Eric J Murphy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3502182/publications.pdf

Version: 2024-02-01

54	1,865	22	43
papers	citations	h-index	g-index
55	55	55	2164
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Alpha-linolenic acid and its conversion to longer chain nâ°'3 fatty acids: Benefits for human health and a role in maintaining tissue nâ°'3 fatty acid levels. Progress in Lipid Research, 2009, 48, 355-374.	11.6	447
2	Liver fatty acid-binding protein expression in transfected fibroblasts stimulates fatty acid uptake and metabolism. Lipids and Lipid Metabolism, 1996, 1301, 191-198.	2.6	130
3	Intestinal and liver fatty acid binding proteins differentially affect fatty acid uptake and esterification in L-cells. Lipids, 1995, 30, 907-910.	1.7	122
4	α-Synuclein Gene Deletion Decreases Brain Palmitate Uptake and Alters the Palmitate Metabolism in the Absence of α-Synuclein Palmitate Binding. Biochemistry, 2005, 44, 8251-8259.	2.5	94
5	Brain Arachidonic Acid Incorporation Is Decreased in Heart Fatty Acid Binding Protein Gene-Ablated Mice. Biochemistry, 2005, 44, 6350-6360.	2.5	86
6	Acyl-CoA Synthetase Activity Links Wild-Type but Not Mutant α-Synuclein to Brain Arachidonate Metabolism. Biochemistry, 2006, 45, 6956-6966.	2.5	76
7	\hat{l}_{\pm} -Synuclein gene ablation increases docosahexaenoic acid incorporation and turnover in brain phospholipids. Journal of Neurochemistry, 2006, 101, 201-211.	3.9	72
8	Acidic hydrolysis of plasmalogens followed by high-performance liquid chromatography. Lipids, 1993, 28, 565-568.	1.7	70
9	Dietary $\hat{l}\pm$ -linolenic acid increases brain but not heart and liver docosahexaenoic acid levels. Lipids, 2005, 40, 787-798.	1.7	57
10	Uptake and metabolism of plasma-derived erucic acid by rat brain. Journal of Lipid Research, 2006, 47, 1289-1297.	4.2	57
11	Rapid synthesis and turnover of brain microsomal ether phospholipids in the adult rat. Journal of Lipid Research, 2002, 43, 59-68.	4.2	55
12	Heart Fatty Acid Uptake Is Decreased in Heart Fatty Acid-binding Protein Gene-ablated Mice. Journal of Biological Chemistry, 2004, 279, 34481-34488.	3.4	49
13	Extracellular calcium is a mediator of astroglial injury during combined glucose-oxygen deprivation. Brain Research, 1992, 593, 45-50.	2.2	48
14	Lipid alterations following impact spinal cord injury in the rat. Molecular and Chemical Neuropathology, 1994, 23, 13-26.	1.0	46
15	Phospholipid composition of cultured human endothelial cells. Lipids, 1992, 27, 150-153.	1.7	42
16	Fatty Acid Binding Proteinâ€1 (FABP1) and the Human FABP1 T94A Variant: Roles in the Endocannabinoid System and Dyslipidemias. Lipids, 2016, 51, 655-676.	1.7	41
17	Brain fixation for analysis of brain lipid-mediators of signal transduction and brain eicosanoids requires head-focused microwave irradiation: An historical perspective. Prostaglandins and Other Lipid Mediators, 2010, 91, 63-67.	1.9	39
18	Separation of neutral lipids by high-performance liquid chromatography: quantification by ultraviolet, light scattering and fluorescence detection. Biomedical Applications, 1996, 685, 9-14.	1.7	38

