
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3505591/publications.pdf Version: 2024-02-01

OLCA RUSTO

#	Article	IF	CITATIONS
1	ATR-MIR spectroscopy as a process analytical technology in wine alcoholic fermentation – A tutorial. Microchemical Journal, 2021, 166, 106215.	4.5	12
2	ATR-MIR spectroscopy and multivariate analysis in alcoholic fermentation monitoring and lactic acid bacteria spoilage detection. Food Control, 2020, 109, 106947.	5.5	23
3	Quantitation of endogenous amount of ethanol, methanol and acetaldehyde in ripe fruits of different Spanish olive varieties. Journal of the Science of Food and Agriculture, 2020, 100, 3173-3181.	3.5	4
4	Monitoring wine fermentation deviations using an ATR-MIR spectrometer and MSPC charts. Chemometrics and Intelligent Laboratory Systems, 2020, 201, 104011.	3.5	15
5	Early detection of undesirable deviations in must fermentation using a portable FTIRâ€ATR instrument and multivariate analysis. Journal of Chemometrics, 2019, 33, e3162.	1.3	5
6	Authentication of whisky due to its botanical origin and way of production by instrumental analysis and multivariate classification methods. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2017, 173, 849-853.	3.9	31
7	Prediction of olive oil sensory descriptors using instrumental data fusion and partial least squares (PLS) regression. Talanta, 2016, 155, 116-123.	5.5	41
8	Olive oil sensory defects classification with data fusion of instrumental techniques and multivariate analysis (PLS-DA). Food Chemistry, 2016, 203, 314-322.	8.2	82
9	Biogenic amines in wine : a review of analytical methods. Oeno One, 2016, 30, 85.	1.4	2
10	Thermal oxidation process accelerates degradation of the olive oil mixed with sunflower oil and enables its discrimination using synchronous fluorescence spectroscopy and chemometric analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2015, 143, 298-303.	3.9	17
11	Data fusion methodologies for food and beverage authentication and quality assessment – A review. Analytica Chimica Acta, 2015, 891, 1-14.	5.4	524
12	ldentification of olive oil sensory defects by multivariate analysis of mid infrared spectra. Food Chemistry, 2015, 187, 197-203.	8.2	30
13	Fast and robust discrimination of almonds (Prunus amygdalus) with respect to their bitterness by using near infrared and partial least squares-discriminant analysis. Food Chemistry, 2014, 153, 15-19.	8.2	44
14	Determination of Roasted Pistachio (<i>Pistacia vera</i> L.) Key Odorants by Headspace Solid-Phase Microextraction and Gas Chromatographyâ^Olfactometry. Journal of Agricultural and Food Chemistry, 2011, 59, 2518-2523.	5.2	27
15	Application of FT-MIR Spectroscopy for Fast Control of Red Grape Phenolic Ripening. Journal of Agricultural and Food Chemistry, 2011, 59, 2175-2183.	5.2	65
16	Chemical Characterization of Commercial Sherry Vinegar Aroma by Headspace Solid-Phase Microextraction and Gas Chromatographyâ^'Olfactometry. Journal of Agricultural and Food Chemistry, 2011, 59, 4062-4070.	5.2	52
17	Quantification of Phenolic Compounds during Red Winemaking Using FT-MIR Spectroscopy and PLS-Regression. Journal of Agricultural and Food Chemistry, 2011, 59, 10795-10802.	5.2	50
18	Discrimination and sensory description of beers through data fusion. Talanta, 2011, 87, 136-142.	5.5	60

#	Article	IF	CITATIONS
19	Prediction of red wine colour and phenolic parameters from the analysis of its grape extract. International Journal of Food Science and Technology, 2011, 46, 2569-2575.	2.7	15
20	Characterization and classification of the aroma of beer samples by means of an MS e-nose and chemometric tools. Analytical and Bioanalytical Chemistry, 2011, 399, 2073-2081.	3.7	67
21	Application of an electronic tongue based on FT-MIR to emulate the gustative mouthfeel "tannin amount―in red wines. Analytical and Bioanalytical Chemistry, 2010, 397, 3043-3049.	3.7	19
22	Use of synthetic wine for models transfer in wine analysis by HS-MS e-nose. Sensors and Actuators B: Chemical, 2010, 143, 689-695.	7.8	24
23	Comparative study of two extraction techniques to obtain representative aroma extracts for being analysed by gas chromatography–olfactometry: Application to roasted pistachio aroma. Journal of Chromatography A, 2010, 1217, 7781-7787.	3.7	36
24	Comparison of Three Extraction Methods Used To Evaluate Phenolic Ripening in Red Grapes. Journal of Agricultural and Food Chemistry, 2010, 58, 4071-4076.	5.2	14
25	Determination of some flavan-3-ols and anthocyanins in red grape seed and skin extracts by HPLC-DAD: Validation study and response comparison of different standards. Analytica Chimica Acta, 2008, 628, 104-110.	5.4	38
26	Comparative study of two chromatographic methods for quantifying 2,4,6-trichloranisole in wines. Journal of Chromatography A, 2007, 1138, 18-25.	3.7	16
27	Determination of total chloroanisoles in different kinds of cork stoppers. Analytica Chimica Acta, 2006, 563, 310-314.	5.4	24
28	Quantification of chloroanisoles in cork using headspace solid-phase microextraction and gas chromatography with electron capture detection. Journal of Chromatography A, 2006, 1107, 240-247.	3.7	26
29	Electronic noses in the quality control of alcoholic beverages. TrAC - Trends in Analytical Chemistry, 2005, 24, 57-66.	11.4	92
30	Contents of 3-alkyl-2-methoxypyrazines in musts and wines fromVitis vinifera variety Cabernet Sauvignon: influence of irrigation and plantation density. Journal of the Science of Food and Agriculture, 2005, 85, 1131-1136.	3.5	65
31	Determination of ageing time of spirits in oak barrels using a headspace–mass spectrometry (HS-MS) electronic nose system and multivariate calibration. Analytical and Bioanalytical Chemistry, 2005, 382, 440-443.	3.7	19
32	Application of a headspace mass spectrometry system to the differentiation and classification of wines according to their origin, variety and ageing. Journal of Chromatography A, 2004, 1057, 211-217.	3.7	82
33	Influence of Vine Training and Sunlight Exposure on the 3-Alkyl-2-methoxypyrazines Content in Musts and Wines from theVitis viniferaVariety Cabernet Sauvignon. Journal of Agricultural and Food Chemistry, 2004, 52, 3492-3497.	5.2	100
34	Fast screening method for determining 2,4,6-trichloroanisole in wines using a headspace?mass spectrometry (HS?MS) system and multivariate calibration. Analytical and Bioanalytical Chemistry, 2003, 376, 497-501.	3.7	42
35	Solid-Phase Microextraction and Gas Chromatography Olfactometry Analysis of Successively Diluted Samples. A New Approach of the Aroma Extract Dilution Analysis Applied to the Characterization of Wine Aroma. Journal of Agricultural and Food Chemistry, 2003, 51, 7861-7865.	5.2	86
36	Application of headspace solid-phase microextraction to the determination of sulphur compounds with low volatility in wines. Journal of Chromatography A, 2002, 945, 211-219.	3.7	90

