Jiu-Chang Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3504014/publications.pdf

Version: 2024-02-01

101 papers 6,362 citations

35 h-index 69250 77 g-index

106 all docs

106
docs citations

106 times ranked 9088 citing authors

#	Article	IF	CITATIONS
1	Targeting the forkhead box protein P1 pathway as a novel therapeutic approach for cardiovascular diseases. Heart Failure Reviews, 2022, 27, 345-355.	3.9	10
2	Profile of gut flora in hypertensive patients with insufficient sleep duration. Journal of Human Hypertension, 2022, 36, 390-404.	2.2	1
3	MicroRNA-122–5p promotes renal fibrosis and injury in spontaneously hypertensive rats by targeting FOXO3. Experimental Cell Research, 2022, 411, 113017.	2.6	15
4	Long non-coding RNA MALAT1 modulates myocardial ischemia-reperfusion injury through the PI3K/Akt/eNOS pathway by sponging miRNA-133a-3p to target IGF1R expression. European Journal of Pharmacology, 2022, 916, 174719.	3.5	5
5	Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radical Biology and Medicine, 2022, 181, 130-142.	2.9	94
6	MiRNA-122-5p inhibitor abolishes angiotensin Il–mediated loss of autophagy and promotion of apoptosis in rat cardiofibroblasts by modulation of the apelin-AMPK-mTOR signaling. In Vitro Cellular and Developmental Biology - Animal, 2022, 58, 136-148.	1.5	12
7	Examining the Development of Chronic Thromboembolic Pulmonary Hypertension at the Single-Cell Level. Hypertension, 2022, 79, 562-574.	2.7	7
8	MicroRNA-122-5p Aggravates Angiotensin II-Mediated Myocardial Fibrosis and Dysfunction in Hypertensive Rats by Regulating the Elabela/Apelin-APJ and ACE2-GDF15-Porimin Signaling. Journal of Cardiovascular Translational Research, 2022, 15, 535-547.	2.4	15
9	Editorial: Cardiovascular Fibrosis and Related Diseases: Basic and Clinical Research Advances. Frontiers in Cardiovascular Medicine, 2022, 9, 879780.	2.4	0
10	Association between Gut Microbiota Dysbiosis and the CHA2DS2-VASc Score in Atrial Fibrillation Patients. International Journal of Clinical Practice, 2022, 2022, 1-10.	1.7	5
11	Sirtuin 7 serves as a promising therapeutic target for cardiorenal diseases. European Journal of Pharmacology, 2022, 925, 174977.	3 . 5	9
12	The Elabela-APJ axis: a promising therapeutic target for heart failure. Heart Failure Reviews, 2021, 26, 1249-1258.	3.9	40
13	Possible immune regulation mechanisms for the progression of chronic thromboembolic pulmonary hypertension. Thrombosis Research, 2021, 198, 122-131.	1.7	11
14	TRPC5 in cardiovascular diseases. Reviews in Cardiovascular Medicine, 2021, 22, 127.	1.4	7
15	Lower Plasma Elabela Levels in Hypertensive Patients With Heart Failure Predict the Occurrence of Major Adverse Cardiac Events: A Preliminary Study. Frontiers in Cardiovascular Medicine, 2021, 8, 638468.	2.4	8
16	Genetic deletion of CMG2 exacerbates systemicâ€toâ€pulmonary shuntâ€induced pulmonary arterial hypertension. FASEB Journal, 2021, 35, e21421.	0.5	0
17	In-hospital outcome of primary PCI for patients with acute myocardial infarction and prior coronary artery bypass grafting. Journal of Thoracic Disease, 2021, 13, 1737-1745.	1.4	0
18	Impact of Prior Digestive System Disease on In-Hospital Gastrointestinal Bleeding in Patients with Acute Myocardial Infarction. Risk Management and Healthcare Policy, 2021, Volume 14, 1233-1239.	2. 5	1

