
David Milstein

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3506228/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cyclometalated Phosphine-Based Pincer Complexes:  Mechanistic Insight in Catalysis, Coordination, and Bond Activation. Chemical Reviews, 2003, 103, 1759-1792.	47.7	1,553
2	Applications of Acceptorless Dehydrogenation and Related Transformations in Chemical Synthesis. Science, 2013, 341, 1229712.	12.6	1,219
3	Direct Synthesis of Amides from Alcohols and Amines with Liberation of H ₂ . Science, 2007, 317, 790-792.	12.6	1,168
4	Metal–Ligand Cooperation by Aromatization–Dearomatization: A New Paradigm in Bond Activation and "Green―Catalysis. Accounts of Chemical Research, 2011, 44, 588-602.	15.6	947
5	Metal–Ligand Cooperation. Angewandte Chemie - International Edition, 2015, 54, 12236-12273.	13.8	947
6	Bond Activation and Catalysis by Ruthenium Pincer Complexes. Chemical Reviews, 2014, 114, 12024-12087.	47.7	811
7	A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of the American Chemical Society, 1978, 100, 3636-3638.	13.7	776
8	Metal Insertion into Câ^'C Bonds in Solution. Angewandte Chemie - International Edition, 1999, 38, 870-883.	13.8	751
9	Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes. Journal of the American Chemical Society, 2005, 127, 10840-10841.	13.7	724
10	Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nature Chemistry, 2011, 3, 609-614.	13.6	563
11	Hydrogenation and Dehydrogenation Iron Pincer Catalysts Capable of Metal–Ligand Cooperation by Aromatization/Dearomatization. Accounts of Chemical Research, 2015, 48, 1979-1994.	15.6	521
12	Efficient Homogeneous Catalytic Hydrogenation of Esters to Alcohols. Angewandte Chemie - International Edition, 2006, 45, 1113-1115.	13.8	502
13	Lowâ€Pressure Hydrogenation of Carbon Dioxide Catalyzed by an Iron Pincer Complex Exhibiting Noble Metal Activity. Angewandte Chemie - International Edition, 2011, 50, 9948-9952.	13.8	479
14	Highly Active Pd(II) PCP-Type Catalysts for the Heck Reaction. Journal of the American Chemical Society, 1997, 119, 11687-11688.	13.7	469
15	Selective Synthesis of Primary Amines Directly from Alcohols and Ammonia. Angewandte Chemie - International Edition, 2008, 47, 8661-8664.	13.8	468
16	Palladium-catalyzed coupling of tetraorganotin compounds with aryl and benzyl halides. Synthetic utility and mechanism. Journal of the American Chemical Society, 1979, 101, 4992-4998.	13.7	452
17	Consecutive Thermal H ₂ and Light-Induced O ₂ Evolution from Water Promoted by a Metal Complex. Science, 2009, 324, 74-77.	12.6	448
18	Direct Synthesis of Imines from Alcohols and Amines with Liberation of H ₂ . Angewandte Chemie - International Edition, 2010, 49, 1468-1471.	13.8	420

#	Article	IF	CITATIONS
19	Homogeneous Catalysis by Cobalt and Manganese Pincer Complexes. ACS Catalysis, 2018, 8, 11435-11469.	11.2	412
20	Manganese-Catalyzed Environmentally Benign Dehydrogenative Coupling of Alcohols and Amines to Form Aldimines and H ₂ : A Catalytic and Mechanistic Study. Journal of the American Chemical Society, 2016, 138, 4298-4301.	13.7	410
21	Direct Hydrogenation of Amides to Alcohols and Amines under Mild Conditions. Journal of the American Chemical Society, 2010, 132, 16756-16758.	13.7	394
22	Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex. Angewandte Chemie - International Edition, 2011, 50, 2120-2124.	13.8	338
23	Rational design in homogeneous catalysis. Iridium(I)-catalyzed addition of aniline to norbornylene via nitrogen-hydrogen activation. Journal of the American Chemical Society, 1988, 110, 6738-6744.	13.7	324
24	Catalytic Activation of Carbon-Fluorine Bonds by a Soluble Transition Metal Complex. Science, 1994, 265, 359-361.	12.6	307
25	Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source. Nature Chemistry, 2013, 5, 122-125.	13.6	293
26	Electron-Rich, Bulky Ruthenium PNP-Type Complexes. Acceptorless Catalytic Alcohol Dehydrogenation. Organometallics, 2004, 23, 4026-4033.	2.3	285
27	Discovery of Environmentally Benign Catalytic Reactions of Alcohols Catalyzed by Pyridine-Based Pincer Ru Complexes, Based on Metal–Ligand Cooperation. Topics in Catalysis, 2010, 53, 915-923.	2.8	283
28	Activation of a carbon–carbon bond in solution by transition-metal insertion. Nature, 1993, 364, 699-701.	27.8	282
29	Direct Synthesis of Pyrroles by Dehydrogenative Coupling of βâ€Aminoalcohols with Secondary Alcohols Catalyzed by Ruthenium Pincer Complexes. Angewandte Chemie - International Edition, 2013, 52, 4012-4015.	13.8	268
30	Direct Conversion of Alcohols to Acetals and H ₂ Catalyzed by an Acridine-Based Ruthenium Pincer Complex. Journal of the American Chemical Society, 2009, 131, 3146-3147.	13.7	260
31	Synthesis of Amides from Esters and Amines with Liberation of H ₂ under Neutral Conditions. Journal of the American Chemical Society, 2011, 133, 1682-1685.	13.7	253
32	Selective Hydrogenation of Nitriles to Primary Amines Catalyzed by a Cobalt Pincer Complex. Journal of the American Chemical Society, 2015, 137, 8888-8891.	13.7	237
33	Ru-Catalyzed Oxidative Coupling of Arenes with Olefins Using O2. Journal of the American Chemical Society, 2001, 123, 337-338.	13.7	229
34	Homogeneous rhodium complex-catalyzed hydrogenolysis of C-F bonds Journal of the American Chemical Society, 1995, 117, 8674-8675.	13.7	224
35	Homogeneous Catalysis for Sustainable Energy: Hydrogen and Methanol Economies, Fuels from Biomass, and Related Topics. Chemical Reviews, 2022, 122, 385-441.	47.7	223
36	Metalâ^'Ligand Cooperation in Câ^'H and H2Activation by an Electron-Rich PNP Ir(I) System:Â Facile Ligand Dearomatizationâ^'Aromatization as Key Steps. Journal of the American Chemical Society, 2006, 128, 15390-15391.	13.7	222

#	Article	IF	CITATIONS
37	Iron Pincer Complex Catalyzed, Environmentally Benign, <i>E</i> elective Semiâ€Hydrogenation of Alkynes. Angewandte Chemie - International Edition, 2013, 52, 14131-14134.	13.8	215
38	Nâ^'H Activation of Amines and Ammonia by Ru via Metalâ^'Ligand Cooperation. Journal of the American Chemical Society, 2010, 132, 8542-8543.	13.7	214
39	Efficient Hydrogen Liberation from Formic Acid Catalyzed by a Wellâ€Defined Iron Pincer Complex under Mild Conditions. Chemistry - A European Journal, 2013, 19, 8068-8072.	3.3	208
40	Electron-Rich PNP- and PNN-Type Ruthenium(II) Hydrido Borohydride Pincer Complexes. Synthesis, Structure, and Catalytic Dehydrogenation of Alcohols and Hydrogenation of Esters. Organometallics, 2011, 30, 5716-5724.	2.3	206
41	Mechanism of aryl chloride oxidative addition to chelated palladium(0) complexes. Organometallics, 1993, 12, 1665-1673.	2.3	204
42	Manganeseâ€Catalyzed Hydrogenation of Esters to Alcohols. Chemistry - A European Journal, 2017, 23, 5934-5938.	3.3	192
43	Chelate-assisted, palladium-catalyzed efficient carbonylation of aryl chlorides. Journal of the American Chemical Society, 1989, 111, 8742-8744.	13.7	190
44	Evidence for a terminal Pt(iv)-oxo complex exhibiting diverse reactivity. Nature, 2008, 455, 1093-1096.	27.8	187
45	Metallâ€Ligandâ€Kooperation. Angewandte Chemie, 2015, 127, 12406-12445.	2.0	186
46	Mild, selective, general method of ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium. Journal of Organic Chemistry, 1979, 44, 1613-1618.	3.2	181
47	Highly active PdII cyclometallated imine catalysts for the Heck reaction. Chemical Communications, 1999, , 357-358.	4.1	180
48	Iron Borohydride Pincer Complexes for the Efficient Hydrogenation of Ketones under Mild, Baseâ€Free Conditions: Synthesis and Mechanistic Insight. Chemistry - A European Journal, 2012, 18, 7196-7209.	3.3	180
49	Highly active PdII cyclometallated imine catalyst for the Suzuki reaction. Chemical Communications, 1999, , 1901-1902.	4.1	177
50	New CNN-Type Ruthenium Pincer NHC Complexes. Mild, Efficient Catalytic Hydrogenation of Esters. Organometallics, 2011, 30, 3826-3833.	2.3	177
51	Reusable Homogeneous Catalytic System for Hydrogen Production from Methanol and Water. ACS Catalysis, 2014, 4, 2649-2652.	11.2	176
52	Direct synthesis of pyridines and quinolines by coupling of Î ³ -amino-alcohols with secondary alcohols liberating H2 catalyzed by ruthenium pincer complexes. Chemical Communications, 2013, 49, 6632.	4.1	175
53	Unprecedented Ironâ€Catalyzed Ester Hydrogenation. Mild, Selective, and Efficient Hydrogenation of Trifluoroacetic Esters to Alcohols Catalyzed by an Iron Pincer Complex. Angewandte Chemie - International Edition, 2014, 53, 4685-4689.	13.8	175
54	Mechanism of reductive elimination. Reaction of alkylpalladium(II) complexes with tetraorganotin, organolithium, and Grignard reagents. Evidence for palladium(IV) intermediacy. Journal of the American Chemical Society, 1979, 101, 4981-4991.	13.7	174

