
Quanjiang Ji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3507081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N6-Methyldeoxyadenosine Marks Active Transcription Start Sites in Chlamydomonas. Cell, 2015, 161, 879-892.	28.9	477
2	Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans. Nature Microbiology, 2019, 4, 1450-1456.	13.3	455
3	6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1–AMPK signalling. Nature Cell Biology, 2015, 17, 1484-1496.	10.3	224
4	Widespread occurrence of <i>N</i> ⁶ -methyladenosine in bacterial mRNA. Nucleic Acids Research, 2015, 43, 6557-6567.	14.5	165
5	Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15461-15466.	7.1	151
6	CRISPR/Cas9-based Genome Editing in Pseudomonas aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species. IScience, 2018, 6, 222-231.	4.1	142
7	Metabolic Rewiring by Oncogenic BRAF V600E Links Ketogenesis Pathway to BRAF-MEK1 Signaling. Molecular Cell, 2015, 59, 345-358.	9.7	125
8	Programmed genome editing by a miniature CRISPR-Cas12f nuclease. Nature Chemical Biology, 2021, 17, 1132-1138.	8.0	121
9	CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Applied and Environmental Microbiology, 2018, 84, .	3.1	113
10	Proteome-wide Quantification and Characterization of Oxidation-Sensitive Cysteines in Pathogenic Bacteria. Cell Host and Microbe, 2013, 13, 358-370.	11.0	111
11	Lysine Acetylation Activates 6-Phosphogluconate Dehydrogenase to Promote Tumor Growth. Molecular Cell, 2014, 55, 552-565.	9.7	107
12	Rapid and Efficient Genome Editing in <i>Staphylococcus aureus</i> by Using an Engineered CRISPR/Cas9 System. Journal of the American Chemical Society, 2017, 139, 3790-3795.	13.7	98
13	Quorum-sensing <i>agr</i> mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9095-9100.	7.1	92
14	Lectin-Based Nanoprobes Functionalized with Enzyme for Highly Sensitive Electrochemical Monitoring of Dynamic Carbohydrate Expression on Living Cells. Analytical Chemistry, 2010, 82, 1292-1298.	6.5	80
15	AirSR, a [2Fe-2S] Cluster-Containing Two-Component System, Mediates Global Oxygen Sensing and Redox Signaling in Staphylococcus aureus. Journal of the American Chemical Society, 2012, 134, 305-314.	13.7	78
16	The auxiliary protein complex <scp>SaePQ</scp> activates the phosphatase activity of sensor kinase <scp>SaeS</scp> in the <scp>SaeRS</scp> twoâ€component system of <i><scp>S</scp>taphylococcus aureus</i> . Molecular Microbiology, 2012, 86, 331-348.	2.5	74
17	Expression of Multidrug Resistance Efflux Pump Gene <i>norA</i> Is Iron Responsive in Staphylococcus aureus. Journal of Bacteriology, 2012, 194, 1753-1762.	2.2	69
18	Highly efficient base editing in <i>Staphylococcus aureus</i> using an engineered CRISPR RNA-guided cytidine deaminase. Chemical Science, 2018, 9, 3248-3253.	7.4	64

QUANJIANG JI

#	Article	IF	CITATIONS
19	A Highly Efficient CRISPR-Cas9-Based Genome Engineering Platform in Acinetobacter baumannii to Understand the H2O2-Sensing Mechanism of OxyR. Cell Chemical Biology, 2019, 26, 1732-1742.e5.	5.2	55
20	Enhancement of prime editing via xrRNA motif-joined pegRNA. Nature Communications, 2022, 13, 1856.	12.8	51
21	Crystal structure of the RNA demethylase ALKBH5 from zebrafish. FEBS Letters, 2014, 588, 892-898.	2.8	50
22	Mechanistic insights into staphylopine-mediated metal acquisition. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3942-3947.	7.1	50
23	The Pseudomonas aeruginosa Global Regulator VqsR Directly Inhibits QscR To Control Quorum-Sensing and Virulence Gene Expression. Journal of Bacteriology, 2012, 194, 3098-3108.	2.2	48
24	Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5010-5015.	7.1	40
25	Staphylococcus aureus CymR Is a New Thiol-based Oxidation-sensing Regulator of Stress Resistance and Oxidative Response. Journal of Biological Chemistry, 2012, 287, 21102-21109.	3.4	38
26	Steady-State Hydrogen Peroxide Induces Glycolysis in Staphylococcus aureus and Pseudomonas aeruginosa. Journal of Bacteriology, 2014, 196, 2499-2513.	2.2	35
27	Structure and mechanism of the essential two-component signal-transduction system WalKR in Staphylococcus aureus. Nature Communications, 2016, 7, 11000.	12.8	32
28	Engineering Bacterial Two-Component System PmrA/PmrB to Sense Lanthanide Ions. Journal of the American Chemical Society, 2013, 135, 2037-2039.	13.7	29
29	Application of CRISPR/Cas9-Based Genome Editing in Studying the Mechanism of Pandrug Resistance in Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	24
30	Targeted genetic screening in bacteria with a Cas12k-guided transposase. Cell Reports, 2021, 36, 109635.	6.4	24
31	Catalytic-state structure and engineering of Streptococcus thermophilus Cas9. Nature Catalysis, 2020, 3, 813-823.	34.4	23
32	Programmable adenine deamination in bacteria using a Cas9–adenine-deaminase fusion. Chemical Science, 2020, 11, 1657-1664.	7.4	21
33	Thymine DNA glycosylase recognizes the geometry alteration of minor grooves induced by 5-formylcytosine and 5-carboxylcytosine. Chemical Science, 2019, 10, 7407-7417.	7.4	20
34	CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. MSystems, 2020, 5, .	3.8	20
35	Strategies for Developing CRISPRâ€Based Gene Editing Methods in Bacteria. Small Methods, 2020, 4, 1900560.	8.6	19
36	Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. PLoS Biology, 2019, 17, e3000496.	5.6	17

QUANJIANG JI

#	Article	IF	CITATIONS
37	Crystal structure and acetylation of BioQ suggests a novel regulatory switch for biotin biosynthesis in <i>Mycobacterium smegmatis</i> . Molecular Microbiology, 2018, 109, 642-662.	2.5	10
38	Structural Basis of <i>Staphylococcus aureus</i> Surface Protein SdrC. Biochemistry, 2020, 59, 1465-1469.	2.5	10
39	A Potent Anti-SpuE Antibody Allosterically Inhibits Type III Secretion System and Attenuates Virulence of Pseudomonas Aeruginosa. Journal of Molecular Biology, 2019, 431, 4882-4896.	4.2	9
40	CRISPR-Cas9-Based Genome Editing and Cytidine Base Editing in Acinetobacter baumannii. STAR Protocols, 2020, 1, 100025.	1.2	6
41	Genetic Manipulation of MRSA Using CRISPR/Cas9 Technology. Methods in Molecular Biology, 2020, 2069, 113-124.	0.9	5
42	A highly sensitive and genetically encoded fluorescent reporter for ratiometric monitoring of quinones in living cells. Chemical Communications, 2013, 49, 8027.	4.1	3
43	Molecular basis for cell-wall recycling regulation by transcriptional repressor MurR in <i>Escherichia coli</i> . Nucleic Acids Research, 2022, 50, 5948-5960.	14.5	3
44	PAM-Expanded Streptococcus thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria. Engineering, 2022, 15, 67-77.	6.7	3
45	Genome Editing in Klebsiella pneumoniae Using CRISPR/Cas9 Technology. Methods in Molecular Biology, 2022, 2479, 105-117.	0.9	1