#	Article	IF	Citations
19	Cell landscape atlas for patients with chronic thromboembolic pulmonary hypertension after pulmonary endarterectomy constructed using single-cell RNA sequencing. Aging, 2021, 13, 16485-16499.	3.1	10
20	Elabela prevents angiotensin II-induced apoptosis and inflammation in rat aortic adventitial fibroblasts via the activation of FGF21–ACE2 signaling. Journal of Molecular Histology, 2021, 52, 905-918.	2.2	10
21	Altered synthesis of genes associated with short-chain fatty acids in the gut of patients with atrial fibrillation. BMC Genomics, 2021, 22, 634.	2.8	23
22	Abnormal apelin-ACE2 and SGLT2 signaling contribute to adverse cardiorenal injury in patients with COVID-19. International Journal of Cardiology, 2021, 336, 123-129.	1.7	11
23	Declined ELABELA plasma levels in hypertension patients with atrial fibrillation: a case control study. BMC Cardiovascular Disorders, 2021, 21, 390.	1.7	8
24	Circulating exosomal lncRNAs in patients with chronic coronary syndromes. Archives of Medical Science, 2021, , .	0.9	1
25	The long-term impact of a chronic total occlusion in a non-infarct-related artery on acute ST-segment elevation myocardial infarction after primary coronary intervention. BMC Cardiovascular Disorders, 2021, 21, 59.	1.7	2
26	Targeting the elabela/apelin–apelin receptor axis as a novel therapeutic approach for hypertension. Chinese Medical Journal, 2021, Publish Ahead of Print, .	2.3	7
27	Targeting the microRNA-34a as a Novel Therapeutic Strategy for Cardiovascular Diseases. Frontiers in Cardiovascular Medicine, 2021, 8, 784044.	2.4	30
28	Expression Profiles of Circular RNA in Aortic Vascular Tissues of Spontaneously Hypertensive Rats. Frontiers in Cardiovascular Medicine, 2021, 8, 814402.	2.4	5
29	One-Stop Hybrid Coronary Revascularization Versus Off-Pump Coronary Artery Bypass Grafting in Patients With Multivessel Coronary Artery Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 755797.	2.4	3
30	Gender Differences in Hypertension. Journal of Cardiovascular Translational Research, 2020, 13, 47-54.	2.4	123
31	Hsa_circ_0046159 is involved in the development of chronic thromboembolic pulmonary hypertension. Journal of Thrombosis and Thrombolysis, 2020, 49, 386-394.	2.1	21
32	MicroRNA-122 aggravates angiotensin II-mediated apoptosis and autophagy imbalance in rat aortic adventitial fibroblasts via the modulation of SIRT6-elabela-ACE2 signaling. European Journal of Pharmacology, 2020, 883, 173374.	3.5	43
33	Increased plasma ACE2 concentration doesÂnotÂmean increased risk of SARS-CoV-2 infection and increased fatality rate of COVID-19. Acta Pharmaceutica Sinica B, 2020, 10, 2010-2014.	12.0	8
34	hsaâ€miRâ€106bâ€5p participates in the development of chronic thromboembolic pulmonary hypertension via targeting matrix metalloproteinase 2. Pulmonary Circulation, 2020, 10, 1-10.	1.7	8
35	MiR-181c protects cardiomyocyte injury by preventing cell apoptosis through PI3K/Akt signaling pathway. Cardiovascular Diagnosis and Therapy, 2020, 10, 849-858.	1.7	17
36	Roles of MicroRNA-122 in Cardiovascular Fibrosis and Related Diseases. Cardiovascular Toxicology, 2020, 20, 463-473.	2.7	53