#	Article	IF	CITATIONS
55	A Room Temperature Direct Metal Insertion into a Nonstrained Carbonâ^'Carbon Bond in Solution. Câ^'C vs Câ^'H Bond Activation. Journal of the American Chemical Society, 1996, 118, 12406-12415.	13.7	172
56	Unprecedented Catalytic Hydrogenation of Urea Derivatives to Amines and Methanol. Angewandte Chemie - International Edition, 2011, 50, 11702-11705.	13.8	172
57	Manganese atalyzed Nâ€Formylation of Amines by Methanol Liberating H ₂ : A Catalytic and Mechanistic Study. Angewandte Chemie - International Edition, 2017, 56, 4229-4233.	13.8	170
58	Alkylâ^' and Arylâ^'Oxygen Bond Activation in Solution by Rhodium(I), Palladium(II), and Nickel(II). Transition-Metal-Based Selectivity. Journal of the American Chemical Society, 1998, 120, 6531-6541.	13.7	169
59	Nitrogen-hydrogen activation. 1. Oxidative addition of ammonia to iridium(I). Isolation, structural characterization and reactivity of amidoiridium hydrides. Inorganic Chemistry, 1987, 26, 971-973.	4.0	166
60	Cobalt atalyzed Hydrogenation of Esters to Alcohols: Unexpected Reactivity Trend Indicates Ester Enolate Intermediacy. Angewandte Chemie - International Edition, 2015, 54, 12357-12360.	13.8	166
61	Formation of Î-2 Câ^'H Agostic Rhodium Arene Complexes and Their Relevance to Electrophilic Bond Activation. Journal of the American Chemical Society, 1998, 120, 12539-12544.	13.7	164
62	Aspects of intermediacy of carbalkoxymetal complexes in carbon monoxide reactions. Accounts of Chemical Research, 1988, 21, 428-434.	15.6	163
63	Direct Synthesis of Benzimidazoles by Dehydrogenative Coupling of Aromatic Diamines and Alcohols Catalyzed by Cobalt. ACS Catalysis, 2017, 7, 7456-7460.	11.2	162
64	Electron-rich, bulky PNN-type ruthenium complexes: synthesis, characterization and catalysis of alcohol dehydrogenation. Dalton Transactions, 2007, , 107-113.	3.3	161
65	Manganese-Catalyzed α-Alkylation of Ketones, Esters, and Amides Using Alcohols. ACS Catalysis, 2018, 8, 10300-10305.	11.2	161
66	Direct Synthesis of Pyrroles by Dehydrogenative Coupling of Diols and Amines Catalyzed by Cobalt Pincer Complexes. Angewandte Chemie - International Edition, 2016, 55, 14373-14377.	13.8	158
67	Transition-metal-catalyzed carbon-carbon bond formation via carbon-hydrogen activation. Intermolecular hydroacylation: the addition of aldehydes to alkenes. Organometallics, 1988, 7, 1451-1453.	2.3	157
68	Combining Low-Pressure CO ₂ Capture and Hydrogenation To Form Methanol. ACS Catalysis, 2015, 5, 2416-2422.	11.2	152
69	Manganese Catalyzed α-Olefination of Nitriles by Primary Alcohols. Journal of the American Chemical Society, 2017, 139, 11710-11713.	13.7	147
70	Manganese Catalyzed Hydrogenation of Organic Carbonates to Methanol and Alcohols. Angewandte Chemie - International Edition, 2018, 57, 12076-12080.	13.8	144
71	Palladium-catalyzed vinylation of aryl chlorides. Chelate effect in catalysis. Organometallics, 1992, 11, 1995-1996.	2.3	143
72	Advances in Metal Chemistry of Quinonoid Compounds:Â New Types of Interactions between Metals and Aromatics. Accounts of Chemical Research, 2001, 34, 798-807.	15.6	143

#	Article	IF	CITATIONS
73	Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angewandte Chemie - International Edition, 2017, 56, 14992-14996.	13.8	141
74	Gd ³⁺ Complexes as Potential Spin Labels for High Field Pulsed EPR Distance Measurements. Journal of the American Chemical Society, 2007, 129, 14138-14139.	13.7	138
75	Synthesis of Peptides and Pyrazines from βâ€Amino Alcohols through Extrusion of H ₂ Catalyzed by Ruthenium Pincer Complexes: Ligand ontrolled Selectivity. Angewandte Chemie - International Edition, 2011, 50, 12240-12244.	13.8	138
76	Selective <i>N</i> -Formylation of Amines with H ₂ and CO ₂ Catalyzed by Cobalt Pincer Complexes. ACS Catalysis, 2017, 7, 2500-2504.	11.2	137
77	Synthesis of Cyclic Imides by Acceptorless Dehydrogenative Coupling of Diols and Amines Catalyzed by a Manganese Pincer Complex. Journal of the American Chemical Society, 2017, 139, 11722-11725.	13.7	135
78	Template Catalysis by Metal–Ligand Cooperation. C–C Bond Formation via Conjugate Addition of Non-activated Nitriles under Mild, Base-free Conditions Catalyzed by a Manganese Pincer Complex. Journal of the American Chemical Society, 2016, 138, 6985-6997.	13.7	134
79	Reactions of Electron-Rich Arylpalladium Complexes with Olefins. Origin of the Chelate Effect in Vinylation Catalysis. Organometallics, 1994, 13, 3465-3479.	2.3	132
80	Aldehyde Binding through Reversible C–C Coupling with the Pincer Ligand upon Alcohol Dehydrogenation by a PNP–Ruthenium Catalyst. Journal of the American Chemical Society, 2012, 134, 10325-10328.	13.7	132
81	Formation, structures, and reactivity of cis-hydroxy-, cis-methoxy-, and cis-mercaptoiridium hydrides. Oxidative addition of water to Ir(I). Journal of the American Chemical Society, 1986, 108, 6387-6389.	13.7	131
82	Complexation of N2, H2, CO2, and Ethylene to a T-Shaped Rhodium(I) Core. Organometallics, 1996, 15, 1839-1844.	2.3	129
83	H/D Exchange at Aromatic and Heteroaromatic Hydrocarbons Using D2O as the Deuterium Source and Ruthenium Dihydrogen Complexes as the Catalyst. Angewandte Chemie - International Edition, 2007, 46, 2269-2272.	13.8	129
84	"Long-Range―Metalâ^'Ligand Cooperation in H ₂ Activation and Ammonia-Promoted Hydride Transfer with a Rutheniumâ^'Acridine Pincer Complex. Journal of the American Chemical Society, 2010, 132, 14763-14765.	13.7	129
85	Highly Efficient Process for Production of Biofuel from Ethanol Catalyzed by Ruthenium Pincer Complexes. Journal of the American Chemical Society, 2016, 138, 9077-9080.	13.7	128
86	A PCN Ligand System. Exclusive Câ^'C Activation with Rhodium(I) and Câ^'H Activation with Platinum(II). Organometallics, 1997, 16, 3981-3986.	2.3	127
87	A New Mode of Activation of CO ₂ by Metal–Ligand Cooperation with Reversible CC and MO Bond Formation at Ambient Temperature. Chemistry - A European Journal, 2012, 18, 9194-9197.	3.3	125
88	Synthesis of Pyrazines and Quinoxalines via Acceptorless Dehydrogenative Coupling Routes Catalyzed by Manganese Pincer Complexes. ACS Catalysis, 2018, 8, 7734-7741.	11.2	124
89	Oxidant-Free Conversion of Cyclic Amines to Lactams and H ₂ Using Water As the Oxygen Atom Source. Journal of the American Chemical Society, 2014, 136, 2998-3001.	13.7	122
90	Mechanism of a Directly Observed .betaHydride Elimination Process of Iridium Alkoxo Complexes. Journal of the American Chemical Society, 1995, 117, 4582-4594.	13.7	121

#	Article	IF	CITATIONS
91	Synthesis, Structure, and Reactivity of New Rhodium and Iridium Complexes, Bearing a Highly Electron-Donating PNP System. Iridium-Mediated Vinylic Câ^'H Bond Activation. Organometallics, 2002, 21, 812-818.	2.3	120
92	Reversible CO ₂ binding triggered by metal–ligand cooperation in a rhenium(<scp>i</scp>) PNP pincer-type complex and the reaction with dihydrogen. Chemical Science, 2014, 5, 2043-2051.	7.4	120
93	Transfer of methylene groups promoted by metal complexation. Nature, 1994, 370, 42-44.	27.8	119
94	Synthesis and Reactivity of Iron Complexes with a New Pyrazine-Based Pincer Ligand, and Application in Catalytic Low-Pressure Hydrogenation of Carbon Dioxide. Inorganic Chemistry, 2015, 54, 4526-4538.	4.0	119
95	Impact of Molecular Order in Langmuir-Blodgett Films on Catalysis. Science, 1997, 278, 2100-2102.	12.6	118
96	Comparison of Steric and Electronic Requirements for Câ^'C and Câ^'H Bond Activation. Chelating vs Nonchelating Case. Journal of the American Chemical Society, 2001, 123, 9064-9077.	13.7	118
97	Efficient hydrogenation of biomass-derived cyclic di-esters to 1,2-diols. Chemical Communications, 2012, 48, 1111-1113.	4.1	118
98	Concept of the H(δ+)â√ H(δ–) interaction. A low-temperature neutron diffraction study of cis-[IrH(OH)(PMe3)4]PF6. Journal of the Chemical Society Dalton Transactions, 1990, , 1429-1432.	1.1	117
99	Bond Activation by Metal-Ligand Cooperation: Design of "Green―Catalytic Reactions Based on Aromatization-Dearomatization of Pincer Complexes. Topics in Organometallic Chemistry, 2011, , 55-84.	0.7	117
100	Catalytic coupling of nitriles with amines to selectively form imines under mild hydrogen pressure. Chemical Communications, 2012, 48, 11853.	4.1	115
101	A novel liquid organic hydrogen carrier system based on catalytic peptide formation and hydrogenation. Nature Communications, 2015, 6, 6859.	12.8	115
102	System with Potential Dual Modes of Metal–Ligand Cooperation: Highly Catalytically Active Pyridineâ€Based PNNH–Ru Pincer Complexes. Chemistry - A European Journal, 2014, 20, 15727-15731.	3.3	114
103	The cis-alkyl and cis-acylrhodium and iridium hydrides. Model intermediates in homogeneous catalysis. Accounts of Chemical Research, 1984, 17, 221-226.	15.6	113
104	Selective hydrogenation of nitriles to primary amines catalyzed by a novel iron complex. Chemical Communications, 2016, 52, 1812-1815.	4.1	113
105	Unexpected Isomerization of acis- into atrans-Dihydride Complex. A Neutral Late Transition Metal Complex as a Hydride Donor. Organometallics, 1997, 16, 3786-3793.	2.3	112
106	Metallacarbenes from Diazoalkanes:Â An Experimental and Computational Study of the Reaction Mechanism. Journal of the American Chemical Society, 2003, 125, 6532-6546.	13.7	112
107	Selective Ortho Câ [~] 'H Activation of Haloarenes by an Ir(I) System. Journal of the American Chemical Society, 2003, 125, 4714-4715.	13.7	111
108	Aromatic vs Aliphatic Câ^'H Bond Activation by Rhodium(I) as a Function of Agostic Interactions:Â Catalytic H/D Exchange between Olefins and Methanol or Water. Journal of the American Chemical Society, 2003, 125, 11041-11050.	13.7	111