#	Article	IF	CITATIONS
19	Liver and intestinal fatty acid-binding protein expression increases phospholipid content and alters phospholipid fatty acid composition in L-cell fibroblasts. Lipids, 2000, 35, 729-738.	1.7	37
20	<scp>FABP</scp> ‶ gene ablation impacts brain endocannabinoid system in male mice. Journal of Neurochemistry, 2016, 138, 407-422.	3.9	29
21	<i>Fabp1</i> gene ablation inhibits highâ€fat dietâ€induced increase in brain endocannabinoids. Journal of Neurochemistry, 2017, 140, 294-306.	3.9	24
22	Intravenously injected [1-14C]arachidonic acid targets phospholipids, and [1-14C]palmitic acid targets neutral lipids in hearts of awake rats. Lipids, 2000, 35, 891-898.	1.7	22
23	The blood–brain barrier and proteinâ€mediated fatty acid uptake: role of the blood–brain barrier as a metabolic barrier. Journal of Neurochemistry, 2017, 141, 324-329.	3.9	22
24	Erucic Acid is Differentially Taken up and Metabolized in Rat Liver and Heart. Lipids, 2008, 43, 391-400.	1.7	21
25	Female Mice are Resistant to <i>Fabp1</i> Gene Ablationâ€Induced Alterations in Brain Endocannabinoid Levels. Lipids, 2016, 51, 1007-1020.	1.7	17
26	Sterol carrier proteinâ€2:Not just for cholesterol any more. Molecular and Cellular Biochemistry, 2002, 239, 87-93.	3.1	16
27	Composition of the phospholipids and their fatty acids in the ROC-1 oligodendroglial cell line. Lipids, 1993, 28, 67-71.	1.7	13
28	Fatty acid uptake in diabetic rat adipocytes. Molecular and Cellular Biochemistry, 1997, 167, 1-10.	3.1	13
29	Prenatal Ethanol Exposure Increases Brain Cholesterol Content in Adult Rats. Lipids, 2013, 48, 1059-1068.	1.7	11
30	Blood–brain barrier and brain fatty acid uptake: Role of arachidonic acid and <scp>PGE</scp> ₂ . Journal of Neurochemistry, 2015, 135, 845-848.	3.9	11
31	Sterol Carrier Proteinâ€2/Sterol Carrier Proteinâ€x/Fatty Acid Binding Proteinâ€1 Ablation Impacts Response of Brain Endocannabinoid to Highâ€Fat Diet. Lipids, 2019, 54, 583-601.	1.7	9
32	Fatty acid double bond orientation alters interaction with L-cell fibroblasts. Molecular and Cellular Biochemistry, 1996, 155, 113-9.	3.1	8
33	Sterol carrier protein-2: not just for cholesterol any more. Molecular and Cellular Biochemistry, 2002, 239, 87-93.	3.1	8
34	The Importance of Ethical Peer-Review: Why Do We Ask Authors to Suggest Reviewers Anyway?. Lipids, 2015, 50, 1165-1166.	1.7	5
35	Lipids: 50th Anniversary Celebration and the Future. Lipids, 2015, 50, 1-2.	1.7	5
36	Phospholipid mass is increased in fibroblasts bearing the Swedish amyloid precursor mutation. Brain Research Bulletin, 2006, 69, 79-85.	3.0	4

#	Article	IF	CITATIONS
37	Impact Factor and Science Publishing: What Impact Should It Have on Selecting Journals in Which We Publish?. Lipids, 2013, 48, 431-433.	1.7	4
38	Ether lipids and their elusive function in the nervous system: a role for plasmalogens. Journal of Neurochemistry, 2017, 143, 463-466.	3.9	4
39	Scp-2/Scp-x ablation in Fabp1 null mice differentially impacts hepatic endocannabinoid level depending on dietary fat. Archives of Biochemistry and Biophysics, 2018, 650, 93-102.	3.0	3
40	Citations: The Rules They Didn't Teach You. Lipids, 2011, 46, 307-309.	1.7	2
41	A lipid neurochemist's siren: docosahexaenoic acid and its elusive function in the central nervous system. Journal of Neurochemistry, 2013, 127, 299-302.	3.9	2
42	Glucose as a carbon source to synthesize palmitate de novo in the adult rodent brain: Adding to the carbon recycling story in the brain. Journal of Neurochemistry, 2022, 161, 109-111.	3.9	2
43	Role of FABP in Cellular Phospholipid Metabolism. , 0, , 327-342.		1
44	Scientific Misconduct and Lipids: A View from an Editor-in-Chief. Lipids, 2013, 48, 1-2.	1.7	1
45	Is Tweeting Important for Technical Writing? Absolutely. Lipids, 2016, 51, 653-653.	1.7	1
46	So You Want to Publish in Lipids: Tips for Authors to Enhance Their Potential for Success. Lipids, 2017, 52, 383-384.	1.7	1
47	Are You a Good Citizen of Science?. Lipids, 2011, 46, 207-207.	1.7	0
48	Carbon recycling goes full circle: fatty acids to excitatory amino acids and now excitatory amino acids to fatty acids. Journal of Neurochemistry, 2014, 129, 363-365.	3.9	0
49	A New Era for Lipids: Introduction of Rapid Communications. Lipids, 2016, 51, 149-150.	1.7	0
50	An Ethical Dilemma: To Share or Not To Share Your Paper Published in <i>Lipids</i> Using an Onâ€Line Outlet. Lipids, 2017, 52, 573-574.	1.7	0
51	A New Year and a New Publishing Partnership With Wiley. Lipids, 2018, 53, 3-4.	1.7	0
52	Why We Care about Ethics and Ethical Publishing at <i>Lipids</i> Lipids, 2019, 54, 3-4.	1.7	0
53	My Tenure as Editorâ€inâ€Chief of <i>Lipids</i> : What I Learned. Lipids, 2020, 55, 3-4.	1.7	0
54	Impact Factor <i>vs</i> Integrity Factor: Which Siren Should Be Our Guide?. Lipids, 2020, 55, 5-6.	1.7	0