#	Article	IF	CITATIONS
37	p38/JNK Is Required for the Proliferation and Phenotype Changes of Vascular Smooth Muscle Cells Induced by L3MBTL4 in Essential Hypertension. International Journal of Hypertension, 2020, 2020, 1-12.	1.3	6
38	Prognostic values of the SYNTAX score II and the erythrocyte sedimentation rate on long-term clinical outcomes in STEMI patients with multivessel disease: a retrospective cohort study. BMC Cardiovascular Disorders, 2020, 20, 213.	1.7	6
39	Genetic screening for monogenic hypertension in hypertensive individuals in a clinical setting. Journal of Medical Genetics, 2020, 57, 571-580.	3.2	12
40	Response by Gheblawi et al to Letter Regarding Article, "Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2― Circulation Research, 2020, 127, e46-e47.	4.5	16
41	Circulating exosomal long nonâ€coding RNAs in patients with acute myocardial infarction. Journal of Cellular and Molecular Medicine, 2020, 24, 9388-9396.	3.6	31
42	Myofibroblast-Derived Exosomes Contribute to Development of a Susceptible Substrate for Atrial Fibrillation. Cardiology, 2020, 145, 324-332.	1.4	21
43	Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circulation Research, 2020, 126, 1456-1474.	4.5	1,478
44	Speckle tracking for predicting outcomes of balloon pulmonary angioplasty in patients with chronic thromboembolic pulmonary hypertension. Echocardiography, 2020, 37, 841-849.	0.9	7
45	Role of Epicardial Adipose Tissue in Heart Failure: From Basic to Clinical Perspectives., 2020,, 173-194.		O
46	Plasma levels of Elabela are associated with coronary angiographic severity in patients with acute coronary syndrome. Journal of Geriatric Cardiology, 2020, 17, 674-679.	0.2	3
47	Roles of Growth Differentiation Factor 15 in Atherosclerosis and Coronary Artery Disease. Journal of the American Heart Association, 2019, 8, e012826.	3.7	57
48	Circulating Connective Tissue Growth Factor Is Associated with Diastolic Dysfunction in Patients with Diastolic Heart Failure. Cardiology, 2019, 143, 77-84.	1.4	9
49	Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation. GigaScience, 2019, 8, .	6.4	123
50	Dysbiotic gut microbes may contribute to hypertension by limiting vitamin D production. Clinical Cardiology, 2019, 42, 710-719.	1.8	48
51	Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radical Biology and Medicine, 2019, 134, 445-457.	2.9	69
52	Correlation of left atrial wall thickness and atrial remodeling in atrial fibrillation. Medicine (United) Tj ETQq0 0 0	rgBT/Over	lock 10 Tf 50
53	PINK1/Parkinâ€mediated mitophagy promotes apelinâ€13â€induced vascular smooth muscle cell proliferation by AMPKα and exacerbates atherosclerotic lesions. Journal of Cellular Physiology, 2019, 234, 8668-8682.	4.1	94
54	The association between orthostatic blood pressure changes and subclinical target organ damage in subjects over 60 years old. Journal of Geriatric Cardiology, 2019, 16, 387-394.	0.2	4