#	Article	IF	CITATIONS
109	Pincer "Hemilabile―Effect. PCN Platinum(II) Complexes with Different Amine "Arm Length― Organometallics, 2005, 24, 1082-1090.	2.3	111
110	Metal–ligand cooperation in the trans addition of dihydrogen to a pincer Ir(i) complex: a DFT study. Dalton Transactions, 2009, , 9433.	3.3	111
111	Directly Observed Oxidative Addition of a Strong Carbon-Carbon Bond to a Soluble Metal Complex. Journal of the American Chemical Society, 1995, 117, 9774-9775.	13.7	110
112	Activation of Nitriles by Metal Ligand Cooperation. Reversible Formation of Ketimido- and Enamido-Rhenium PNP Pincer Complexes and Relevance to Catalytic Design. Journal of the American Chemical Society, 2013, 135, 17004-17018.	13.7	110
113	Ruthenium Pincerâ€Catalyzed Crossâ€Dehydrogenative Coupling of Primary Alcohols with Secondary Alcohols under Neutral Conditions. Advanced Synthesis and Catalysis, 2012, 354, 2403-2406.	4.3	109
114	Transition-metal-catalyzed cyclization of alkynoic acids to alkylidene lactones. Journal of the American Chemical Society, 1987, 109, 6385-6388.	13.7	106
115	N‣ubstituted Hydrazones by Manganeseâ€Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angewandte Chemie - International Edition, 2018, 57, 2179-2182.	13.8	104
116	Ethylene glycol as an efficient and reversible liquid-organic hydrogen carrier. Nature Catalysis, 2019, 2, 415-422.	34.4	102
117	Silanol-Based Pincer Pt(II) Complexes: Synthesis, Structure, and Unusual Reactivity. Inorganic Chemistry, 2008, 47, 7177-7189.	4.0	101
118	Hydrogenative Depolymerization of Nylons. Journal of the American Chemical Society, 2020, 142, 14267-14275.	13.7	101
119	orthoCâ^'H Activation of Haloarenes and Anisole by an Electron-Rich Iridium(I) Complex:Â Mechanism and Origin of Regio- andÂChemoselectivity. AnÂExperimental andÂTheoreticalÂStudy. Organometallics, 2006, 25, 3190-3210.	2.3	100
120	Highly Selective, Efficient Deoxygenative Hydrogenation of Amides Catalyzed by a Manganese Pincer Complex via Metal–Ligand Cooperation. ACS Catalysis, 2018, 8, 8014-8019.	11.2	100
121	Unprecedented iron-catalyzed selective hydrogenation of activated amides to amines and alcohols. Chemical Communications, 2016, 52, 5285-5288.	4.1	99
122	Metal–ligand cooperation by aromatization–dearomatization as a tool in single bond activation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140189.	3.4	98
123	<i>Z</i> â€Selective (Crossâ€)Dimerization of Terminal Alkynes Catalyzed by an Iron Complex. Angewandte Chemie - International Edition, 2016, 55, 6942-6945.	13.8	98
124	Synthesis and Reactivity of an Iridium(I) Acetonyl PNP Complex. Experimental and Computational Study of Metalâ^'Ligand Cooperation in Hâ^'H and Câ^'H Bond Activation via Reversible Ligand Dearomatization. Organometallics, 2010, 29, 3817-3827.	2.3	97
125	Catalytic selective cleavage of a strong C–C single bond by rhodium in solution. Chemical Communications, 1998, , 687-688.	4.1	96
126	Rechargeable Hydrogen Storage System Based on the Dehydrogenative Coupling of Ethylenediamine with Ethanol. Angewandte Chemie - International Edition, 2016, 55, 1061-1064.	13.8	94

#	Article	IF	CITATIONS
127	A New General Method for the Preparation of Metal Carbene Complexes. Journal of the American Chemical Society, 2001, 123, 5372-5373.	13.7	92
128	Manganese Catalyzed Hydrogenation of Carbamates and Urea Derivatives. Journal of the American Chemical Society, 2019, 141, 12962-12966.	13.7	92
129	Highly efficient additive-free dehydrogenation of neat formic acid. Nature Catalysis, 2021, 4, 193-201.	34.4	92
130	Direct Observation of Reductive Elimination of Methyl Iodide from a Rhodium(III) Pincer Complex:Â The Importance of Sterics. Journal of the American Chemical Society, 2006, 128, 12434-12435.	13.7	91
131	Chelate effect on the structure and reactivity of electron-rich palladium complexes and its relevance to catalysis. Organometallics, 1993, 12, 1655-1664.	2.3	90
132	Reductive Cleavage of CO ₂ by Metal–Ligand-Cooperation Mediated by an Iridium Pincer Complex. Journal of the American Chemical Society, 2016, 138, 6445-6454.	13.7	88
133	C–F bond activation by iridium(I). A unique process involving P–C bond cleavage, P–F bond formation and net retention of oxidation state. Journal of the Chemical Society Chemical Communications, 1991, .	2.0	86
134	Clarification of a remarkable chelate effect leads to palladium-catalyzed base-free olefin arylation. Organometallics, 1993, 12, 4734-4735.	2.3	85
135	Selective Câ^'C vs Câ^'H Bond Activation by Rhodium(I) PCP Pincer Complexes. A Computational Study. Journal of the American Chemical Society, 2000, 122, 7095-7104.	13.7	85
136	Formylation of aryl chlorides catalysed by a palladium complex. Journal of the Chemical Society Chemical Communications, 1989, , 1816.	2.0	84
137	Metal-Stabilized Methylene Arenium and σ-Arenium Compounds:  Synthesis, Structure, Reactivity, Charge Distribution, and Interconversion. Organometallics, 1999, 18, 895-905.	2.3	84
138	Formation of Stable <i>trans</i> -Dihydride Ruthenium(II) and 16-Electron Ruthenium(0) Complexes Based on Phosphinite PONOP Pincer Ligands. Reactivity toward Water and Electrophiles. Organometallics, 2009, 28, 4791-4806.	2.3	84
139	Manganese-Catalyzed Direct Deoxygenation of Primary Alcohols. ACS Catalysis, 2017, 7, 4462-4466.	11.2	84
140	N–H Activation by Rh(I) via Metal–Ligand Cooperation. Organometallics, 2012, 31, 4083-4101.	2.3	83
141	Highly efficient, general hydrogenation of aldehydes catalyzed by PNP iron pincer complexes. Catalysis Science and Technology, 2015, 5, 822-826.	4.1	83
142	Exclusive Câ^'C Activation and an Apparent α-H Elimination with a Rhodium Phosphinite Pincer Complex. Organometallics, 2006, 25, 2292-2300.	2.3	82
143	Carbonâ^'Carbon vs Carbonâ^'Hydrogen Bond Activation by Ruthenium(II) and Platinum(II) in Solution. Organometallics, 1999, 18, 3873-3884.	2.3	81
144	Formation of Tertiary Amides and Dihydrogen by Dehydrogenative Coupling of Primary Alcohols with Secondary Amines Catalyzed by Ruthenium Bipyridineâ€Based Pincer Complexes. Advanced Synthesis and Catalysis, 2013, 355, 2525-2530.	4.3	81

#	Article	IF	CITATIONS
145	Selective Hydrogenation of Nitriles to Secondary Imines Catalyzed by an Iron Pincer Complex. ACS Catalysis, 2017, 7, 3968-3972.	11.2	80
146	Iron(II) complexes based on electron-rich, bulky PNN- and PNP-type ligands. Inorganica Chimica Acta, 2006, 359, 1955-1960.	2.4	79
147	Anionic Nickel(II) Complexes with Doubly Deprotonated PNP Pincer-Type Ligands and Their Reactivity toward CO ₂ . Organometallics, 2013, 32, 300-308.	2.3	79
148	Dehydrogenative Cross-Coupling of Primary Alcohols To Form Cross-Esters Catalyzed by a Manganese Pincer Complex. ACS Catalysis, 2019, 9, 479-484.	11.2	79
149	The First Observation and Kinetic Evaluation of a Single Step Metal Insertion into a Câ^'C Bond. Journal of the American Chemical Society, 2000, 122, 9848-9849.	13.7	78
150	Cationic, Neutral, and Anionic PNP Pd ^{II} and Pt ^{II} Complexes: Dearomatization by Deprotonation and Double-Deprotonation of Pincer Systems. Inorganic Chemistry, 2010, 49, 1615-1625.	4.0	78
151	How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study. Inorganic Chemistry, 2015, 54, 4909-4926.	4.0	76
152	Acceptorless Dehydrogenative Coupling Using Ammonia: Direct Synthesis of N-Heteroaromatics from Diols Catalyzed by Ruthenium. Journal of the American Chemical Society, 2018, 140, 11931-11934.	13.7	76
153	The first isolated, stable cis-hydridoalkylrhodium complexes and their reductive elimination reaction. Journal of the American Chemical Society, 1982, 104, 5227-5228.	13.7	75
154	Ruthenium Pincer atalyzed Acylation of Alcohols Using Esters with Liberation of Hydrogen under Neutral Conditions. Advanced Synthesis and Catalysis, 2010, 352, 3169-3173.	4.3	75
155	A binuclear palladium(I) hydride. Formation, reactions, and catalysis. Organometallics, 1994, 13, 600-609.	2.3	73
156	Methanol reduces an organopalladium(II) complex to a palladium(I) hydride. Crystallographic characterization of a hydrido-bridged palladium complex. Organometallics, 1991, 10, 3960-3962.	2.3	72
157	Unsaturated Pd(0), Pd(I), and Pd(II) Complexes of a New Methoxy-Substituted Benzyl Phosphine. Arylâ~'X (X = Cl, I) Oxidative Addition, Câ~'O Cleavage, and Suzukiâ~'Miyaura Coupling of Aryl Chlorides. Organometallics, 2004, 23, 3931-3940.	2.3	70
158	Nickel promoted C–H, C–C and C–O bond activation in solution. Inorganica Chimica Acta, 2004, 357, 4015-4023.	2.4	70
159	Ironâ€Catalyzed Mild and Selective Hydrogenative Cross oupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie - International Edition, 2017, 56, 2074-2078.	13.8	70
160	Nucleophilic De-coordination and Electrophilic Regeneration of"Hemilabile―Pincer-Type Complexes: Formation of Anionic Dialkyl, Diaryl, and Dihydride PtII Complexes Bearing No Stabilizingi€-Acceptors. Chemistry - A European Journal, 2004, 10, 4673-4684.	3.3	69
161	Mechanism of the Manganese-Pincer-Catalyzed Acceptorless Dehydrogenative Coupling of Nitriles and Alcohols. Journal of the American Chemical Society, 2019, 141, 2398-2403.	13.7	69
162	Oxidative addition of unactivated epoxides to iridium(I) complexes. Formation of stable cis-hydridoformylmethyl and -acylmethyl complexes. Journal of the American Chemical Society, 1982, 104, 3773-3774.	13.7	66

