
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3505305/publications.pdf Version: 2024-02-01



CIANNI LITI

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Population genomics of domestic and wild yeasts. Nature, 2009, 458, 337-341.                                                                                                                      | 27.8 | 1,391     |
| 2  | Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556, 339-344.                                                                                                      | 27.8 | 952       |
| 3  | Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49, 913-924.                                                                                | 21.4 | 340       |
| 4  | A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes. Molecular<br>Biology and Evolution, 2014, 31, 872-888.                                                         | 8.9  | 328       |
| 5  | Trait Variation in Yeast Is Defined by Population History. PLoS Genetics, 2011, 7, e1002111.                                                                                                      | 3.5  | 311       |
| 6  | Sequence Diversity, Reproductive Isolation and Species Concepts in Saccharomyces. Genetics, 2006, 174, 839-850.                                                                                   | 2.9  | 283       |
| 7  | Revealing the genetic structure of a trait by sequencing a population under selection. Genome Research, 2011, 21, 1131-1138.                                                                      | 5.5  | 263       |
| 8  | Surprisingly diverged populations of <i><scp>S</scp>accharomyces cerevisiae</i> in natural environments remote from human activity. Molecular Ecology, 2012, 21, 5404-5417.                       | 3.9  | 257       |
| 9  | Elucidating the molecular architecture of adaptation via evolve and resequence experiments. Nature<br>Reviews Genetics, 2015, 16, 567-582.                                                        | 16.3 | 236       |
| 10 | Assessing the complex architecture of polygenic traits in diverged yeast populations. Molecular Ecology, 2011, 20, 1401-1413.                                                                     | 3.9  | 194       |
| 11 | Generation of a large set of genetically tractable haploid and diploid <i>Saccharomyces</i> strains.<br>FEMS Yeast Research, 2009, 9, 1217-1225.                                                  | 2.3  | 187       |
| 12 | Advances in Quantitative Trait Analysis in Yeast. PLoS Genetics, 2012, 8, e1002912.                                                                                                               | 3.5  | 167       |
| 13 | High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population.<br>Genetics, 2013, 195, 1141-1155.                                                             | 2.9  | 164       |
| 14 | Standing Genetic Variation Drives Repeatable Experimental Evolution in Outcrossing Populations of Saccharomyces cerevisiae. Molecular Biology and Evolution, 2014, 31, 3228-3239.                 | 8.9  | 157       |
| 15 | Inferences of evolutionary relationships from a population survey of LTR-retrotransposons and telomeric-associated sequences in theSaccharomyces sensu stricto complex. Yeast, 2005, 22, 177-192. | 1.7  | 148       |
| 16 | The fascinating and secret wild life of the budding yeast S. cerevisiae. ELife, 2015, 4, .                                                                                                        | 6.0  | 147       |
| 17 | De novo yeast genome assemblies from MinION, PacBio and MiSeq platforms. Scientific Reports, 2017, 7, 3935.                                                                                       | 3.3  | 146       |
| 18 | High-quality genome (re)assembly using chromosomal contact data. Nature Communications, 2014, 5, 5695.                                                                                            | 12.8 | 142       |

| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | de novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore<br>MinION sequencer. GigaScience, 2017, 6, 1-13.                                                           | 6.4 | 123       |
| 20 | YEAST EVOLUTION AND COMPARATIVE GENOMICS. Annual Review of Microbiology, 2005, 59, 135-153.                                                                                                                  | 7.3 | 113       |
| 21 | <i>Saccharomyces pastorianus</i> : genomic insights inspiring innovation for industry. Yeast, 2014, 32, n/a-n/a.                                                                                             | 1.7 | 111       |
| 22 | The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e49640.                                                                                         | 2.5 | 107       |
| 23 | Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model<br>for Rapid Introgression. PLoS Genetics, 2013, 9, e1003366.                                            | 3.5 | 102       |