#	Article	IF	CITATIONS
55	Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome, 2018, 6, 66.	11.1	185
56	A1156 Cardioprotective effects of Apelin-13 on aging- and angiotensin II-mediated adverse myocardial injury and dysfunction in hypertensive mice. Journal of Hypertension, 2018, 36, e11.	0.5	0
57	A13137 Genetic screening for monogenic hypertension in a clinical setting among hypertensive individuals. Journal of Hypertension, 2018, 36, e218.	0.5	0
58	A16299 Interaction between Neutrophil to Lymphocyte Ratio and Arterial Stiffness in Hypertensive Patients. Journal of Hypertension, 2018, 36, e239.	0.5	0
59	A7645 Hypertension Is Mediated by the Gut K.pneumoniae. Journal of Hypertension, 2018, 36, e45-e46.	0.5	0
60	A12686 The sirtuin 6 attenuates myocardial injury and dysfunction by regulating ADAM17/ACE2 pathway in hypertensive rats. Journal of Hypertension, 2018, 36, e70.	0.5	0
61	GW28-e0806 Pyr1-Apelin 13 is a negative modulator of angiotensin II-mediated adverse myocardial hypertrophy, remodeling and fibrosis. Journal of the American College of Cardiology, 2017, 70, C29-C30.	2.8	0
62	Apelin Is a Negative Regulator of Angiotensin II–Mediated Adverse Myocardial Remodeling and Dysfunction. Hypertension, 2017, 70, 1165-1175.	2.7	85
63	Targeting the apelin pathway as a novel therapeutic approach for cardiovascular diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 1942-1950.	3.8	81
64	The sirtuin 6 prevents angiotensin II-mediated myocardial fibrosis and injury by targeting AMPK-ACE2 signaling. Oncotarget, 2017, 8, 72302-72314.	1.8	48
65	miR-17-3p Contributes to Exercise-Induced Cardiac Growth and Protects against Myocardial Ischemia-Reperfusion Injury. Theranostics, 2017, 7, 664-676.	10.0	174
66	Crucial Role of miR-433 in Regulating Cardiac Fibrosis. Theranostics, 2016, 6, 2068-2083.	10.0	134
67	OS 36-07 TREATMENT WITH APELIN-13 PREVENTS PRESSURE OVERLOAD-INDUCED AORTIC ADVENTITIAL REMODELING AND FIBROSIS IN HYPERTENSIVE RATS WITH TAC. Journal of Hypertension, 2016, 34, e403-e404.	0.5	4
68	Role of the ACE2/Angiotensin 1–7 Axis of the Renin–Angiotensin System in Heart Failure. Circulation Research, 2016, 118, 1313-1326.	4. 5	664
69	Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides, 2016, 79, 49-57.	2.4	36
70	GW27-e0379 Apelin attenuates aortic adventitial fibrosis in spontaneously hypertensive rats through modulating miR-1 and beta-catenin signaling. Journal of the American College of Cardiology, 2016, 68, C15.	2.8	0
71	Inhibition of miR-155 Protects Against LPS-induced Cardiac Dysfunction and Apoptosis in Mice. Molecular Therapy - Nucleic Acids, 2016, 5, e374.	5.1	84
72	Ascending aortic adventitial remodeling and fibrosis are ameliorated with Apelin-13 in rats after TAC via suppression of the miRNA-122 and LGR4- \hat{l}^2 -catenin signaling. Peptides, 2016, 86, 85-94.	2.4	34

#	Article	IF	CITATIONS
73	Association between circulating levels of ACE2-Ang-($1\hat{a}\in$ "7)-MAS axis and ACE2 gene polymorphisms in hypertensive patients. Medicine (United States), 2016, 95, e3876.	1.0	39
74	Deletion of angiotensin-converting enzyme 2 exacerbates renal inflammation and injury in apolipoprotein E-deficient mice through modulation of the nephrin and TNF-alpha-TNFRSF1A signaling. Journal of Translational Medicine, 2015, 13, 255.	4.4	33
75	The ACE2/Apelin Signaling, MicroRNAs, and Hypertension. International Journal of Hypertension, 2015, 2015, 1-6.	1.3	79
76	GW26-e0102 Loss of Angiotensin-Converting Enzyme 2 Exacerbates Renal Inflammation and Injury in the Apolipoprotein E-Deficient Mice. Journal of the American College of Cardiology, 2015, 66, C1.	2.8	1
77	GW26-e3978 Regulatory roles of Angiotensin-Converting Enzyme 2 in NOX4 Expression and Oxidative Stress Levels in Kidneys of Apolipoprotein E-Deficient Mice. Journal of the American College of Cardiology, 2015, 66, C72-C73.	2.8	0
78	Effects of rapamycin on DC-SIGN expression and biological functions in DC. Frontiers in Bioscience - Landmark, 2014, 19, 557.	3.0	2
79	The interaction of transient receptor potential melastatin 7 with macrophages promotes vascular adventitial remodeling in transverse aortic constriction rats. Hypertension Research, 2014, 37, 35-42.	2.7	18
80	The Relationship Between Nocturnal Blood Pressure and Hemorrhagic Stroke in Chinese Hypertensive Patients. Journal of Clinical Hypertension, 2014, 16, 652-657.	2.0	12
81	A core promoter variant of angiotensinogen gene and interindividual variation in response to angiotensin-converting enzyme inhibitors. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 540-546.	1.7	13
82	Angiotensin-Converting Enzyme 2 Is a Critical Determinant of Angiotensin II–Induced Loss of Vascular Smooth Muscle Cells and Adverse Vascular Remodeling. Hypertension, 2014, 64, 157-164.	2.7	81
83	GW25-e4356 Apelin Treatment Prevents Hippocampal Inflammation and Oxidative Stress in Hypertensive Mice via Activation of the BDNF/eNOS/NO Signaling. Journal of the American College of Cardiology, 2014, 64, C72-C73.	2.8	0
84	ACE2/Ang-(1–7) signaling and vascular remodeling. Science China Life Sciences, 2014, 57, 802-808.	4.9	44
85	A Lectin-EGF antibody promotes regulatory T cells and attenuates nephrotoxic nephritis via DC-SIGN on dendritic cells. Journal of Translational Medicine, 2013, 11, 103.	4.4	8
86	Angiotensin-converting enzyme 2 attenuates oxidative stress and VSMC proliferation via the JAK2/STAT3/SOCS3 and profilin-1/MAPK signaling pathways. Regulatory Peptides, 2013, 185, 44-51.	1.9	50
87	GW24-e3625â€Effects of apelin on the phosphodiesterase 1 expression and oxidative stress levels in mouse kidney fibroblast cells. Heart, 2013, 99, A11.2-A12.	2.9	0
88	Cardiac protective effects of irbesartan via the PPAR-gamma signaling pathway in angiotensin-converting enzyme 2-deficient mice. Journal of Translational Medicine, 2013, 11, 229.	4.4	32
89	Loss of Angiotensin-Converting Enzyme 2 Exacerbates Myocardial Injury via Activation of the CTGF-Fractalkine Signaling Pathway. Circulation Journal, 2013, 77, 2997-3006.	1.6	40
90	Manipulating angiotensin metabolism with angiotensin converting enzyme 2 (ACE2) in heart failure. Drug Discovery Today: Therapeutic Strategies, 2012, 9, e141-e148.	0.5	4

