
Chengxun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3500796/publications.pdf Version: 2024-02-01

CHENCYLIN

#	Article	IF	CITATIONS
1	Tunable triangular and honeycomb plasma structures in dielectric barrier discharge with mesh-liquid electrodes. Plasma Science and Technology, 2022, 24, 015402.	1.5	6
2	Attenuation of Microwave Radiation by Post-Anode Plasma in a Composite Grid Electrode Structure. IEEE Access, 2022, 10, 7675-7683.	4.2	1
3	Specificity of the EEDF formation in a dusty plasma with nonmonotonic profiles of charged particles and reversal ambipolar field. Chinese Journal of Physics, 2022, , .	3.9	0
4	Measurements of fluctuating electron temperature and space potential in a magnetized plasma with a single magnetically insulated baffled probe (MIBP). Plasma Sources Science and Technology, 2022, 31, 037001.	3.1	0
5	Specificities of the Nonlocal EDF Formation in a Dusty Plasma With the Different Spatial Distribution of the Microparticle Density. IEEE Transactions on Plasma Science, 2022, 50, 1653-1660.	1.3	1
6	Spectral characteristics of a short glow discharge with a grid anode. AIP Advances, 2022, 12, .	1.3	4
7	Tunable transmission near Dirac-like point in the designed plasma photonic crystal. Physics of Plasmas, 2022, 29, 033505.	1.9	6
8	Microwave Diagnostics of Cold Atmospheric Pressure Plasma Jets Based on the Radiation Pattern Measurements. IEEE Transactions on Plasma Science, 2022, 50, 1669-1674.	1.3	0
9	On the Possibility of Creating Absolute Negative Conductivity in a Local Stationary Plasma With an Inverse EDF. IEEE Transactions on Plasma Science, 2022, 50, 1695-1699.	1.3	0
10	Influence of Electron–Electron Collisions on the Formation of Inverse Electron Distribution Function and Absolute Negative Conductivity in Nonlocal Plasma of a DC Glow Discharge. IEEE Transactions on Plasma Science, 2022, 50, 1689-1694.	1.3	0
11	Ambipolar Trap for Dust Particles in a V-Shaped Homogeneous Positive Column of Glow Discharge at Low and Medium Pressures. IEEE Transactions on Plasma Science, 2021, 49, 997-1000.	1.3	0
12	Influence of Discharge Current, Pressure, and Magnetic Field on the Spatial Distribution of Particles and Fluxes in the Dusty Plasma of the Positive Column of DC Glow Discharge. IEEE Transactions on Plasma Science, 2021, 49, 878-885.	1.3	4
13	Diagnostics of a microhollow cathode discharge at atmospheric pressure. Plasma Science and Technology, 2021, 23, 064001.	1.5	6
14	The Possibility of Measuring Electron Density of Plasma at Atmospheric Pressure by a Microwave Cavity Resonance Spectroscopy. IEEE Transactions on Plasma Science, 2021, 49, 1001-1008.	1.3	7
15	A method of electron density of positive column diagnosis—Combining machine learning and Langmuir probe. AlP Advances, 2021, 11, .	1.3	6
16	Analysis of parameters of coaxial dielectric barrier discharges in argon flow at atmospheric pressure. Journal of Applied Physics, 2021, 129, 153305.	2.5	2
17	Features of the EEDF formation in the dusty plasma of the positive column of a glow discharge. Plasma Sources Science and Technology, 2021, 30, 047001.	3.1	3
18	Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column. Plasma Science and Technology, 2021, 23, 095403.	1.5	9