| 24 | Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter<br>Yeasts. PLoS ONE, 2014, 9, e86533.                                                                        | 2.5 | 96        |
| 25 | High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome. BMC Genomics, 2013, 14, 69.                                                                                            | 2.8 | 87        |
| 26 | Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk<br>Segregant RNA-Seq Analyses. G3: Genes, Genomes, Genetics, 2017, 7, 1693-1705.                               | 1.8 | 87        |
| 27 | Concerted Evolution of Life Stage Performances Signals Recent Selection on Yeast Nitrogen Use.<br>Molecular Biology and Evolution, 2015, 32, 153-161.                                                        | 8.9 | 86        |
| 28 | Ancient Evolutionary Trade-Offs between Yeast Ploidy States. PLoS Genetics, 2013, 9, e1003388.                                                                                                               | 3.5 | 85        |
| 29 | Life History Shapes Trait Heredity by Accumulation of Loss-of-Function Alleles in Yeast. Molecular<br>Biology and Evolution, 2012, 29, 1781-1789.                                                            | 8.9 | 76        |
| 30 | A Geographically Diverse Collection of <i>Schizosaccharomyces pombe</i> Isolates Shows Limited<br>Phenotypic Variation but Extensive Karyotypic Diversity. G3: Genes, Genomes, Genetics, 2011, 1, 615-626.   | 1.8 | 75        |
| 31 | Ploidy influences the functional attributes of de novo lager yeast hybrids. Applied Microbiology and<br>Biotechnology, 2016, 100, 7203-7222.                                                                 | 3.6 | 75        |
| 32 | Clonal Heterogeneity Influences the Fate of New Adaptive Mutations. Cell Reports, 2017, 21, 732-744.                                                                                                         | 6.4 | 70        |
| 33 | Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microbial Cell Factories, 2014, 13, 47. | 4.0 | 68        |
| 34 | Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias.<br>Nature Ecology and Evolution, 2018, 2, 164-173.                                                      | 7.8 | 65        |
| 35 | Quantifying Selection Acting on a Complex Trait Using Allele Frequency Time Series Data. Molecular<br>Biology and Evolution, 2012, 29, 1187-1197.                                                            | 8.9 | 64        |
| 36 | Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion. PLoS Genetics, 2016, 12,<br>e1005781.                                                                                           | 3.5 | 60        |

| #  | Article                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae.<br>BMC Genomics, 2017, 18, 159.                                                 | 2.8  | 58        |
| 38 | Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS ONE, 2019, 14, e0220515.                   | 2.5  | 55        |
| 39 | NEJ1 Prevents NHEJ-Dependent Telomere Fusions in Yeast without Telomerase. Molecular Cell, 2003, 11, 1373-1378.                                                                    | 9.7  | 53        |
| 40 | Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast.<br>PLoS Genetics, 2009, 5, e1000659.                                         | 3.5  | 46        |
| 41 | A yeast living ancestor reveals the origin of genomic introgressions. Nature, 2020, 587, 420-425.                                                                                  | 27.8 | 45        |
| 42 | Long-read sequencing data analysis for yeasts. Nature Protocols, 2018, 13, 1213-1231.                                                                                              | 12.0 | 43        |
| 43 | Shared Molecular Targets Confer Resistance over Short and Long Evolutionary Timescales.<br>Molecular Biology and Evolution, 2019, 36, 691-708.                                     | 8.9  | 43        |
| 44 | Human <scp>RAP</scp> 1 specifically protects telomeres of senescent cells from <scp>DNA</scp><br>damage. EMBO Reports, 2020, 21, e49076.                                           | 4.5  | 43        |
| 45 | Discordant evolution of mitochondrial and nuclear yeast genomes at population level. BMC Biology, 2020, 18, 49.                                                                    | 3.8  | 42        |
| 46 | simuG: a general-purpose genome simulator. Bioinformatics, 2019, 35, 4442-4444.                                                                                                    | 4.1  | 41        |
| 47 | Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes. Molecular Biology and Evolution, 2019, 36, 2861-2877.                                                     | 8.9  | 41        |
| 48 | Filling annotation gaps in yeast genomes using genome-wide contact maps. Bioinformatics, 2014, 30,<br>2105-2113.                                                                   | 4.1  | 36        |
| 49 | Deletion of the <i>Saccharomyces cerevisiae ARO8</i> gene, encoding an aromatic amino acid transaminase, enhances phenylethanol production from glucose. Yeast, 2014, 32, n/a-n/a. | 1.7  | 35        |