#	Article	IF	CITATIONS
37	Headspace solid-phase microextraction analysis of 3-alkyl-2-methoxypyrazines in wines. Journal of Chromatography A, 2002, 953, 1-6.	3.7	89
38	Headspace solid-phase microextraction of higher fatty acid ethyl esters in white rum aroma. Journal of Chromatography A, 2002, 954, 51-57.	3.7	48
39	Determination of 2,4,6-trichloroanisole in wines by headspace solid-phase microextraction and gas chromatography–electron-capture detection. Journal of Chromatography A, 2002, 977, 1-8.	3.7	76
40	Determination of 4-ethylguaiacol and 4-ethylphenol in red wines using headspace-solid-phase microextraction-gas chromatography. Journal of Chromatography A, 2002, 975, 349-354.	3.7	80
41	Analysis of organic sulfur compounds in wine aroma. Journal of Chromatography A, 2000, 881, 569-581.	3.7	272
42	Solid-phase extraction applied to the determination of ochratoxin A in wines by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 2000, 882, 29-35.	3.7	46
43	Headspace solid-phase microextraction method for determining 3-alkyl-2-methoxypyrazines in musts by means of polydimethylsiloxane–divinylbenzene fibres. Journal of Chromatography A, 2000, 880, 93-99.	3.7	69
44	Analysis of low-volatility organic sulphur compounds in wines by solid-phase microextraction and gas chromatography. Journal of Chromatography A, 2000, 881, 583-590.	3.7	60
45	Validation of bias in multianalyte determination methods Analytica Chimica Acta, 2000, 406, 257-278.	5.4	32
46	Headspace solid-phase microextraction of sulphides and disulphides using Carboxen–polydimethylsiloxane fibers in the analysis of wine aroma. Journal of Chromatography A, 1999, 835, 137-144.	3.7	91
47	Simultaneous analysis of thiols, sulphides and disulphides in wine aroma by headspace solid-phase microextraction–gas chromatography. Journal of Chromatography A, 1999, 849, 293-297.	3.7	76
48	Headspace solid-phase microextraction analysis of volatile sulphides and disulphides in wine aroma. Journal of Chromatography A, 1998, 808, 211-218.	3.7	103
49	Solid Phase Extraction of Biogenic Amines from Wine Before Chromatographic Analysis of Their AQC Derivatives. Journal of Liquid Chromatography and Related Technologies, 1997, 20, 743-755.	1.0	13
50	Chromatographic analysis of volatile sulphur compounds in wines using the static headspace technique with flame photometric detection. Journal of Chromatography A, 1997, 773, 261-269.	3.7	42
51	Quick gas chromatographic method for determining common pesticides in musts and wines. Chromatographia, 1997, 44, 320-324.	1.3	16
52	Determination of biogenic amines in wines by high-performance liquid chromatography with on-column fluorescence derivatization. Journal of Chromatography A, 1997, 757, 311-318.	3.7	84
53	Fate of Some Common Pesticides during Vinification Process. Journal of Agricultural and Food Chemistry, 1996, 44, 3668-3671.	5.2	57
54	Determination of biogenic amines in wine after precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Journal of Chromatography A, 1996, 737, 205-213.	3.7	66

#	Article	IF	CITATIONS
55	Improvement of a solid-phase extraction method for determining biogenic amines in wines. Journal of Chromatography A, 1995, 718, 309-317.	3.7	61
56	Determination of biogenic amines in wine after clean-up by solid-phase extraction. Chromatographia, 1995, 40, 404-410.	1.3	38
57	Solid phase extraction applied to the determination of biogenic amines in wines by HPLC. Chromatographia, 1994, 38, 571-578.	1.3	58
58	Optimization of isocratic mobile phase composition for HPLC analysis of eleven substituted phenols. Chromatographia, 1991, 32, 566-572.	1.3	27
59	Determination of phenolic compounds in water by HPLC by linear gradient. An optimised method. Chromatographia, 1991, 32, 423-428.	1.3	17