#	Article	IF	CITATIONS
163	Selective sp3Câ^'H Activation of Ketones at the β Position by Ir(I). Origin of Regioselectivity and Water Effect. Journal of the American Chemical Society, 2006, 128, 12400-12401.	13.7	66
164	Mononuclear Rh(II) PNP-Type Complexes. Structure and Reactivity. Inorganic Chemistry, 2007, 46, 10479-10490.	4.0	66
165	Cobalt-catalyzed carbalkoxylation of olefins: a new mechanism. Journal of the American Chemical Society, 1982, 104, 6150-6152.	13.7	65
166	Oxidative Addition of Water and Aliphatic Alcohols by IrCl(trialkylphosphine)3. Journal of the American Chemical Society, 2002, 124, 11456-11467.	13.7	65
167	Selective Hydrogenation of Cyclic Imides to Diols and Amines and Its Application in the Development of a Liquid Organic Hydrogen Carrier. Journal of the American Chemical Society, 2018, 140, 7453-7457.	13.7	65
168	Evidence for an unprecedented Ir(H)(NH3) .dblarw. Ir(H2)(NH2) equilibrium and hydrogen exchange between NH and CH bonds. Journal of the American Chemical Society, 1991, 113, 8524-8525.	13.7	64
169	Facial (methyl)(hydrido)(silyl) Complexes of Iridium: Synthesis, X-ray Structures, and Reductive Elimination Reactions. Facile Formation of Silametalacycles by Metalation of Silyl Ligands. Journal of the American Chemical Society, 1995, 117, 6456-6464.	13.7	64
170	Selective Activation of Alkyl– and Aryl–Oxygen Single Bonds in Solution with Transition Metal Complexes. Angewandte Chemie International Edition in English, 1997, 36, 625-626.	4.4	64
171	Synthesis and Characterisation of Nonclassical Ruthenium Hydride Complexes Containing Chelating Bidentate and Tridentate Phosphine Ligands. Chemistry - A European Journal, 2007, 13, 1539-1546.	3.3	64
172	A Dearomatized Anionic PNP Pincer Rhodium Complex: C–H and H–H Bond Activation by Metal–Ligand Cooperation and Inhibition by Dinitrogen. Organometallics, 2011, 30, 2721-2729.	2.3	64
173	Synthesis of polyamides from diols and diamines with liberation of H ₂ . Journal of Polymer Science Part A, 2012, 50, 1755-1765.	2.3	64
174	Catalytic System for Heck Reactions Involving Insertion into Pdâ^'(Perfluoro-organyl) Bonds. Journal of the American Chemical Society, 2001, 123, 11504-11505.	13.7	63
175	Challenging metal-based transformations. From single-bond activation to catalysis and metallaquinonoids. Pure and Applied Chemistry, 2003, 75, 445-460.	1.9	63
176	Formal loss of an H radical by a cobalt complex via metal–ligand cooperation. Chemical Communications, 2013, 49, 2771.	4.1	63
177	Facile NH Cleavage of Ammonia. Angewandte Chemie International Edition in English, 1991, 30, 707-709.	4.4	62
178	The Unexpected Role of CO in CH Oxidative Addition by a Cationic Rhodium(I) Complex. Angewandte Chemie - International Edition, 2007, 46, 1901-1904.	13.8	62
179	Mechanism of Coupling of Alcohols and Amines To Generate Aldimines and H ₂ by a Pincer Manganese Catalyst. ACS Catalysis, 2019, 9, 1662-1669.	11.2	62
180	Redox-Induced Collapse and Regeneration of a Pincer-Type Complex Framework: A Nonplanar Coordination Mode of Palladium(II). Angewandte Chemie - International Edition, 2005, 44, 1709-1711.	13.8	61

#	Article	IF	CITATIONS
181	Cĩ£¿C versus Cĩ£¿H Activation and versus Agostic Cĩ£¿C Interaction Controlled by Electron Density at the Metal Center. Chemistry - A European Journal, 2003, 9, 4295-4300.	3.3	60
182	General Synthesis of Amino Acid Salts from Amino Alcohols and Basic Water Liberating H ₂ . Journal of the American Chemical Society, 2016, 138, 6143-6146.	13.7	60
183	Rhodium and Palladium Complexes of a 3,5-Lutidine-Based Phosphine Ligand. Inorganic Chemistry, 1996, 35, 1792-1797.	4.0	59
184	Metal-Stabilized Quinone and Thioquinone Methides. Journal of the American Chemical Society, 1997, 119, 7873-7874.	13.7	59
185	Carbonâ^'Carbon Bond Activation by Rhodium(I) in Solution. Comparison of sp2â~'sp3 vs sp3â~'sp3 Câ~'C, Câ~'H vs Câ^'C, and Arâ^'CH3 vs Arâ~'CH2CH3 Activation. Journal of the American Chemical Society, 1998, 120, 13415-13421.	13.7	58
186	Solvent-Controlled Selectivity toward Exclusive Câ^'C or Câ^'H Bond Activation by a Cationic Metal Center. Journal of the American Chemical Society, 1999, 121, 4528-4529.	13.7	58
187	Interplay between Solvent and Counteranion Stabilization of Highly Unsaturated Rhodium(III) Complexes: Facile Unsaturation-Induced Dearomatization. Chemistry - A European Journal, 2003, 9, 2595-2602.	3.3	58
188	Direct Catalytic Olefination of Alcohols with Sulfones. Angewandte Chemie - International Edition, 2014, 53, 11092-11095.	13.8	58
189	Mechanistic Investigations of the Catalytic Formation of Lactams from Amines and Water with Liberation of H ₂ . Journal of the American Chemical Society, 2015, 137, 4851-4859.	13.7	58
190	Direct Synthesis of Secondary Amines From Alcohols and Ammonia Catalyzed by a Ruthenium Pincer Complex. Catalysis Letters, 2015, 145, 139-144.	2.6	58
191	Direct Synthesis of Amides by Acceptorless Dehydrogenative Coupling of Benzyl Alcohols and Ammonia Catalyzed by a Manganese Pincer Complex: Unexpected Crucial Role of Base. Journal of the American Chemical Society, 2019, 141, 12202-12206.	13.7	58
192	Synthesis and Structure of New Osmiumâ^'PCP Complexes. Osmium-Mediated Câ^'C Bond Activation. Organometallics, 2001, 20, 1719-1724.	2.3	57
193	C-Metalated Diazoalkane Complexes of Platinum Based on PCP- and PCN-Type Ligands. Organometallics, 2005, 24, 5937-5944.	2.3	57
194	Cationic, Neutral, and Anionic Platinum(II) Complexes Based on an Electron-Rich PNN Ligand. New Modes of Reactivity Based on Pincer Hemilability and Dearomatization. Organometallics, 2008, 27, 2627-2634.	2.3	57
195	Simple and Efficient Catalytic Reaction for the Selective Deuteration of Alcohols. ACS Catalysis, 2013, 3, 448-452.	11.2	57
196	Hydrogenation and Hydrosilylation of Nitrous Oxide Homogeneously Catalyzed by a Metal Complex. Journal of the American Chemical Society, 2017, 139, 5720-5723.	13.7	57
197	Isolation of cis-hydridoacylrhodium(III) complexes not stabilized by chelation. Reductive elimination and decarbonylation. Organometallics, 1982, 1, 1549-1551.	2.3	56
198	Iron Dicarbonyl Complexes Featuring Bipyridineâ€Based PNN Pincer Ligands with Short Interpyridine CC Bond Lengths: Innocent or Nonâ€Innocent Ligand?. Chemistry - A European Journal, 2014, 20, 4403-4413.	3.3	56

