Cristina LÃ³pez-RodrÃ-guez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3502037/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	NFAT5 Amplifies Antipathogen Responses by Enhancing Chromatin Accessibility, H3K27 Demethylation, and Transcription Factor Recruitment. Journal of Immunology, 2021, 206, 2652-2667.	0.8	10

2 Salt-Sensitive Hypertension of the Renal Tubular Cell–Specific NFAT5 (Nuclear Factor of Activated) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

3	NFAT5 Controls the Integrity of Epidermis. Frontiers in Immunology, 2021, 12, 780727.	4.8	1
4	The transcription factor NFAT5 limits infection-induced type I interferon responses. Journal of Experimental Medicine, 2020, 217, .	8.5	14
5	A Neutrophil Timer Coordinates Immune Defense and Vascular Protection. Immunity, 2019, 50, 390-402.e10.	14.3	258
6	Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. Frontiers in Immunology, 2019, 10, 535.	4.8	53
7	NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes. Journal of Immunology, 2018, 200, 305-315.	0.8	40
8	Analgesia linked to Nav1.7 loss of function requires µ- and δ-opioid receptors. Wellcome Open Research, 2018, 3, 101.	1.8	21
9	Roquin targets mRNAs in a 3â€2-UTR-specific manner by different modes of regulation. Nature Communications, 2018, 9, 3810.	12.8	40
10	Macrophage-specific MHCII expression is regulated by a remote <i>Ciita</i> enhancer controlled by NFAT5. Journal of Experimental Medicine, 2018, 215, 2901-2918.	8.5	47
11	Contextâ€dependent regulation of Th17â€associated genes and IFNγ expression by the transcription factor NFAT5. Immunology and Cell Biology, 2017, 95, 56-67.	2.3	27
12	Immunodeficiency and Autoimmune Enterocolopathy Linked to NFAT5 Haploinsufficiency. Journal of Immunology, 2015, 194, 2551-2560.	0.8	32
13	Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences, 2015, 72, 2305-2321.	5.4	17
14	Nuclear Factor of Activated T Cells (NFAT). , 2014, , 824-833.		0
15	Transcriptional regulation of the stress response by mTOR. Science Signaling, 2014, 7, re2.	3.6	81
16	NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16091-16096.	7.1	30
17	Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Research, 2012, 40, 4368-4384.	14.5	40
18	Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine, 2012, 209, 379-393.	8.5	143

#	Article	IF	CITATIONS
19	NFAT5 Regulates T Lymphocyte Homeostasis and CD24-Dependent T Cell Expansion under Pathologic Hypernatremia. Journal of Immunology, 2010, 185, 6624-6635.	0.8	47
20	Exclusion of NFAT5 from Mitotic Chromatin Resets Its Nucleo-Cytoplasmic Distribution in Interphase. PLoS ONE, 2009, 4, e7036.	2.5	8
21	Brx Shines a Light on the Route from Hyperosmolarity to NFAT5. Science Signaling, 2009, 2, pe20.	3.6	17
22	The Transcription Factor NFAT5 Is Required for Cyclin Expression and Cell Cycle Progression in Cells Exposed to Hypertonic Stress. PLoS ONE, 2009, 4, e5245.	2.5	43
23	Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Molecular Biology, 2008, 9, 13.	3.0	35
24	Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochemical Pharmacology, 2006, 72, 1597-1604.	4.4	112
25	NFAT5 binds to the TNF promoter distinctly from NFATp, c, 3 and 4, and activates TNF transcription during hypertonic stress alone. Nucleic Acids Research, 2005, 33, 3845-3854.	14.5	56
26	Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proceedings of the United States of America, 2004, 101, 2392-2397.	7.1	230
27	The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biology, 2002, 4, 540-544.	10.3	390
28	Structure of a TonEBP–DNA complex reveals DNA encircled by a transcription factor. Nature Structural Biology, 2002, 9, 90-94.	9.7	106
29	Bridging the NFAT and NF-κB Families. Immunity, 2001, 15, 47-58.	14.3	231
30	Partners in transcription: NFAT and AP-1. Oncogene, 2001, 20, 2476-2489.	5.9	686
31	c-Myc inhibits CD11a and CD11c leukocyte integrin promoters. European Journal of Immunology, 2000, 30, 2465-2471.	2.9	10
32	Polyomavirus Enhancer-binding Protein 2/Core Binding Factor/Acute Myeloid Leukemia Factors Contribute to the Cell Type-specific Activity of the CD11a Integrin Gene Promoter. Journal of Biological Chemistry, 2000, 275, 28507-28512.	3.4	26
33	NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7214-7219.	7.1	352
34	Affinity-Driven Peptide Selection of an NFAT Inhibitor More Selective Than Cyclosporin A. Science, 1999, 285, 2129-2133.	12.6	562
35	NF-AT5: The NF-AT Family of Transcription Factors Expands in a New Direction. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 517-526.	1.1	35
36	CCAAT-Enhancer-binding Proteins (C/EBP) Regulate the Tissue Specific Activity of the CD11c Integrin Gene Promoter Through Functional Interactions with Sp1 Proteins. Journal of Biological Chemistry, 1997, 272, 29120-29126.	3.4	84

#	Article	IF	CITATIONS
37	CD11c Integrin Gene Promoter Activity During Myeloid Differentiation. Leukemia and Lymphoma, 1997, 25, 415-425.	1.3	40
38	PU.1 negatively regulates the CD11c integrin gene promoter through recognition of the major transcriptional start site. European Journal of Immunology, 1997, 27, 1843-1847.	2.9	36
39	An octamer element functions as a regulatory element in the differentiation-responsive CD11c integrin gene promoter: OCT-2 inducibility during myelomonocytic differentiation. Journal of Immunology, 1997, 158, 5833-40.	0.8	16
40	Dithiocarbamates Trigger Differentiation and Induction of CD11c Gene through AP-1 in the Myeloid Lineage. Journal of Biological Chemistry, 1996, 271, 10924-10931.	3.4	33
41	AP-1 regulates the basal and developmentally induced transcription of the CD11c leukocyte integrin gene. Journal of Immunology, 1996, 156, 3780-7.	0.8	18
42	Identification of Sp1-binding sites in the CD11c (p150,95α) and CD11a (LFA-1α) integrin subunit promoters and their involvement in the tissuespecific expression of CD11c. European Journal of Immunology, 1995, 25, 3496-3503.	2.9	36
43	Hematopoietic Cell-Type-Dependent Regulation of Leukocyte Integrin Functional Activity: CD11b and CD11c Expression Inhibits LFA-1-Dependent Aggregation of Differentiated U937 Cells. Cellular Immunology, 1995, 164, 163-169.	3.0	18
44	Granulocyte-macrophage colony-stimulating factor, phorbol ester, and sodium butyrate induce the CD11c integrin gene promoter activity during myeloid cell differentiation. Blood, 1995, 86, 3715-3724.	1.4	20
45	Regulation of Expression of the LFA-1 and p150,95 Leukocyte Integrins: Involvement of the CD11a and CD11c Gene Promoters. Immunobiology, 1995, 193, 315-321.	1.9	1
46	Regulated expression of p150,95 (CD11c/CD18; αX/β2) and VLA-4 (CD49d/CD29; α4/β1) integrins during myelc cell differentiation. European Journal of Immunology, 1994, 24, 41-47.	oid 2.9	35
47	Characterization of two new CD18 alleles causing severe leukocyte adhesion deficiency. European Journal of Immunology, 1993, 23, 2792-2798.	2.9	24