#	Article	IF	CITATIONS
19	Magnetically insulated baffled probe (MIBP) for low-temperature and fusion-boundary plasma studies. Plasma Physics and Controlled Fusion, 2021, 63, 093001.	2.1	1
20	Formation of inverse EDF in glow discharges with an inhomogeneous electric field. Plasma Sources Science and Technology, 2021, 30, 095006.	3.1	8
21	Use of plasma electron spectroscopy method to detect hydrocarbons, alcohols, and ammonia in nonlocal plasma of short glow discharge. Plasma Sources Science and Technology, 2021, 30, 117001.	3.1	13
22	Parametric study of coaxial dielectric barrier discharge in atmospheric pressure argon. Physics of Plasmas, 2021, 28, 113505.	1.9	1
23	A Study of the Dynamics of Formation of Plasmoids in the Gatchina Discharge. Technical Physics, 2021, 66, 1058-1071.	0.7	4
24	Characteristics of a short linear antenna with a cylindrical plasma reflector. , 2021, , .		1
25	Microwave Switch in a Circular Waveguide with Gas Microwave Discharge in a High-power Microwave Pulse Compression System For a Solar Space. , 2021, , .		0
26	Focusing effect of inhomogeneous plasma on electromagnetic wave. , 2021, , .		0
27	Numerical simulation of the dynamics of the temperature of electrons heated by fast electrons formed during the modification of ionosphere by RF waves. , 2021, , .		0
28	Heating rate of thermal electrons by the fast part of EDF in the ionosphere. , 2021, , .		0
29	Theoretical research on the transport and ionization rate coefficients in glow discharge dusty plasma. Plasma Science and Technology, 2020, 22, 034003.	1.5	7
30	Influence of the Spatial Distribution of the Dust Particle Density on the Radial Profile Formation of Particles and Fluxes in a Dusty Plasma of DC Glow Discharge. IEEE Transactions on Plasma Science, 2020, 48, 375-387.	1.3	7
31	Measurements of plasma parameters in a hollow electrode AC glow discharge in helium. Plasma Science and Technology, 2020, 22, 034006.	1.5	9
32	The Influence of Plasma Distribution on Microwave Reflection in a Plasma-Metal Model. IEEE Transactions on Plasma Science, 2020, 48, 359-363.	1.3	6
33	Conductivity and Permittivity in Plasma With Nonequilibrium Electron Distribution Function. IEEE Transactions on Plasma Science, 2020, 48, 388-393.	1.3	2
34	Measurement of the densities of plasma and ambient gas particles using a short direct current discharge. Physics of Plasmas, 2020, 27, 053508.	1.9	2
35	Transition from periodic to chaotic oscillations in a planar gas discharge-semiconductor system. Plasma Sources Science and Technology, 2020, 29, 065009.	3.1	7
36	Longitudinal structure and plasma parameters of an entire DC glow discharge as obtained using a 1D fluid-based model with non-local ionization. Plasma Sources Science and Technology, 2020, 29, 075003.	3.1	7

#	Article	IF	CITATIONS
37	Evidence of effective local control of a plasma's nonlocal electron distribution function. Plasma Sources Science and Technology, 2020, 29, 077001.	3.1	4
38	Formation of inverse electron distribution function and absolute negative conductivity in nonlocal plasma of a dc glow discharge. Physical Review E, 2020, 101, 031202.	2.1	14
39	Boundary conditions for drift-diffusion equations in gas-discharge plasmas. Physics of Plasmas, 2020, 27, .	1.9	11
40	Paschen curves and current–voltage characteristics of large-area short glow discharge with different electrode structures. Physics of Plasmas, 2020, 27, .	1.9	7
41	The Influence of the Ambipolar Field on the Levitation Conditions of Dust Particles in the Positive Column of the Clow Discharge With a Change the Spatial Orientation of the Discharge Tube. IEEE Transactions on Plasma Science, 2019, 47, 4391-4395.	1.3	4
42	Formation of nonmonotonic profiles of densities and fluxes of charged particles and ambipolar field reversal in argon dusty plasmas. Plasma Sources Science and Technology, 2019, 28, 095020.	3.1	9
43	Influence of dust particles on spatial distributions of particles and fluxes in positive column of glow discharge. Plasma Science and Technology, 2019, 21, 115404.	1.5	7
44	Nonlocal control of plasma conductivity. Physics of Plasmas, 2019, 26, .	1.9	3
45	The smooth effect of fast electron detection in the positive column in DC glow discharge. AIP Advances, 2019, 9, 095033.	1.3	1
46	1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission. AIP Advances, 2019, 9, 065302.	1.3	13
47	Diagnostics of large volume coaxial gridded hollow cathode DC discharge. Plasma Sources Science and Technology, 2019, 28, 067001.	3.1	10
48	Analysis and optimization of microwave reflections in a plasma-metal model. Journal of Applied Physics, 2019, 125, 163306.	2.5	9
49	A kinetic model for investigating the dielectric properties of rocket exhaust dusty plasmas. Physics of Plasmas, 2019, 26, .	1.9	2
50	Influence of metastable atoms on the formation of nonlocal EDF, electron reaction rates, and transport coefficients in argon plasma. Plasma Sources Science and Technology, 2019, 28, 035017.	3.1	8
51	Calculation of nonlocal EDF using a one-dimensional Boltzmann equation solver. Physics of Plasmas, 2019, 26, .	1.9	5
52	Research on small-scale structures of ice particle density and electron density in the mesopause region. Annales Geophysicae, 2019, 37, 1079-1094.	1.6	1
53	Effects of Non-Maxwellian Electron Distribution Function to the Propagation Coefficients of Electromagnetic Waves in Plasma. IEEE Transactions on Plasma Science, 2019, 47, 100-103.	1.3	3
54	Measurement of Microwave Propagation in Weakly Ionized Dusty Plasma. IEEE Transactions on Plasma Science, 2019, 47, 109-112.	1.3	2

