
Jeffery Connor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3503306/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	China's response to a national land-system sustainability emergency. Nature, 2018, 559, 193-204.	27.8	839
2	Land-use change impacts on ecosystem services value: Incorporating the scarcity effects of supply and demand dynamics. Ecosystem Services, 2018, 32, 144-157.	5.4	133
3	Changes in land-use and ecosystem services in the Guangzhou-Foshan Metropolitan Area, China from 1990 to 2010: Implications for sustainability under rapid urbanization. Ecological Indicators, 2018, 93, 930-941.	6.3	109
4	Sustainable irrigation: How did irrigated agriculture in Australia's Murray–Darling Basin adapt in the Millennium Drought?. Agricultural Water Management, 2014, 145, 154-162.	5.6	107
5	Environmental water incentive policy and return flows. Water Resources Research, 2010, 46, .	4.2	100
6	Supply of carbon sequestration and biodiversity services from Australia's agricultural land under global change. Global Environmental Change, 2014, 28, 166-181.	7.8	97
7	Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation. Ecological Economics, 2012, 77, 149-157.	5.7	94
8	Land-use and sustainability under intersecting global change and domestic policy scenarios: Trajectories for Australia to 2050. Global Environmental Change, 2016, 38, 130-152.	7.8	85
9	Efficient water management policies for irrigation adaptation to climate change in Southern Europe. Ecological Economics, 2015, 120, 226-233.	5.7	81
10	Economic assessment of acquiring water for environmental flows in the Murray Basin*. Australian Journal of Agricultural and Resource Economics, 2007, 51, 283-303.	2.6	74
11	Exploring the cost effectiveness of land conservation auctions and payment policies*. Australian Journal of Agricultural and Resource Economics, 2008, 52, 303-319.	2.6	74
12	Robust global sensitivity analysis under deep uncertainty via scenario analysis. Environmental Modelling and Software, 2016, 76, 154-166.	4.5	68
13	An ecosystem services approach to estimating economic losses associated with drought. Ecological Economics, 2013, 91, 19-27.	5.7	66
14	Land use efficiency: anticipating future demand for landâ€sector greenhouse gas emissions abatement and managing tradeâ€offs with agriculture, water, and biodiversity. Global Change Biology, 2015, 21, 4098-4114.	9.5	64
15	Impacts of climate change on lower Murray irrigation*. Australian Journal of Agricultural and Resource Economics, 2009, 53, 437-456.	2.6	63
16	Real options analysis for land use management: Methods, application, and implications for policy. Journal of Environmental Management, 2015, 161, 144-152.	7.8	60
17	Environmental water governance in federal rivers: opportunities and limits for subsidiarity in Australia's Murray–Darling River. Water Policy, 2012, 14, 915-936.	1.5	58
18	Modelling Australian land use competition and ecosystem services with food price feedbacks at high spatial resolution. Environmental Modelling and Software, 2015, 69, 141-154.	4.5	58

JEFFERY CONNOR

#	Article	IF	CITATIONS
19	Reconfiguring an irrigation landscape to improve provision of ecosystem services. Ecological Economics, 2010, 69, 1031-1042.	5.7	55
20	China's progress towards sustainable land development and ecological civilization. Landscape Ecology, 2018, 33, 1647-1653.	4.2	51
21	Climate change and environmental water reallocation in the Murray–Darling Basin: Impacts on flows, diversions and economic returns to irrigation. Journal of Hydrology, 2014, 518, 120-129.	5.4	50
22	Allocation trade in Australia: a qualitative understanding of irrigator motives and behaviour*. Australian Journal of Agricultural and Resource Economics, 2012, 56, 42-60.	2.6	48
23	Scenarios for Australian agricultural production and land use to 2050. Agricultural Systems, 2016, 142, 70-83.	6.1	47
24	Mitigating economic risk from climate variability in rain-fed agriculture through enterprise mix diversification. Ecological Economics, 2012, 79, 105-112.	5.7	46
25	Land use mapping error introduces strongly-localised, scale-dependent uncertainty into land use and ecosystem services modelling. Ecosystem Services, 2015, 15, 63-74.	5.4	44
26	Using ecosystem services to represent the environment in hydro-economic models. Journal of Hydrology, 2016, 538, 293-303.	5.4	43
27	A conservation industry for sustaining natural capital and ecosystem services in agricultural landscapes. Ecological Economics, 2010, 69, 680-689.	5.7	32
28	Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia's agricultural lands. GCB Bioenergy, 2015, 7, 479-487.	5.6	32
29	Agricultural land-use dynamics: Assessing the relative importance of socioeconomic and biophysical drivers for more targeted policy. Land Use Policy, 2017, 63, 53-66.	5.6	31
30	Trading water to improve environmental flow outcomes. Water Resources Research, 2013, 49, 4265-4276.	4.2	30
31	Ecosystem services in urban water investment. Journal of Environmental Management, 2014, 145, 43-53.	7.8	29
32	What Actually Confers Adaptive Capacity? Insights from Agro-Climatic Vulnerability of Australian Wheat. PLoS ONE, 2015, 10, e0117600.	2.5	28
33	The Economics of Groundwater Replenishment for Reliable Urban Water Supply. Water (Switzerland), 2014, 6, 1662-1670.	2.7	27
34	Water allocation reform to meet environmental uses while sustaining irrigation: a case study of the Murray–Darling Basin, Australia. Water Policy, 2014, 16, 739-754.	1.5	25
35	Effects of competition on environmental water buyback auctions. Agricultural Water Management, 2013, 127, 59-73.	5.6	24
36	Opportunity for peri-urban Perth groundwater trade. Journal of Hydrology, 2013, 496, 89-99.	5.4	23