| 50 | The rise of yeast population genomics. Comptes Rendus - Biologies, 2011, 334, 612-619.                                                                                             | 0.2  | 34        |
| 51 | Powerful decomposition of complex traits in a diploid model. Nature Communications, 2016, 7, 13311.                                                                                | 12.8 | 34        |
| 52 | An Out-of-Patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages. PLoS Genetics, 2020, 16, e1008777.                            | 3.5  | 34        |
| 53 | Predicting quantitative traits from genome and phenome with near perfect accuracy. Nature<br>Communications, 2016, 7, 11512.                                                       | 12.8 | 32        |
| 54 | Domestication reprogrammed the budding yeast life cycle. Nature Ecology and Evolution, 2022, 6, 448-460.                                                                           | 7.8  | 32        |

| #  | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Analysis of a Ty1-less variant ofSaccharomyces paradoxus: the gain and loss of Ty1 elements. Yeast, 2004, 21, 649-660.                                                                                    | 1.7  | 29        |
| 56 | Inferring Genome-Wide Recombination Landscapes from Advanced Intercross Lines: Application to Yeast Crosses. PLoS ONE, 2013, 8, e62266.                                                                   | 2.5  | 29        |
| 57 | From sequence to function: Insights from natural variation in budding yeasts. Biochimica Et<br>Biophysica Acta - General Subjects, 2011, 1810, 959-966.                                                   | 2.4  | 28        |
| 58 | Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the<br>Evolutionary History of Saccharomyces cerevisiae. Microorganisms, 2020, 8, 32.                      | 3.6  | 26        |
| 59 | Intragenic repeat expansion in the cell wall protein gene <i>HPF1</i> controls yeast chronological aging. Genome Research, 2020, 30, 697-710.                                                             | 5.5  | 23        |
| 60 | Mismatch Repair Incompatibilities in Diverse Yeast Populations. Genetics, 2017, 205, 1459-1471.                                                                                                           | 2.9  | 22        |
| 61 | The budding yeast life cycle: More complex than anticipated?. Yeast, 2021, 38, 5-11.                                                                                                                      | 1.7  | 18        |
| 62 | Yeasts from temperate forests. Yeast, 2022, 39, 4-24.                                                                                                                                                     | 1.7  | 18        |
| 63 | Kinetochore assembly and heterochromatin formation occur autonomously inSchizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1903-1908. | 7.1  | 16        |
| 64 | Isolation and Laboratory Domestication of Natural Yeast Strains. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot089052.                                                                                | 0.3  | 16        |
| 65 | Transcriptional Activity and Protein Levels of Horizontally Acquired Genes in Yeast Reveal Hallmarks of Adaptation to Fermentative Environments. Frontiers in Genetics, 2020, 11, 293.                    | 2.3  | 16        |
| 66 | A set of genetically diverged <i>Saccharomyces cerevisiae</i> strains with markerless deletions of multiple auxotrophic genes. Yeast, 2014, 31, 91-101.                                                   | 1.7  | 15        |
| 67 | Aborting meiosis allows recombination in sterile diploid yeast hybrids. Nature Communications, 2021, 12, 6564.                                                                                            | 12.8 | 14        |
| 68 | Natural variants suppress mutations in hundreds of essential genes. Molecular Systems Biology, 2021,<br>17, e10138.                                                                                       | 7.2  | 13        |
| 69 | Extensive sampling of <i>Saccharomyces cerevisiae</i> in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research, 2022, , .                                                     | 5.5  | 13        |
| 70 | Lager Yeast Design Through Meiotic Segregation of a Saccharomyces cerevisiae × Saccharomyces<br>eubayanus Hybrid. Frontiers in Fungal Biology, 2021, 2, .                                                 | 2.0  | 12        |
| 71 | ATG18 and FAB1 Are Involved in Dehydration Stress Tolerance in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0119606.                                                                                    | 2.5  | 12        |