#	Article	IF	CITATIONS
199	Cobaltâ€Catalyzed Hydrogenation of Esters to Alcohols: Unexpected Reactivity Trend Indicates Ester Enolate Intermediacy. Angewandte Chemie, 2015, 127, 12534-12537.	2.0	56
200	Mild, low-pressure carbonylation of (.piallyl)palladium complexes. Organometallics, 1982, 1, 888-890.	2.3	55
201	Direct Observation of OH Reductive Elimination from IrIII Complexes. Angewandte Chemie International Edition in English, 1995, 34, 229-231.	4.4	55
202	Formation of Difluoromethyleneâ^ Arenium Complexes by Consecutive Arylâ^ CF3Câ^ C Bond Activation and Câ^ F Bond Cleavage. Journal of the American Chemical Society, 1999, 121, 6652-6656.	13.7	55
203	Discovery of the First Metallaquinone. Journal of the American Chemical Society, 2000, 122, 8797-8798.	13.7	55
204	The Methylene-Transfer Reaction:Â Synthetic and Mechanistic Aspects of a Unique Câ^'C Coupling and Câ^'C Bond Activation Sequence. Journal of the American Chemical Society, 2000, 122, 7723-7734.	13.7	55
205	Homogeneously catalyzed, chelate assisted hydrogenolysis of an amine C–N bond. Chemical Communications, 2000, , 1603-1604.	4.1	54
206	N–Hvis. C–H activation; a major ligand size effect. Journal of the Chemical Society Chemical Communications, 1993, .	2.0	53
207	Synthesis, Structures, and Dearomatization by Deprotonation of Iron Complexes Featuring Bipyridine-based PNN Pincer Ligands. Inorganic Chemistry, 2013, 52, 9636-9649.	4.0	53
208	CO ₂ activation by manganese pincer complexes through different modes of metal–ligand cooperation. Dalton Transactions, 2019, 48, 14580-14584.	3.3	53
209	Methylene Arenium Cations via Quinone Methides and Xylylenes Stabilized by Metal Complexation. Journal of the American Chemical Society, 1998, 120, 477-483.	13.7	52
210	Reactivity of Rhodium-Triflate Complexes with Diphenylsilane: Evidence for Silylene Intermediacy in Stoichiometric and Catalytic Reactions. Chemistry - A European Journal, 2005, 11, 2983-2988.	3.3	52
211	CO Oxidation by N ₂ O Homogeneously Catalyzed by Ruthenium Hydride Pincer Complexes Indicating a New Mechanism. Journal of the American Chemical Society, 2018, 140, 7061-7064.	13.7	52
212	Carbon-hydrogen vs. oxygen-hydrogen reductive elimination of methanol from a metal complex. Which is a more likely process?. Journal of the American Chemical Society, 1986, 108, 3525-3526.	13.7	51
213	A General Method for Preparation of Metal Carbenes via Solution- and Polymer-Based Approaches. Journal of the American Chemical Society, 2005, 127, 15265-15272.	13.7	51
214	Bâ^'C Bond Cleavage of BAr _F Anion Upon Oxidation of Rhodium(I) with AgBAr _F . Phosphinite Rhodium(I), Rhodium(II), and Rhodium(III) Pincer Complexes. Organometallics, 2008, 27, 2293-2299.	2.3	51
215	A Reversible Liquid Organic Hydrogen Carrier System Based on Methanolâ€Ethylenediamine and Ethylene Urea. Angewandte Chemie - International Edition, 2019, 58, 5105-5109.	13.8	51
216	Direct coupling of alcohols to form esters and amides with evolution of H2 using in situ formed ruthenium catalysts. Catalysis Science and Technology, 2012, 2, 2039.	4.1	50

#	Article	IF	CITATIONS
217	Direct Conversion of Alcohols into Alkenes by Dehydrogenative Coupling with Hydrazine/Hydrazone Catalyzed by Manganese. Angewandte Chemie - International Edition, 2018, 57, 13444-13448.	13.8	50
218	Reductive dechlorination of aryl chlorides catalyzed by palladium complexes containing basic, chelating phosphines. Journal of Molecular Catalysis, 1992, 73, 173-180.	1.2	49
219	Activation of a non-strained C–C bond with plantinum(II). Chemical Communications, 1996, , 2167-2168.	4.1	49
220	Direct Synthesis of Thermally Stable PCP-Type Rhodium Carbenes. Organometallics, 2000, 19, 2061-2064.	2.3	49
221	Oxidative Addition of Water to Novel Ir(I) Complexes Stabilized by Dimethyl Sulfoxide Ligands. Journal of the American Chemical Society, 2002, 124, 188-189.	13.7	49
222	Dimethylsulfoxide as a Ligand for RhI and IrI Complexes—Isolation, Structure, and Reactivity Towards XH Bonds (X=H, OH, OCH3). Chemistry - A European Journal, 2003, 9, 5237-5249.	3.3	49
223	sp3 C–H and sp2 C–H agostic ruthenium complexes: a combined experimental and theoretical study. Inorganica Chimica Acta, 2004, 357, 1854-1864.	2.4	49
224	Effect of CO on the Oxidative Addition of Arene CH Bonds by Cationic Rhodium Complexes. Chemistry - A European Journal, 2010, 16, 328-353.	3.3	49
225	DFT Study of the Structure and Reactivity of the Terminal Pt(IV)-Oxo Complex Bearing No Electron-Withdrawing Ligands. Journal of the American Chemical Society, 2010, 132, 14886-14900.	13.7	49
226	Stepwise Metal–Ligand Cooperation by a Reversible Aromatization/Deconjugation Sequence in Ruthenium Complexes with a Tetradentate Phenanthrolineâ€Based Ligand. Chemistry - A European Journal, 2013, 19, 3407-3414.	3.3	49
227	Bottom-Up Construction of a CO2-Based Cycle for the Photocarbonylation of Benzene, Promoted by a Rhodium(I) Pincer Complex. Journal of the American Chemical Society, 2016, 138, 9941-9950.	13.7	49
228	Manganeseâ€Catalyzed Nâ€Formylation of Amines by Methanol Liberating H ₂ : A Catalytic and Mechanistic Study. Angewandte Chemie, 2017, 129, 4293-4297.	2.0	49
229	Synthesis and x-ray structure of a simple metallaoxetane. Metal-based selectivity in oxidative addition. Journal of the American Chemical Society, 1990, 112, 6411-6413.	13.7	48
230	Rhodium complexes with chiral counterions: achiral catalysts in chiral matrices. Journal of Organometallic Chemistry, 2004, 689, 751-758.	1.8	48
231	Selective Acceptorless Conversion of Primary Alcohols to Acetals and Dihydrogen Catalyzed by the Ruthenium(II) Complex Ru(PPh3)2(NCCH3)2(SO4). Advanced Synthesis and Catalysis, 2012, 354, 497-504.	4.3	48
232	Direct Observation of Reductive Elimination of MeX (X = Cl, Br, I) from Rh ^{III} Complexes: Mechanistic Insight and the Importance of Sterics. Journal of the American Chemical Society, 2013, 135, 11040-11047.	13.7	48
233	B–H Bond Cleavage via Metal–Ligand Cooperation by Dearomatized Ruthenium Pincer Complexes. Organometallics, 2014, 33, 3716-3726.	2.3	48
234	Isolation and direct observation of intramolecular hydroacylation of a cis-hydridopent-4-enoylrhodium(III) complex. Journal of the Chemical Society Chemical Communications, 1982, , 1357.	2.0	47

#	Article	IF	CITATIONS
235	Activation of dichloromethane by basic rhodium(I) and iridium(I) phosphine complexes. Synthesis and structures of fac-[Rh(PMe3)3Cl2(CH2PMe3)]Cl·CH2Cl2and trans-[Rh(Me2PCH2CH2PMe2)2Cl(CH2Cl)]Cl. Journal of the Chemical Society Chemical Communications, 1987, , 1543-1545.	2.0	47
236	Oxidative addition of Si–Cl bonds to electron-rich IrIcomplexes. Journal of the Chemical Society Chemical Communications, 1989, .	2.0	47
237	?-Accepting-Pincer Rhodium Complexes: An Unusual Coordination Mode of PCP-Type Systems. Chemistry - A European Journal, 2005, 11, 2319-2326.	3.3	47
238	Formamides as Isocyanate Surrogates: A Mechanistically Driven Approach to the Development of Atom-Efficient, Selective Catalytic Syntheses of Ureas, Carbamates, and Heterocycles. Journal of the American Chemical Society, 2019, 141, 16486-16493.	13.7	47
239	Evidence for Direct <i>trans</i> Insertion in a Hydridoâ€Olefin Rhodium Complex—Free Nitrogen as a Trap in a Migratory Insertion Process. Chemistry - A European Journal, 1997, 3, 253-260.	3.3	46
240	Ligand-Controlled Formation of a Low-Valent Pincer Rhodium(I)–Dioxygen Adduct Bearing a Very Short OO Bond. Helvetica Chimica Acta, 2006, 89, 1730-1739.	1.6	46
241	Manganese Catalyzed Hydrogenation of Organic Carbonates to Methanol and Alcohols. Angewandte Chemie, 2018, 130, 12252-12256.	2.0	46
242	Rhodaoxetane: synthesis, structure, and theoretical evaluation. Organometallics, 1993, 12, 3316-3325.	2.3	45
243	Metal-Stabilized Phenoxonium Cation. Journal of the American Chemical Society, 2003, 125, 15692-15693.	13.7	45
244	PNS-Type Ruthenium Pincer Complexes. Organometallics, 2012, 31, 6207-6214.	2.3	45
245	The product-forming step in palladium-catalysed methoxycarbonylation of organic halides. Journal of the Chemical Society Chemical Communications, 1986, , 817.	2.0	44
246	Competitive Generation of Cī£įH and Cī£įSi Bonds by Reductive Elimination: Formation of Silametallacycles by Metalation of Silyl Ligands. Angewandte Chemie International Edition in English, 1994, 33, 317-319.	4.4	44
247	Direct Synthesis of Pyrroles by Dehydrogenative Coupling of Diols and Amines Catalyzed by Cobalt Pincer Complexes. Angewandte Chemie, 2016, 128, 14585-14589.	2.0	44
248	Carbon–carbon activation by rhodium in solution; sp2–sp3is preferred over sp3–sp3bond cleavage. Journal of the Chemical Society Chemical Communications, 1995, , 1965-1966.	2.0	43
249	Formation and X-ray Structures of PCP Ligand Based Platinum(II) and Palladium(II) Macrocycles. Inorganic Chemistry, 1996, 35, 7068-7073.	4.0	43
250	Competitive Câ^'l versus Câ^'CN Reductive Elimination from a Rh ^{III} Complex. Selectivity is Controlled by the Solvent. Journal of the American Chemical Society, 2008, 130, 14374-14375.	13.7	42
251	O2 Activation by Metal–Ligand Cooperation with Irl PNP Pincer Complexes. Journal of the American Chemical Society, 2015, 137, 4634-4637.	13.7	42
252	Direct Synthesis of Symmetrical Azines from Alcohols and Hydrazine Catalyzed by a Ruthenium Pincer Complex: Effect of Hydrogen Bonding. ACS Catalysis, 2016, 6, 8415-8419.	11.2	42

