 2H-phosphasilirene: Addition reaction of an overcrowded silylene to a nitrile and a phosphaalkyne. Silicon Chemistry, 2002, 1, 313-319.	0.8	11
123	Reactions of 2â€Germanaphthalene with Elemental Sulfur and Selenium: Synthesis of Novel Cyclic Polychalcogenides Containing a Germanium, Trichalcogenagermolanes (I) ChemInform, 2002, 33, 145-145.	0.0	0
124	Synthesis and Structure of a Kinetically Stabilized 2-Germanaphthalene:Â The First Stable Neutral Germaaromatic Compound. Organometallics, 2001, 20, 5507-5509.	2.3	46
125	Reaction of Stable Silylene–Isocyanide Complexes with Boranes: Synthesis and Properties of the First Stable Silylborane–Isocyanide Complexes. Chemistry Letters, 2001, 30, 1076-1077.	1.3	17
126	The First Stable AromaticS-Nitrosothiol: Synthesis, Structure and Reactivity. Chemistry Letters, 2001, 30, 1206-1207.	1.3	19

#	Article	IF	CITATIONS
127	The First Chemical Trapping of Stibinidene, a Monovalent Antimony Compound. Chemistry Letters, 2001, 30, 42-43.	1.3	22
128	Formation of antimony-sulfur double-bond compounds and their trapping with nitrile oxides. Heteroatom Chemistry, 2001, 12, 244-249.	0.7	10
129	Novel Disproportionation Reaction of Stable Stibabismuthene Via 1,2,3,4-Distibadibismetane Derivative. Phosphorus, Sulfur and Silicon and the Related Elements, 2001, 169, 89-92.	1.6	2
130	Reaction of a Stable Silylene–Isocyanide Complex with Nitrile Oxides: A New Approach to the Generation of a Silanone. Chemistry Letters, 2000, 29, 244-245.	1.3	29
131	A Novel Reaction Mode in the Cycloaddition of Thermally Generated Silylenes with Conjugated Dienes. Chemistry Letters, 2000, 29, 622-623.	1.3	21
132	Synthesis of a stable stibabismuthene; the first compound with an antimony–bismuth double bond. Chemical Communications, 2000, , 1353-1354.	4.1	56
133	Synthesis and Properties of New Fused Bicyclic Compounds Containing P-B-S Linkages. Heterocycles, 2000, 52, 667.	0.7	3
134	A nanometre-sized hexahedral coordination capsule assembled from 24 components. Nature, 1999, 398, 794-796.	27.8	411
135	The First Rotational Isomers of Stable Selenobenzaldehydes and their η ¹ -Tungsten Complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 136, 633-636.	1.6	1
136	Reaction of a Sterically Hindered Silylene with Isocyanides:  The First Stable Silyleneâ^'Lewis Base Complexes. Journal of the American Chemical Society, 1997, 119, 1456-1457.	13.7	149
137	Syntheses, structures, and reactions of the first rotational isomers of stable selenobenzaldehydes, 2,4,6-tris[bis(trimethylsilyl)methyl]selenobenzaldehydes, and their η1-tungsten complexes. Tetrahedron, 1997, 53, 12167-12182.	1.9	34
138	Synthesis, Structure, and Reactions of the First Rotational Isomers of Stable Thiobenzaldehydes, 2,4,6â€Tris[bis(trimethylsilyl)methyl]thiobenzaldehydes. Chemistry - A European Journal, 1997, 3, 62-69.	3.3	24
139	Die ersten Rotationsisomere stabiler Selenoaldehyde und ihre Î∙ ¹ â€Wolframkomplexe. Angewandte Chemie, 1996, 108, 714-716.	2.0	11
140	The First Rotational Isomers of Stable Selenoaldehydes and Theirη1-Tungsten Complexes. Angewandte Chemie International Edition in English, 1996, 35, 660-662.	4.4	33
141	Synthesis and Structure of a Novel Cyclic Polysulfide, 2,4,6-Tris[bis(trimethylsilyl)methyl]phenyloctathionane. Bulletin of the Chemical Society of Japan, 1995, 68, 2757-2764.	3.2	24
142	Synthesis, Structure, and Reactivities of 2,4,6-Tris[Bis-(Trimethylsilyl)Methyl]Thiobenzaldehydes: First Isolation of Rotational Isomers of Thiobenzaldehydes. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 389-390.	1.6	1
143	Synthesis and Structure of 2,4,6-Tris[bis(trimethylsilyl)methyl]thiobenzaldehyde: The First Isolation of Rotational Isomers of Thiobenzaldehydes. Journal of the American Chemical Society, 1994, 116, 7907-7908.	13.7	38
144	1,2,3,4,5,6,7,8-Octathionane, a Novel Cyclic Polysulfide. Synthesis and Crystal Structure. Chemistry Letters, 1992, 21, 1599-1602.	1.3	14