#	Article	IF	CITATIONS
91	Cardioprotective Effects Mediated by Angiotensin II Type 1 Receptor Blockade and Enhancing Angiotensin 1-7 in Experimental Heart Failure in Angiotensin-Converting Enzyme 2–Null Mice. Hypertension, 2012, 59, 1195-1203.	2.7	97
92	Loss of Angiotensin-Converting Enzyme-2 Exacerbates Diabetic Cardiovascular Complications and Leads to Systolic and Vascular Dysfunction. Circulation Research, 2012, 110, 1322-1335.	4.5	141
93	ACE2 Deficiency Enhances Angiotensin II-Mediated Aortic Profilin-1 Expression, Inflammation and Peroxynitrite Production. PLoS ONE, 2012, 7, e38502.	2.5	73
94	Prevention of Angiotensin Il–Mediated Renal Oxidative Stress, Inflammation, and Fibrosis by Angiotensin-Converting Enzyme 2. Hypertension, 2011, 57, 314-322.	2.7	200
95	Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regulatory Peptides, 2011, 166, 90-97.	1.9	99
96	Angiotensin-Converting Enzyme 2 Suppresses Pathological Hypertrophy, Myocardial Fibrosis, and Cardiac Dysfunction. Circulation, 2010, 122, 717-728.	1.6	383
97	Human Recombinant ACE2 Reduces the Progression of Diabetic Nephropathy. Diabetes, 2010, 59, 529-538.	0.6	264
98	Loss of Angiotensin-Converting Enzyme 2 Accelerates Maladaptive Left Ventricular Remodeling in Response to Myocardial Infarction. Circulation: Heart Failure, 2009, 2, 446-455.	3.9	194
99	Apelin modulates aortic vascular tone via endothelial nitric oxide synthase phosphorylation pathway in diabetic mice. Cardiovascular Research, 2007, 74, 388-395.	3.8	149
100	The novel peptide apelin regulates intrarenal artery tone in diabetic mice. Regulatory Peptides, 2007, 144, 109-114.	1.9	33
101	Upregulation of Angiotensin-Converting Enzyme 2 by All- <i>trans</i> Retinoic Acid in Spontaneously Hypertensive Rats. Hypertension, 2004, 44, 907-912.	2.7	117