#	Article	IF	CITATIONS
253	Rh(I) and Rh(III) silyl PMe3 complexes. Syntheses, reactions and 103Rh NMR spectroscopy. Journal of Organometallic Chemistry, 1998, 551, 81-92.	1.8	41
254	Reaction of Aryl Iodides with (PCP)Pd(II)-Alkyl and Aryl Complexes: Mechanistic Aspects of Carbon-Carbon Bond Formation. Israel Journal of Chemistry, 2001, 41, 163-172.	2.3	41
255	Metal–Ligand Cooperation Facilitates Bond Activation and Catalytic Hydrogenation with Zinc Pincer Complexes. Journal of the American Chemical Society, 2020, 142, 14513-14521.	13.7	41
256	Catalytic Furfural/5-Hydroxymethyl Furfural Oxidation to Furoic Acid/Furan-2,5-dicarboxylic Acid with H ₂ Production Using Alkaline Water as the Formal Oxidant. Journal of the American Chemical Society, 2022, 144, 1288-1295.	13.7	41
257	Selective transformation of vicinal-disubstituted epoxides into ketones by homogeneous rhodium catalysts. Journal of Organic Chemistry, 1977, 42, 2299-2308.	3.2	40
258	Transition Metal-Catalyzed Silanone Generation. Journal of the American Chemical Society, 1996, 118, 10894-10895.	13.7	40
259	Solvent-Stabilized Alkylrhodium(III) Hydride Complexes: A Special Mode of Reversible Câ^'H Bond Elimination Involving an Agostic Intermediate. Chemistry - A European Journal, 2000, 6, 3287-3292.	3.3	40
260	Noninnocent Behavior of PCP and PCN Pincer Ligands of Late Metal Complexes. Topics in Organometallic Chemistry, 2013, , 21-47.	0.7	40
261	PNN Ruthenium Pincer Complexes Based on Phosphinated 2,2′-Dipyridinemethane and 2,2′-Oxobispyridine. Metal–Ligand Cooperation in Cyclometalation and Catalysis. Organometallics, 2013, 32, 2973-2982.	2.3	40
262	Novel Azine Reactivity: Facile Nï£įN Bond Cleavage, Cï£įH Activation, and Nï£įN Coupling Mediated by RhI. Angewandte Chemie - International Edition, 2003, 42, 1949-1952.	13.8	39
263	Ruthenium Dihydrogen Complex for C–H Activation: Catalytic H/D Exchange under Mild Conditions. European Journal of Inorganic Chemistry, 2008, 2008, 3493-3500.	2.0	39
264	Direct Deamination of Primary Amines by Water To Produce Alcohols. Angewandte Chemie - International Edition, 2013, 52, 6269-6272.	13.8	39
265	Direct Synthesis of Amides by Dehydrogenative Coupling of Amines with either Alcohols or Esters: Manganese Pincer Complex as Catalyst. Angewandte Chemie, 2017, 129, 15188-15192.	2.0	39
266	Metal–Ligand Cooperation as Key in Formation of Dearomatized Ni ^{II} –H Pincer Complexes and in Their Reactivity toward CO and CO ₂ . Organometallics, 2018, 37, 2217-2221.	2.3	39
267	Metal-Mediated Generation, Stabilization, and Controlled Release of a Biologically Relevant, Simple Para Quinone Methide:Â BHT-QM. Journal of the American Chemical Society, 1998, 120, 7119-7120.	13.7	38
268	Directly ObservedÎ2-H Elimination of Unsaturated PCP-Based Rhodium(III)â^`Alkyl Complexes. Organometallics, 1999, 18, 2413-2419.	2.3	38
269	Palladium-Catalyzed Cross-Methylation of Aryl Chlorides by Stabilized Dimethylaluminium and -Gallium Reagents. Synthesis, 2000, 2000, 571-575.	2.3	38
270	Ligand-Controlled Chemoselectivity in the Classical Oxidative Addition Reactions of MeI and Aldehydes to Rhodium(I) Complexes. Angewandte Chemie - International Edition, 2001, 40, 1119-1122.	13.8	38

#	Article	IF	CITATIONS
271	Reactivity of [Ir(COE)2(solvent)2]PF6Complexes toward Alkylphosphines:Â Room-Temperature Câ^'H Activation (Cyclometalation) and Isolation of a 14-Electron Alkylâ^'Iridium(III) Complex. Organometallics, 2003, 22, 2806-2809.	2.3	37
272	Stable Carbene and Diazoalkane Complexes of the Same Complex System. Synthesis, Structure, and Reactivity of PNPâ^'Ru(II) Fluorenylidene and Diazofluorene Complexes. Organometallics, 2008, 27, 3526-3533.	2.3	37
273	Hydroxyacetyliridium and -rhodium complexes: model compounds for carbonyl hydrogenation. Journal of the American Chemical Society, 1986, 108, 1336-1338.	13.7	36
274	Osmium-Mediated CH and CC Bond Cleavage of a Phenolic Substrate:p-Quinone Methide and Methylene Arenium Pincer Complexes. Chemistry - A European Journal, 2007, 13, 1382-1393.	3.3	36
275	Lowâ€Pressure Hydrogenation of Nitriles to Primary Amines Catalyzed by Ruthenium Pincer Complexes. Scope and mechanism. ChemCatChem, 2017, 9, 559-563.	3.7	36
276	Selective Room-Temperature Hydrogenation of Amides to Amines and Alcohols Catalyzed by a Ruthenium Pincer Complex and Mechanistic Insight. ACS Catalysis, 2020, 10, 5511-5515.	11.2	36
277	Efficient Base-Free Aqueous Reforming of Methanol Homogeneously Catalyzed by Ruthenium Exhibiting a Remarkable Acceleration by Added Catalytic Thiol. Journal of the American Chemical Society, 2021, 143, 17284-17291.	13.7	36
278	A unique dioxo alkene hydride metal complex: [RhH(O2){CH2C(CH2CH2PBut2)2}]. Chemical Communications, 1996, , 1673-1674.	4.1	35
279	A Pincerâ€Type Anionic Platinum(0) Complex. Angewandte Chemie - International Edition, 2008, 47, 3603-3606.	13.8	35
280	Consecutive Cyclometalation by Platinum(II). Organometallics, 1996, 15, 2562-2568.	2.3	34
281	Facile Oxidative Addition of Câ^'Cl Bonds to New Neutral and Cationic Rhodium(I)-Bipyridine Complexes. European Journal of Inorganic Chemistry, 2002, 2002, 1827-1834.	2.0	34
282	Catalytic System for the Heck Reaction of Fluorinated Haloaryls. Organometallics, 2005, 24, 3679-3684.	2.3	34
283	Ketone hydrogenation catalyzed by a new iron(<scp>ii</scp>)–PNN complex. Catalysis Science and Technology, 2016, 6, 4428-4437.	4.1	34
284	Imidazole synthesis by transition metal free, base-mediated deaminative coupling of benzylamines and nitriles. Chemical Communications, 2017, 53, 13133-13136.	4.1	34
285	Exclusive C–C Oxidative Addition in a Rhodium Thiophosphoryl Pincer Complex and Computational Evidence for an η ³ -C–C–H Agostic Intermediate. Organometallics, 2012, 31, 505-512.	2.3	33
286	The reactions of tridentate cationic palladium(II) complexes with olefins and nucleophiles. Journal of Organometallic Chemistry, 1995, 488, 223-232.	1.8	32
287	Reactivity and stability of platinum(ii) formyl complexes based on PCP-type ligands. The significance of sterics. Dalton Transactions, 2007, , 5692.	3.3	32
288	Pyridine-Based PCP-Ruthenium Complexes: Unusual Structures and Metal–Ligand Cooperation. Journal of the American Chemical Society, 2019, 141, 7554-7561.	13.7	32

#	Article	IF	CITATIONS
289	Formation of thioesters by dehydrogenative coupling of thiols and alcohols with H2 evolution. Nature Catalysis, 2020, 3, 887-892.	34.4	32
290	C-H rather than O–H activation: synthesis and molecular structure of a cationic cis-hydrido-σ-acetylide complex of rhodium. Journal of the Chemical Society Chemical Communications, 1987, , 1484-1485.	2.0	31
291	Mechanistic studies of the rhodium-catalysed cyclization of α,ω-alkynoci acids to alkylidene lactones. Crystals structures of two iridium model catalytic intermediates. Journal of the Chemical Society Chemical Communications, 1987, , 1885-1887.	2.0	31
292	Iridium-Silanol Complexes from Direct Oxidative Addition of Silanols to Ir(I). Synthesis and X-ray Structure of the First Metallosilanolate [(Et3P)2Ir(H)(Cl)(SiiPr2OLi)]2. Journal of the American Chemical Society, 1995, 117, 5865-5866.	13.7	31
293	Synthesis, Structure, and Reactivity of Nitrosyl Pincer-Type Rhodium Complexes. Organometallics, 2009, 28, 1917-1926.	2.3	31
294	Reversible Cyclometalation of Silyl Ligands. First X-ray Structure of an Iridium(I) Silyl That Is Not Stabilized by Chelation. Organometallics, 1996, 15, 3317-3322.	2.3	30
295	New Tridentate Phosphine Rhodium and Iridium Complexes, Including a Stable Rhodium(I) Silyl. Siâ^'S Activation and a Strong Effect of X in (PP2)Mâ^'X (X = H, Cl, Me) on Siâ^'H Activation. Organometallics, 2002, 21, 5060-5065.	2.3	30
296	Pyridine-Based Sulfoxide Pincer Complexes of Rhodium and Iridium. Organometallics, 2008, 27, 1892-1901.	2.3	30
297	Reversible Aromaticity Transfer in a Bora-Cycle: Boron–Ligand Cooperation. Journal of the American Chemical Society, 2016, 138, 13307-13313.	13.7	30
298	Oxidation of Alkenes by Water with H ₂ Liberation. Journal of the American Chemical Society, 2020, 142, 5980-5984.	13.7	30
299	Unsaturated Rh(I) and Rh(III) Naphthyl-Based PCP Complexes. Major Steric Effect on Reactivity. Organometallics, 2009, 28, 1900-1908.	2.3	29
300	Ru(0) and Ru(II) Nitrosyl Pincer Complexes: Structure, Reactivity, and Catalytic Activity. Inorganic Chemistry, 2013, 52, 11469-11479.	4.0	29
301	Nâ€Substituted Hydrazones by Manganeseâ€Catalyzed Coupling of Alcohols with Hydrazine: Borrowing Hydrogen and Acceptorless Dehydrogenation in One System. Angewandte Chemie, 2018, 130, 2201-2204.	2.0	29
302	Homogeneous catalytic transformation of aryl-substituted epoxides by some complexes of the platinum metals. Tetrahedron Letters, 1974, 15, 2257-2260.	1.4	28
303	Exclusive Câ^'Si Bond Formation upon Reaction of a Platinum(II) Alkyl with Silanes. Organometallics, 1998, 17, 4263-4266.	2.3	28
304	Structure of Estradiol Metal Chelate and Estrogen Receptor Complex: The Basis for Designing a New Class of Selective Estrogen Receptor Modulators. Journal of Medicinal Chemistry, 2011, 54, 3575-3580.	6.4	28
305	<i>Z</i> â€Selective (Crossâ€)Dimerization of Terminal Alkynes Catalyzed by an Iron Complex. Angewandte Chemie, 2016, 128, 7056-7059.	2.0	28
306	The Ferraquinone–Ferrahydroquinone Couple: Combining Quinonic and Metal-Based Reactivity. Journal of the American Chemical Society, 2017, 139, 2799-2807.	13.7	28