| 72 | CRISpy-Pop: A Web Tool for Designing CRISPR/Cas9-Driven Genetic Modifications in Diverse<br>Populations. G3: Genes, Genomes, Genetics, 2020, 10, 4287-4294.                                               | 1.8  | 11        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Telomeres in fungi. , 0, , 101-130.                                                                                                                                                                                             |      | 10        |
| 74 | Unlocking the functional potential of polyploid yeasts. Nature Communications, 2022, 13, 2580.                                                                                                                                  | 12.8 | 10        |
| 75 | Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation.<br>ELife, 0, 11, .                                                                                                            | 6.0  | 9         |
| 76 | Meiotic Cells Counteract Programmed Retrotransposon Activation via RNA-Binding Translational<br>Repressor Assemblies. Developmental Cell, 2021, 56, 22-35.e7.                                                                   | 7.0  | 8         |
| 77 | Yeast Reciprocal Hemizygosity to Confirm the Causality of a Quantitative Trait Loci-Associated Gene.<br>Cold Spring Harbor Protocols, 2017, 2017, pdb.prot089078.                                                               | 0.3  | 7         |
| 78 | Population Size, Sex and Purifying Selection: Comparative Genomics of Two Sister Taxa of the Wild<br>Yeast Saccharomyces paradoxus. Genome Biology and Evolution, 2020, 12, 1636-1645.                                          | 2.5  | 7         |
| 79 | Mapping Quantitative Trait Loci in Yeast. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot089060.                                                                                                                             | 0.3  | 6         |
| 80 | Budding Yeast Strains and Genotype–Phenotype Mapping. Cold Spring Harbor Protocols, 2017, 2017, pdb.top077735.                                                                                                                  | 0.3  | 6         |
| 81 | RecombineX: A generalized computational framework for automatic high-throughput gamete genotyping and tetrad-based recombination analysis. PLoS Genetics, 2022, 18, e1010047.                                                   | 3.5  | 5         |
| 82 | miRNAs Copy Number Variations Repertoire as Hallmark Indicator of Cancer Species Predisposition.<br>Genes, 2022, 13, 1046.                                                                                                      | 2.4  | 5         |
| 83 | Resistance to Arsenite and Arsenate in Saccharomyces cerevisiae Arises through the Subtelomeric<br>Expansion of a Cluster of Yeast Genes. International Journal of Environmental Research and Public<br>Health, 2022, 19, 8119. | 2.6  | 5         |
| 84 | Yeast chromosome numbers minimized using genome editing. Nature, 2018, 560, 317-318.                                                                                                                                            | 27.8 | 3         |
| 85 | Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous<br>Yeast Population to Nitrogen-Limited Fermentations. Frontiers in Microbiology, 2020, 11, 1204.                                | 3.5  | 3         |
| 86 | Apparent Ploidy Effects on Silencing Are Post-Transcriptional at HML and Telomeres in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e39044.                                                                                      | 2.5  | 3         |
| 87 | Extensive simulations assess the performance of genome-wide association mapping in various <i>Saccharomyces cerevisiae</i> subpopulations. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, . | 4.0  | 3         |
| 88 | Population genomics of domestic and wild yeasts. Nature Precedings, 2008, , .                                                                                                                                                   | 0.1  | 1         |
| 89 | Budding Topics: insights from emerging scientists. Yeast, 2014, 31, 195-195.                                                                                                                                                    | 1.7  | 1         |
| 90 | Yeast2 0: a new chapter Yeast 2016, 33, 3-4                                                                                                                                                                                     | 17   | 1         |

|    | G                                                                                         | ianni Liti |     |           |
|----|-------------------------------------------------------------------------------------------|------------|-----|-----------|
| #  | Article                                                                                   |            | IF  | CITATIONS |
| 91 | André Goffeau's imprinting on second generation yeast "genomologists― Yeast, 2019, 36, 16 | 57-175.    | 1.7 | 1         |
| 92 | â€~New' yeasts for a newYeast. Yeast, 2012, 29, 407-407.                                  |            | 1.7 | 0         |