JEFFERY CONNOR

#	Article	IF	CITATIONS
37	Acquiring Water for the Environment: Lessons from Natural Resources Management. Journal of Environmental Policy and Planning, 2013, 15, 513-532.	2.8	23
38	The economics of time delayed salinity impact management in the River Murray. Water Resources Research, 2008, 44, .	4.2	22
39	Ecohydrological and socioeconomic integration for the operational management of environmental flows. , 2013, 23, 999-1016.		22
40	Climate change and the economics of biomass energy feedstocks in semi-arid agricultural landscapes: A spatially explicit real options analysis. Journal of Environmental Management, 2017, 192, 171-183.	7.8	22
41	Designing, testing and implementing a trial dryland salinity credit trade scheme. Ecological Economics, 2008, 67, 574-588.	5.7	19
42	Integrated modelling of costâ€effective siting and operation of flow ontrol infrastructure for river ecosystem conservation. Water Resources Research, 2011, 47, .	4.2	19
43	Forest transition in developed agricultural regions needs efficient regulatory policy. Forest Policy and Economics, 2018, 86, 67-75.	3.4	17
44	Principles for Economically Efficient and Environmentally Sustainable Water Markets: The Australian Experience. , 2013, , 357-374.		16
45	Emerging water and carbon market opportunities for environmental water and climate regulation ecosystem service provision. Journal of Hydrology, 2019, 578, 124077.	5.4	16
46	Irrigator and Environmental Water Management Adaptation to Climate Change and Water Reallocation in the Murray–Darling Basin. Water Economics and Policy, 2015, 01, 1550009.	1.0	15
47	The influence of crediting and permanence periods on Australian forest-based carbon offset supply. Land Use Policy, 2020, 97, 104800.	5.6	15
48	lrrigation revenue loss in Murray–Darling Basin drought: An econometric assessment. Agricultural Water Management, 2014, 145, 163-170.	5.6	14
49	The economics of water: taking full account of first use, reuse and the return to the environment. Irrigation and Drainage, 2005, 54, S93-S102.	1.7	13
50	Evaluating economic costs and benefits of climate resilient livelihood strategies. Climate Risk Management, 2016, 12, 115-129.	3.2	13
51	Projected social costs of CO2 emissions from forest losses far exceed the sequestration benefits of forest gains under global change. Ecosystem Services, 2019, 37, 100935.	5.4	13
52	Cap and trade policy for managing water competition from potential future carbon plantations. Environmental Science and Policy, 2016, 66, 11-22.	4.9	11
53	An integrated strategic and tactical optimization model for forest supply chain planning. Forest Policy and Economics, 2021, 131, 102571.	3.4	10
54	Evaluating policy options for managing diffuse source water quality in Lake Taupo, New Zealand. The Environmentalist, 2009, 29, 348-359.	0.7	9

JEFFERY CONNOR

#	Article	IF	CITATIONS
55	An integrated dynamic modeling framework for investigating the impact of climate change and variability on irrigated agriculture. Water Resources Research, 2011, 47, .	4.2	7
56	Improving the effectiveness of aid: an evaluation of prospective Mekong irrigation investments. International Journal of Water Resources Development, 2017, 33, 270-291.	2.0	7
57	Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia. Water Economics and Policy, 2017, 03, 1650042.	1.0	7
58	Australian water policy reform: lessons learned and potential transferability. Climate Policy, 2020, 20, 641-651.	5.1	7
59	Improving Cost Effectiveness of Irrigation Zoning for Salinity Mitigation by Introducing Offsets. Water Resources Management, 2009, 23, 2085-2100.	3.9	6
60	Current carbon prices do not stack up to much land use change, despite bundled ecosystem service coâ€benefits. Global Change Biology, 2021, 27, 2744-2762.	9.5	6
61	Cost-Effective Abatement of Multiple Production Externalities. Water Resources Research, 1995, 31, 1789-1796.	4.2	5
62	Analyzing the potential for water quality externalities as the result of market water transfers. Water Resources Research, 1999, 35, 2833-2839.	4.2	5
63	Sensitivity analysis in economic evaluation of payments for water and carbon ecosystem services. Ecosystem Services, 2022, 54, 101416.	5.4	4
64	Impact of Drought on Adelaide's Water Supply System: Past, Present, and Future. , 2013, , 41-62.		3
65	Irrigation to meet growing food demand with climate change, salinity and water trade. WIT Transactions on Ecology and the Environment, 2008, , .	0.0	3
66	Designing Tradable Credit Policy for Diffuse Source Salinity Ex Ante. Society and Natural Resources, 2008, 21, 930-943.	1.9	2
67	Agricultural water management. , 2015, , .		2
68	Interactive land use strategic assessment: An assessment tool for irrigation profitability under climate uncertainty. Agricultural Water Management, 2019, 224, 105751.	5.6	1
69	Some further evidence on the derived demand for irrigation electricity: A dual cost function approach. Water Resources Research, 1989, 25, 1461-1468.	4.2	0
70	Maximising Benefits from Murray–Darling Basin Water Resource Management. , 2012, , .		0