#	Article	IF	CITATIONS
307	Water-Soluble Contrast Agents Targeted at the Estrogen Receptor for Molecular Magnetic Resonance Imaging. Bioconjugate Chemistry, 2007, 18, 1361-1365.	3.6	27
308	Structure and Reactivity of Rhodium(I) Complexes Based on Electron-Withdrawing Pyrrolyl-PCP-Pincer Ligands. Organometallics, 2009, 28, 523-533.	2.3	27
309	Leichte Spaltung der NHâ€Bindung von Ammoniak. Angewandte Chemie, 1991, 103, 724-726.	2.0	26
310	The first fully characterized neutral and cationic rhodium(i)-complexes containing DMSO as the only dative ligand; S-, O- and bridging S,O-bidentate binding modes. Chemical Communications, 2002, , 710-711.	4.1	26
311	Catalytic Oxidative Deamination by Water with H ₂ Liberation. Journal of the American Chemical Society, 2020, 142, 20875-20882.	13.7	26
312	Manganese catalyzed selective hydrogenation of cyclic imides to diols and amines. Green Chemistry, 2020, 22, 3079-3082.	9.0	26
313	Naphthyl-Based PCP Platinum Complexes. Nucleophilic Activation of Coordinated CO and Synthesis of a Pt(II) Formyl Complex. Organometallics, 2007, 26, 2931-2936.	2.3	25
314	Hydrogenation of Polar Bonds Catalysed by Ruthenium-Pincer Complexes. Topics in Organometallic Chemistry, 2014, , 19-43.	0.7	25
315	A Novel Approach Towards Intermolecular Stabilization ofpara-Quinone Methides. First Complexation of the Elusive, Simplest Quinone Methide, 4-Methylene-2,5-cyclohexadien-1-one. Chemistry - A European Journal, 2000, 6, 454-462.	3.3	24
316	Methyl-to-Double Bond Migration in Methylene Arenium Rhodium Complexes. Organometallics, 2000, 19, 2341-2345.	2.3	24
317	A New Ligand System Based on a Bipyridine-Functionalized Calix[4]arene Backbone Leading to Mono- and Bimetallic Complexes. Inorganic Chemistry, 2003, 42, 3160-3167.	4.0	24
318	Metal-Controlled Reactivity of a Pincer-type, Ïf-Coordinated Naphthyl Radical Anion. Journal of the American Chemical Society, 2006, 128, 7128-7129.	13.7	24
319	Rechargeable Hydrogen Storage System Based on the Dehydrogenative Coupling of Ethylenediamine with Ethanol. Angewandte Chemie, 2016, 128, 1073-1076.	2.0	24
320	Sustainable catalysis with fluxional acridine-based PNP pincer complexes. Chemical Communications, 2022, 58, 3731-3746.	4.1	24
321	Mechanism of the Methylene Transfer Reaction. Câ^'C Activation and Reductive Elimination in One System. A DFT Study. Organometallics, 2004, 23, 2336-2342.	2.3	23
322	Ironâ€Catalyzed Mild and Selective Hydrogenative Cross oupling of Nitriles and Amines To Form Secondary Aldimines. Angewandte Chemie, 2017, 129, 2106-2110.	2.0	23
323	Câ^'C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO ^t Bu: Unusual Regioselectivity through a Radical Mechanism. Angewandte Chemie - International Edition, 2019, 58, 3373-3377.	13.8	23
324	Synthesis of oxalamides by acceptorless dehydrogenative coupling of ethylene glycol and amines and the reverse hydrogenation catalyzed by ruthenium. Chemical Science, 2020, 11, 7188-7193.	7.4	23

#	Article	IF	CITATIONS
325	Dimerization of terminal epoxides by homogeneous transition metal complexes. A novel synthesis of carboxylic esters. Journal of Organic Chemistry, 1978, 43, 2961-2967.	3.2	22
326	Heterogeneously catalyzed selective hydrogenation of amides to alcohols and amines. Catalysis Science and Technology, 2018, 8, 2784-2788.	4.1	22
327	Redox Noninnocent Nature of Acridine-Based Pincer Complexes of 3d Metals and C–C Bond Formation. Organometallics, 2020, 39, 279-285.	2.3	22
328	Catalytic Hydrogenation of Thioesters, Thiocarbamates, and Thioamides. Journal of the American Chemical Society, 2020, 142, 21628-21633.	13.7	22
329	Homogeneous Reforming of Aqueous Ethylene Glycol to Glycolic Acid and Pure Hydrogen Catalyzed by Pincerâ€Ruthenium Complexes Capable of Metal–Ligand Cooperation. Chemistry - A European Journal, 2021, 27, 4715-4722.	3.3	22
330	Isolation and chemical properties of ruthenium and iron hydroxymethyl complexes (.eta.5-C5H5)M(CO)2CH2OH. Organometallics, 1983, 2, 1461-1463.	2.3	21
331	Formation of iridalactones by CH2-O oxidative addition of propiolactone to iridium(I). Organometallics, 1990, 9, 1300-1302.	2.3	21
332	Template catalysis by manganese pincer complexes: oxa- and aza-Michael additions to unsaturated nitriles. Chemical Science, 2019, 10, 8990-8994.	7.4	21
333	Metal-Dependent Stabilization of Siâ^'S Bonds to Hydrolysis in Iridium and Rhodium Silyls. Hydrolyzability as a Probe for Siâ^'H Reductive Elimination. Organometallics, 1996, 15, 1075-1078.	2.3	20
334	Methylene Transfer from SnMe Groups Mediated by a Rhodium(I) Pincer Complex: SnC, CC, and CH Bond Activation. Chemistry - A European Journal, 2007, 13, 7501-7509.	3.3	20
335	Pyridine-based SNS-iridium and -rhodium sulfide complexes, including d8–d8 metal–metal interactions in the solid state. Dalton Transactions, 2008, , 3226.	3.3	20
336	Pd Catalyzed, Acid Accelerated, Rechargeable, Liquid Organic Hydrogen Carrier System Based on Methylpyridines/Methylpiperidines. ACS Applied Energy Materials, 2019, 2, 4302-4308.	5.1	20
337	A Reversible Liquid Organic Hydrogen Carrier System Based on Methanolâ€Ethylenediamine and Ethylene Urea. Angewandte Chemie, 2019, 131, 5159-5163.	2.0	20
338	Polarizable stilbazole-based organometallic complexes and polymers. Journal of Organometallic Chemistry, 1993, 451, 213-220.	1.8	19
339	Solvent-Dependent Interconversions between RhI, RhII, and RhIII Complexes of an Aryl–Monophosphine Ligand. Chemistry - A European Journal, 2007, 13, 9043-9055.	3.3	19
340	Near-Ambient-Temperature Dehydrogenative Synthesis of the Amide Bond: Mechanistic Insight and Applications. ACS Catalysis, 2021, 11, 7383-7393.	11.2	19
341	Iron-catalysed ring-opening metathesis polymerization of olefins and mechanistic studies. Nature Catalysis, 2022, 5, 494-502.	34.4	19
342	Formation of transition metal carbenes using haloalkylzinc reagents. Chemical Communications, 2007, , 3189.	4.1	18

#	Article	IF	CITATIONS
343	CO-Induced Methyl Migration in a Rhodium Thiophosphoryl Pincer Complex and Its Comparison with Phosphine-Based Complexes: The Divergent Effects of S and P Donor Ligands. Organometallics, 2013, 32, 7163-7180.	2.3	18
344	Synthesis and Reactivity of Cationic Boron Complexes Distorted by Pyridineâ€based Pincer Ligands: Isolation of a Photochemical Hofmann–Martiusâ€ŧype Intermediate. Angewandte Chemie - International Edition, 2020, 59, 4932-4936.	13.8	18
345	Chelation versus Cyclometalation in a Cationic Dppnâ^'RhI Complex â^' A Unique Rearrangement of Norbornadiene via Câ^'H Activation of the Pyridazine Ring. European Journal of Inorganic Chemistry, 2003, 2003, 70-76.	2.0	17
346	C—C versus C—H Bond Oxidative Addition in PCX (X=P,N,O) Ligand Systems: Facility, Mechanism, and Control. ACS Symposium Series, 2004, , 70-85.	0.5	17
347	Synthesis and Reactivity of the Methylene Arenium Form of a Benzyl Cation, Stabilized by Complexation. Journal of the American Chemical Society, 2006, 128, 16450-16451.	13.7	17
348	Mechanistic Investigations of Ruthenium Catalyzed Dehydrogenative Thioester Synthesis and Thioester Hydrogenation. ACS Catalysis, 2021, 11, 2795-2807.	11.2	17
349	Manganese-Pincer-Catalyzed Nitrile Hydration, α-Deuteration, and α-Deuterated Amide Formation via Metal Ligand Cooperation. ACS Catalysis, 2021, 11, 10239-10245.	11.2	17
350	A Reversible Liquidâ€ŧo‣iquid Organic Hydrogen Carrier System Based on Ethylene Glycol and Ethanol. Chemistry - A European Journal, 2020, 26, 15487-15490.	3.3	16
351	Catalytic transformation of benzoic anhydrides into fluorenones and biphenyls. Journal of Organic Chemistry, 1970, 35, 3233-3237.	3.2	15
352	<i>In Vivo</i> Magnetic Resonance Imaging of the Estrogen Receptor in an Orthotopic Model of Human Breast Cancer. Cancer Research, 2011, 71, 7387-7397.	0.9	15
353	Synthesis and molecular structures of a rhoda-lactone and its alkylation product; insertion of a pendant alkyne into a rhodium–hydrogen bond. Journal of the Chemical Society Chemical Communications, 1988, , 996-998.	2.0	14
354	Self-Oxidation of a Phenolate Complex to a Bimetallic Stilbene Quinone. Angewandte Chemie - International Edition, 2004, 43, 5961-5963.	13.8	14
355	Synthesis, Structure, and Reactivity of Rhodium and Iridium Complexes of the Chelating Bis-Sulfoxide <i>t</i> BuSOC ₂ H ₄ SO <i>t</i> Bu. Selective Oâ ⁻⁷ H Activation of 2-Hydroxy- <i>iso</i> propyl-pyridine. Inorganic Chemistry, 2008, 47, 6502-6512.	4.0	14
356	Controlled Selectivity through Reversible Inhibition of the Catalyst: Stereodivergent Semihydrogenation of Alkynes. Journal of the American Chemical Society, 2022, 144, 13266-13275.	13.7	14
357	Is Rh(PMe3)3+ formed upon anion exchange of Rh(PMe3)4+Clâ^'? Crystal and molecular structure of Rh(PMe3)4+BPh4â^' and Ir(PMe3)4+PF6â''. Inorganica Chimica Acta, 1990, 174, 149-151.	2.4	13
358	Electrophilic ligand abstraction from electron-rich iridium(I) complexes with Me3SiOTf; evidence for direct ligand attack. Journal of the Chemical Society Chemical Communications, 1994, , 411.	2.0	13
359	Electron-rich siloxane–platinum complexes – Synthesis, structures, and reactivity. Canadian Journal of Chemistry, 2005, 83, 786-792.	1.1	13
360	Direct Conversion of Alcohols into Alkenes by Dehydrogenative Coupling with Hydrazine/Hydrazone Catalyzed by Manganese. Angewandte Chemie, 2018, 130, 13632-13636.	2.0	13