#	Article	IF	CITATIONS
55	Nonlinear propagation characteristics and ring structure of a Gaussian beam in collisionless plasmas with high order paraxial ray theory. Optik, 2019, 179, 744-749.	2.9	3
56	Influence of electron–electron collisions on the formation of a nonlocal EDF. Plasma Sources Science and Technology, 2019, 28, 015001.	3.1	6
57	Influence of dust particles on DC glow discharge plasma. Physics of Plasmas, 2018, 25, .	1.9	14
58	Influence of dust particles on positive column of DC glow discharge. Journal of Applied Physics, 2018, 123, .	2.5	15
59	Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode. Journal of Applied Physics, 2018, 123, .	2.5	12
60	Vortex electron flux and EDF nonlocality of moderate and high-pressure gas discharge plasmas. Plasma Sources Science and Technology, 2018, 27, 045007.	3.1	7
61	Effects of Druyvesteyn Distribution to Transmission Coefficients in Plasma. , 2018, , .		0
62	The Nonlinear Propagation of Terahertz Wave in Plasmas. , 2018, , .		0
63	Microwave technology used for plasma diagnostic in complicated situations. , 2018, , .		0
64	Propagation of Electromagnetic Wave in a Coaxial Gridded Hollow Cathode Dusty Plasma. , 2018, , .		0
65	The Microwave Absorbing Performance of Co2+ - Ti4+ Co-doped Barium Ferrite Ceramics. , 2018, , .		0
66	Determining the spectrum of penning electrons by current to a wall probe in nonlocal negative glow plasma. Physics of Plasmas, 2018, 25, 104501.	1.9	23
67	Ponderomotive force induced nonlinear interaction between powerful terahertz waves and plasmas. Optik, 2018, 175, 250-255.	2.9	4
68	The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma. Physics of Plasmas, 2018, 25, .	1.9	4
69	Nonlinear propagation characteristics of multi-Gaussian beams in collisionless plasmas. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 3088.	2.1	4
70	Propagation characteristics of microwaves in dusty plasmas with multi-collisions. Plasma Science and Technology, 2017, 19, 055301.	1.5	11
71	Local Magnetic Control in a Large-Scale Low-Pressure Nonlocal Plasma Source. IEEE Transactions on Plasma Science, 2017, 45, 3114-3117.	1.3	1
72	On self-sustainment of DC discharges with gridded anode. Journal of Applied Physics, 2017, 122, .	2.5	8

#	Article	IF	CITATIONS
73	Probe Diagnostics of Plasma Parameters in a Large-Volume Glow Discharge With Coaxial Gridded Hollow Electrodes. IEEE Transactions on Plasma Science, 2017, 45, 3110-3113.	1.3	14
74	Ambipolar field role in formation of electron distribution function in gas discharge plasma. Scientific Reports, 2017, 7, 14613.	3.3	15
75	Propagation characters of multi-Gaussian beam with large eccentric displacement in collisionless plasma: Higher order paraxial theory. Physics of Plasmas, 2017, 24, .	1.9	1
76	1D kinetic simulations of a short glow discharge in helium. Physics of Plasmas, 2017, 24, .	1.9	29
77	The role of the ambipolar field in the formation of the EDF and the criteria of the local approximation. Journal of Physics: Conference Series, 2017, 927, 012080.	0.4	0
78	Wave propagation coefficients in non-maxwellian plasma. , 2017, , .		0
79	Absolute continuum intensity diagnostics of a novel large coaxial gridded hollow cathode argon plasma. Physics of Plasmas, 2016, 23, .	1.9	5
80	Properties of a large volume glow discharge helium plasma by measuring the broadband microwave phase shift in different pressures. Physics of Plasmas, 2016, 23, .	1.9	5
81	Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution. Physics of Plasmas, 2016, 23, .	1.9	16
82	Propagation of electromagnetic waves in a weak collisional and fully ionized dusty plasma. Physics of Plasmas, 2016, 23, .	1.9	27
83	Transmission characteristics of microwave in a glow-discharge dusty plasma. Physics of Plasmas, 2016, 23, .	1.9	9
84	Broadband microwave measurement of electron temperature of a large coaxial gridded hollow cathode helium plasma. Physics of Plasmas, 2016, 23, 103304.	1.9	3
85	Novel dynamic tuning of broadband visible metamaterial perfect absorber using graphene. Journal of Applied Physics, 2016, 120, .	2.5	20
86	Broadband microwave propagation in a novel large coaxial gridded hollow cathode helium plasma. Physics of Plasmas, 2016, 23, .	1.9	9
87	The dielectric function of weakly ionized dusty plasmas. Physics of Plasmas, 2016, 23, 073301.	1.9	3
88	Broadband microwave propagation in a novel large volume glow discharge argon plasma. , 2016, , .		1
89	Propagation of electromagnetic waves in a glow-discharge dusty plasma. , 2016, , .		0
90	The method of impedance transformation for electromagnetic waves propagating in one-dimension plasma photonic crystal. Physics of Plasmas, 2016, 23, .	1.9	5