#	Article	IF	CITATIONS
361	Formation of P,C-chelated palladium complexes by phosphine-assisted oxidative addition of an aliphatic Cî—,Cl bond. Journal of Organometallic Chemistry, 1995, 503, 149-153.	1.8	12
362	New Ruthenium Nitrosyl Pincer Complexes Bearing an O2 Ligand. Mono-Oxygen Transfer. Inorganic Chemistry, 2015, 54, 2253-2263.	4.0	12
363	CO ₂ activation by metal â^² ligand-cooperation mediated by iridium pincer complexes. Journal of Coordination Chemistry, 2018, 71, 1679-1689.	2.2	12
364	Manganese Catalyzed Hydrogenation of Azo (N=N) Bonds to Amines. Advanced Synthesis and Catalysis, 2021, 363, 3744-3749.	4.3	12
365	Isolation, Characterization, and Interconversions of (Et3P)2Ir(C2H4)nCl (n = 1, 2). Organometallics, 1996, 15, 4093-4095.	2.3	11
366	The Impact of Weak CHâ<â <rh and="" interactions="" of<br="" on="" reactivity="" structure="" the=""><i>trans</i>â€{Rh(CO)₂(phosphine)₂]⁺: An Experimental and Theoretical Examination. Chemistry - A European Journal, 2008, 14, 8183-8194.</rh>	3.3	11
367	Processes Involved in the Reduction of a Cyclometalated Palladium(II) Complex. Organometallics, 2008, 27, 894-899.	2.3	11
368	Konkurrierende Bildung von Câ€H―und Câ€Siâ€Bindungen bei reduktiver Eliminierung: Silametallacyclen durch Metallierung von Silylliganden. Angewandte Chemie, 1994, 106, 344-346.	2.0	10
369	Direkte Beobachtung der reduktiven OHâ€Eliminierung aus Ir ^{III} â€Komplexen. Angewandte Chemie, 1995, 107, 210-212.	2.0	10
370	Lanthanideâ^'Organic Framework of a Rigid Bis-Gd Complex: Composed by Carbonate Ions Spacers. Crystal Growth and Design, 2010, 10, 4235-4239.	3.0	10
371	Synthesis and Reactivity of Cationic Boron Complexes Distorted by Pyridineâ€based Pincer Ligands: Isolation of a Photochemical Hofmann–Martiusâ€type Intermediate. Angewandte Chemie, 2020, 132, 4962-4966.	2.0	10
372	Why Does the Tetrakis(trimethylphosphine)iridium(III) Hydridochloride Cation Adopt the Sterically and Electronically UnfavorableCisGeometry?. Organometallics, 2000, 19, 4608-4612.	2.3	9
373	Electron Transfer Behavior of Pincer-Type {RhNO} ⁸ Complexes: Spectroscopic Characterization and Reactivity of Paramagnetic {RhNO} ⁹ Complexes. Organometallics, 2013, 32, 6555-6564.	2.3	9
374	NOË™ disproportionation by a {RhNO}9 pincer-type complex. Dalton Transactions, 2017, 46, 16878-16884.	3.3	9
375	Acceptorless dehydrogenative synthesis of primary amides from alcohols and ammonia. Chemical Science, 2022, 13, 3894-3901.	7.4	9
376	Title is missing!. Angewandte Chemie, 2003, 115, 1993-1996.	2.0	8
377	Iridiumâ^' and Rhodiumâ^'Silanol Complexes:Â Synthesis and Reactivity. Organometallics, 2003, 22, 4020-4024.	2.3	8
378	Quinone Methide Generation Based on acis-(N,N) Platinum Complex. Organometallics, 2007, 26, 2178-2182.	2.3	8

#	Article	IF	CITATIONS
379	Dehydrogenative ester synthesis from enol ethers and water with a ruthenium complex catalyzing two reactions in synergy. Green Chemistry, 2022, 24, 1481-1487.	9.0	8
380	Hexamethylenetetramine formation by Ru-catalyzed methanol hydrogen transfer. Journal of Molecular Catalysis, 1986, 36, 387-389.	1.2	7
381	New Ligand Systems Incorporating Two and Three 4,4â€~-Bipyridine Units. Characterization of Bi- and Trimetallic Rhodium and Iridium Complexes. Inorganic Chemistry, 2004, 43, 7180-7186.	4.0	7
382	Anionic d ⁸ Alkyl Hydrides – Selective Formation and Reactivity of Anionic <i>cis</i> â€Pt ^{II} Methyl Hydride. European Journal of Inorganic Chemistry, 2010, 2010, 1991-1999.	2.0	7
383	Formal oxidative addition of a C–H bond by a 16e iridium(<scp>i</scp>) complex involves metal–ligand cooperation. Chemical Communications, 2018, 54, 5365-5368.	4.1	7
384	Câ^'C Bond Formation of Benzyl Alcohols and Alkynes Using a Catalytic Amount of KO ^t Bu: Unusual Regioselectivity through a Radical Mechanism. Angewandte Chemie, 2019, 131, 3411-3415.	2.0	7
385	Synthesis, structure and reactivity of NO+, NOË™ and NOâ^ pincer PCN-Rh complexes. Dalton Transactions, 2020, 49, 7093-7108.	3.3	7
386	Facile synthesis of amides <i>via</i> acceptorless dehydrogenative coupling of aryl epoxides and amines. Chemical Science, 2022, 13, 5913-5919.	7.4	7
387	Benzyl Cation Stabilized by Metal Complexation. Relative Stability of Coordinated Methylene Arenium, ï€-Benzylic, and ïƒ-Benzylic Structures. Organometallics, 2013, 32, 4813-4819.	2.3	6
388	Aliphatic and aromatic C–H activation of benzo[h]quinolines by Rh(I). Unique precursor dependent formation of mono-, di- and trinuclear complexes. Inorganica Chimica Acta, 2011, 369, 260-269.	2.4	4
389	Quinone Methide Stabilization by Metal Complexation. , 0, , 69-88.		3
390	Conversion of Alcohols to Carboxylates Using Water and Base with H2 Liberation. Topics in Organometallic Chemistry, 2018, , 175-192.	0.7	3
391	Cover Picture: Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex (Angew. Chem.) Tj ETQq1	1 1 0.7843 13.8	314 rgBT /O
392	Substituent effects on the McLafferty rearrangement of ionized 2-(aryl)ethyl arylacetates. Organic Mass Spectrometry, 1981, 16, 553-554.	1.3	1
393	Titelbild: Efficient Hydrogenation of Ketones Catalyzed by an Iron Pincer Complex (Angew. Chem.) Tj ETQq1 1 0.7 Ligand-Controlled Chemoselectivity in the Classical Oxidative Addition Reactions of MeI and	784314 rg 2.0	gBT_1/Overloc
394	Aldehydes to Rhodium(I) Complexes This work was supported by the Israel Science Foundation, Jerusalem, Israel, by the MINERVA foundation, Munich, Germany, and by the Tashtiyot program of the Israeli Ministry of Science. D.M. is the holder of the Israel Matz Professorial Chair of Organic Chemistry. We thank Dr. L. Shimon and Dr. H. Rozenberg, Weizmann Institute of Science, for	13.8	1
395	performing the X-ray structural analysis. Angewandte Chemie - International Edition, 2001, 40, 1119-1122. Foreword by the Guest Editor of this Issue. Israel Journal of Chemistry, 1991, 31, 1-1.	2.3	0
396	Cyclometalated Phosphine-Based Pincer Complexes: Mechanistic Insight in Catalysis, Coordination, and Bond Activation. ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
397	Catalytic System for the Heck Reaction of Fluorinated Haloaryls ChemInform, 2005, 36, no.	0.0	0
398	Facile Conversion of Alcohols into Esters and Dihydrogen Catalyzed by New Ruthenium Complexes ChemInform, 2005, 36, no.	0.0	0
399	Bond Activation by Metal Complexes: Special Issue in Honor of the 2017 Wolf Prize Laureate in Chemistry, Professor Robert G. Bergman. Israel Journal of Chemistry, 2017, 57, 915-915.	2.3	0
400	Recent Advances in the Applications of Metal-Ligand Cooperation via Dearomatization and Aromatization of Pincer Complexes. Topics in Organometallic Chemistry, 2020, , 1.	0.7	0