#	Article	IF	CITATIONS
91	A novel chiral nano structure for optical activities and negative refractive index. Optik, 2016, 127, 5738-5742.	2.9	7
92	A numerical study of dynamic tunability of perfect absorption with temperature in the visible region based on a nanostructure containing multilayer graphene. Optics Communications, 2016, 372, 172-179.	2.1	8
93	Investigation of Low-Pressure Glow Discharge in a Coaxial Gridded Hollow Cathode. IEEE Transactions on Plasma Science, 2016, 44, 2965-2972.	1.3	14
94	Numerical and Experimental Diagnostics of Dusty Plasma in a Coaxial Gridded Hollow Cathode Discharge. IEEE Transactions on Plasma Science, 2016, 44, 2973-2978.	1.3	19
95	Broadband microwave characteristics of a novel coaxial gridded hollow cathode argon plasma. Review of Scientific Instruments, 2016, 87, 083506.	1.3	3
96	The electrical conductivity of weakly ionized plasma containing dust particles. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 2540-2543.	2.1	8
97	Propagation of electromagnetic waves in a weakly ionized dusty plasma. Journal Physics D: Applied Physics, 2015, 48, 465201.	2.8	28
98	The structure and optical properties of lead-free transparent KNLTN-La0.01 ceramics prepared by conventional sintering technique. Materials Science-Poland, 2014, 32, 597-603.	1.0	2
99	Ponderomotive force induced nonlinear interaction between terahertz wave and air plasmas. , 2014, , .		1
100	Soliton switching in inhomogeneous nonlocal media. Optik, 2014, 125, 1075-1078.	2.9	15
101	The terahertz characteristics of a sandwich type microplasma structure. Journal of Applied Physics, 2013, 114, 123302.	2.5	7
102	Beam steering in a nonlocal medium with inhomogeneous nonlinearity. Journal of Optics (United) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50
103	Propagation characteristics of a Gaussian laser beam in plasma with modulated collision frequency. Physics of Plasmas, 2012, 19, 083114.	1.9	4
104	Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction. Physics of Plasmas, 2012, 19, .	1.9	5
105	Dark and gray solitons in nematic liquid crystals. Physica Scripta, 2012, 85, 015402.	2.5	9
106	Spatial solitons in nonlocal materials with defocusing defects. Optics Communications, 2012, 285, 1456-1460.	2.1	1
107	Lagrangian approach for dark soliton in nonlocal nonlinear media. Optics Communications, 2012, 285, 3631-3635.	2.1	6

108Propagating characters of Gaussian laser beam in plasmas with non-homogeneous radial temperature
distribution. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 1211-1214.2.10

#	Article	IF	CITATIONS
109	Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile. Journal of Applied Physics, 2011, 109, 063305.	2.5	18
110	Self-focusing and defocusing of Gaussian laser beams in plasmas with linear temperature ramp. Physics of Plasmas, 2011, 18, .	1.9	22
111	Propagation properties of broadband terahertz pulses through a bounded magnetized thermal plasma. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 23-29.	1.4	27
112	Propagation of Gaussian laser beam in cold plasma of Drude model. Physics of Plasmas, 2011, 18, .	1.9	24
113	Propagation of broadband terahertz pulses through a dense-magnetized-collisional-bounded plasma layer. Physics of Plasmas, 2010, 17, .	1.9	40
114	The effect of B-site cations on the properties of KTaxNb1â^'xO3 [100] surface: A study of density functional theory. Computational Materials Science, 2010, 50, 338-343.	3.0	6
115	Radiation pattern in a tunable plasma window antenna. Journal Physics D: Applied Physics, 0, , .	2.8	1